Back to list of Stocks    See Also: Seasonal Analysis of ZSLGenetic Algorithms Stock Portfolio Generator, and Best Months to Buy/Sell Stocks

Fourier Analysis of ZSL (ProShares UltraShort Silver)


ZSL (ProShares UltraShort Silver) appears to have interesting cyclic behaviour every 50 weeks (49.3097*sine), 45 weeks (43.7295*sine), and 31 weeks (26.5928*cosine).

ZSL (ProShares UltraShort Silver) has an average price of 175.71 (topmost row, frequency = 0).



Click on the checkboxes shown on the right to see how the various frequencies contribute to the graph. Look for large magnitude coefficients (sine or cosine), as these are associated with frequencies which contribute most to the associated stock plot. If you find a large magnitude coefficient which dramatically changes the graph, look at the associated "Period" in weeks, as you may have found a significant recurring cycle for the stock of interest.

Right click on the graph above to see the menu of operations (download, full screen, etc.)

Fourier Analysis

Using data from 12/3/2008 to 6/18/2018 for ZSL (ProShares UltraShort Silver), this program was able to calculate the following Fourier Series:
Sequence #Cosine Coefficients Sine Coefficients FrequenciesPeriod
0175.7117   0 
1234.3911 96.02957 (1*2π)/499499 weeks
2149.4694 154.8203 (2*2π)/499250 weeks
384.96974 132.1856 (3*2π)/499166 weeks
458.49372 96.25742 (4*2π)/499125 weeks
552.51034 80.05611 (5*2π)/499100 weeks
652.57499 80.83436 (6*2π)/49983 weeks
739.13498 82.07095 (7*2π)/49971 weeks
827.77112 71.30797 (8*2π)/49962 weeks
916.57991 59.93106 (9*2π)/49955 weeks
1016.22934 49.30973 (10*2π)/49950 weeks
1119.87042 43.72953 (11*2π)/49945 weeks
1219.58949 38.4169 (12*2π)/49942 weeks
1322.30755 36.26907 (13*2π)/49938 weeks
1420.73931 32.86247 (14*2π)/49936 weeks
1523.11253 32.44738 (15*2π)/49933 weeks
1626.59277 32.84752 (16*2π)/49931 weeks
1725.72805 37.17897 (17*2π)/49929 weeks
1820.76893 39.33964 (18*2π)/49928 weeks
1916.03876 37.3718 (19*2π)/49926 weeks
209.78525 31.32685 (20*2π)/49925 weeks
2112.58309 24.38311 (21*2π)/49924 weeks
2215.16615 23.31129 (22*2π)/49923 weeks
2318.95306 24.32754 (23*2π)/49922 weeks
2417.29748 23.62063 (24*2π)/49921 weeks
2517.24009 23.85306 (25*2π)/49920 weeks
2619.02108 23.03661 (26*2π)/49919 weeks
2720.36667 23.557 (27*2π)/49918 weeks
2819.38388 24.63345 (28*2π)/49918 weeks
2919.81374 25.67861 (29*2π)/49917 weeks
3020.30328 26.43139 (30*2π)/49917 weeks
3119.84322 28.74949 (31*2π)/49916 weeks
3217.32645 31.6247 (32*2π)/49916 weeks
3314.2208 31.55694 (33*2π)/49915 weeks
3411.00499 32.34958 (34*2π)/49915 weeks
356.92787 31.6071 (35*2π)/49914 weeks
362.9334 29.16418 (36*2π)/49914 weeks
371.92868 25.38918 (37*2π)/49913 weeks
381.24705 22.09809 (38*2π)/49913 weeks
391.41376 18.7725 (39*2π)/49913 weeks
402.55597 17.7815 (40*2π)/49912 weeks
412.88298 16.45278 (41*2π)/49912 weeks
422.66664 15.01091 (42*2π)/49912 weeks
433.25914 11.95224 (43*2π)/49912 weeks
445.57137 11.06193 (44*2π)/49911 weeks
456.86288 10.95098 (45*2π)/49911 weeks
468.41058 11.11882 (46*2π)/49911 weeks
479.51202 11.13521 (47*2π)/49911 weeks
4810.02918 12.18751 (48*2π)/49910 weeks
4910.31444 12.57772 (49*2π)/49910 weeks
5010.86654 14.15433 (50*2π)/49910 weeks
5110.20242 14.51098 (51*2π)/49910 weeks
529.55922 14.05789 (52*2π)/49910 weeks
537.7916 13.84341 (53*2π)/4999 weeks
548.58583 14.4602 (54*2π)/4999 weeks
557.81605 13.98513 (55*2π)/4999 weeks
567.25545 13.71829 (56*2π)/4999 weeks
576.72263 13.62358 (57*2π)/4999 weeks
586.159 13.89924 (58*2π)/4999 weeks
594.75902 13.05682 (59*2π)/4998 weeks
603.28625 11.50509 (60*2π)/4998 weeks
613.60496 8.61242 (61*2π)/4998 weeks
624.72542 7.4316 (62*2π)/4998 weeks
636.97965 6.48349 (63*2π)/4998 weeks
648.19832 7.12499 (64*2π)/4998 weeks
659.10751 8.4214 (65*2π)/4998 weeks
669.47135 9.11908 (66*2π)/4998 weeks
678.23395 9.52907 (67*2π)/4997 weeks
687.34712 9.79078 (68*2π)/4997 weeks
696.89592 7.93084 (69*2π)/4997 weeks
707.36321 6.30768 (70*2π)/4997 weeks
719.08696 6.71509 (71*2π)/4997 weeks
729.98819 7.63309 (72*2π)/4997 weeks
739.54734 8.20752 (73*2π)/4997 weeks
749.72363 8.05838 (74*2π)/4997 weeks
759.54255 8.55617 (75*2π)/4997 weeks
768.67135 8.54913 (76*2π)/4997 weeks
778.59664 7.35239 (77*2π)/4996 weeks
789.77105 6.97198 (78*2π)/4996 weeks
7910.24378 6.86101 (79*2π)/4996 weeks
8010.87691 7.29999 (80*2π)/4996 weeks
8112.09377 8.34789 (81*2π)/4996 weeks
8212.7591 9.9235 (82*2π)/4996 weeks
8311.6889 11.69551 (83*2π)/4996 weeks
8410.12546 13.35198 (84*2π)/4996 weeks
857.91644 13.02726 (85*2π)/4996 weeks
865.89141 12.44991 (86*2π)/4996 weeks
874.8489 10.69577 (87*2π)/4996 weeks
884.91104 8.69062 (88*2π)/4996 weeks
895.93119 7.74131 (89*2π)/4996 weeks
907.38902 7.71057 (90*2π)/4996 weeks
917.18363 8.26815 (91*2π)/4995 weeks
926.3918 8.26527 (92*2π)/4995 weeks
936.06738 8.15308 (93*2π)/4995 weeks
946.68526 7.36786 (94*2π)/4995 weeks
957.14241 7.431 (95*2π)/4995 weeks
967.45301 7.81533 (96*2π)/4995 weeks
976.61262 8.92759 (97*2π)/4995 weeks
985.61462 8.89068 (98*2π)/4995 weeks
994.73923 8.16183 (99*2π)/4995 weeks
1003.96232 6.58023 (100*2π)/4995 weeks
1014.56352 5.67751 (101*2π)/4995 weeks
1025.74024 4.28288 (102*2π)/4995 weeks
1036.25104 4.45551 (103*2π)/4995 weeks
1046.79452 4.40674 (104*2π)/4995 weeks
1057.44361 4.40143 (105*2π)/4995 weeks
1068.13634 4.86882 (106*2π)/4995 weeks
1078.56026 5.63874 (107*2π)/4995 weeks
1088.13669 6.17961 (108*2π)/4995 weeks
1097.67775 6.60565 (109*2π)/4995 weeks
1107.16242 6.38223 (110*2π)/4995 weeks
1116.8175 6.06306 (111*2π)/4994 weeks
1126.81024 6.03139 (112*2π)/4994 weeks
1136.98088 5.48036 (113*2π)/4994 weeks
1146.83261 5.5482 (114*2π)/4994 weeks
1157.53069 5.25883 (115*2π)/4994 weeks
1167.69607 5.32269 (116*2π)/4994 weeks
1177.76591 6.31072 (117*2π)/4994 weeks
1187.69346 6.54444 (118*2π)/4994 weeks
1196.91178 6.67007 (119*2π)/4994 weeks
1206.12809 6.42486 (120*2π)/4994 weeks
1215.7471 5.82491 (121*2π)/4994 weeks
1225.98582 5.44314 (122*2π)/4994 weeks
1236.03947 5.62326 (123*2π)/4994 weeks
1245.58922 5.03112 (124*2π)/4994 weeks
1255.81798 4.32075 (125*2π)/4994 weeks
1266.57802 4.21761 (126*2π)/4994 weeks
1276.75253 4.65323 (127*2π)/4994 weeks
1286.58081 4.6248 (128*2π)/4994 weeks
1296.592 4.2454 (129*2π)/4994 weeks
1306.65055 4.63558 (130*2π)/4994 weeks
1316.79663 4.60764 (131*2π)/4994 weeks
1326.75517 4.88191 (132*2π)/4994 weeks
1336.59249 5.16474 (133*2π)/4994 weeks
1346.0127 5.47259 (134*2π)/4994 weeks
1355.17272 5.23723 (135*2π)/4994 weeks
1364.64339 4.68249 (136*2π)/4994 weeks
1374.3192 3.59539 (137*2π)/4994 weeks
1384.62503 2.87803 (138*2π)/4994 weeks
1395.57057 1.93737 (139*2π)/4994 weeks
1406.17509 1.7922 (140*2π)/4994 weeks
1416.66156 2.3723 (141*2π)/4994 weeks
1426.83221 2.55437 (142*2π)/4994 weeks
1436.60767 2.69699 (143*2π)/4993 weeks
1446.62692 2.14186 (144*2π)/4993 weeks
1457.13444 2.02432 (145*2π)/4993 weeks
1468.14861 2.46387 (146*2π)/4993 weeks
1478.06516 3.17752 (147*2π)/4993 weeks
1487.51964 3.54906 (148*2π)/4993 weeks
1497.07322 3.39553 (149*2π)/4993 weeks
1507.19396 3.15992 (150*2π)/4993 weeks
1517.08828 3.24264 (151*2π)/4993 weeks
1526.85899 3.36578 (152*2π)/4993 weeks
1536.48464 3.17702 (153*2π)/4993 weeks
1546.19302 3.12786 (154*2π)/4993 weeks
1556.04578 2.17426 (155*2π)/4993 weeks
1566.44479 1.49215 (156*2π)/4993 weeks
1577.39371 1.1304 (157*2π)/4993 weeks
1587.85156 1.3899 (158*2π)/4993 weeks
1598.12254 1.63129 (159*2π)/4993 weeks
1608.60517 1.75701 (160*2π)/4993 weeks
1618.93154 1.92693 (161*2π)/4993 weeks
1629.42592 2.70429 (162*2π)/4993 weeks
1639.38491 3.20513 (163*2π)/4993 weeks
1648.75855 4.20105 (164*2π)/4993 weeks
1658.05848 4.41334 (165*2π)/4993 weeks
1667.77783 3.80041 (166*2π)/4993 weeks
1677.5801 3.41463 (167*2π)/4993 weeks
1688.00973 3.54581 (168*2π)/4993 weeks
1697.86768 3.53958 (169*2π)/4993 weeks
1707.88427 3.92189 (170*2π)/4993 weeks
1717.64384 4.05514 (171*2π)/4993 weeks
1727.0992 3.79956 (172*2π)/4993 weeks
1736.87318 3.66493 (173*2π)/4993 weeks
1746.9717 3.39633 (174*2π)/4993 weeks
1756.84957 3.25136 (175*2π)/4993 weeks
1767.2348 3.12016 (176*2π)/4993 weeks
1777.60185 3.12763 (177*2π)/4993 weeks
1787.55029 3.76499 (178*2π)/4993 weeks
1796.98832 4.2854 (179*2π)/4993 weeks
1806.19562 4.08028 (180*2π)/4993 weeks
1815.59693 3.56292 (181*2π)/4993 weeks
1825.67433 2.75566 (182*2π)/4993 weeks
1835.92701 2.17434 (183*2π)/4993 weeks
1846.42999 2.14774 (184*2π)/4993 weeks
1856.52636 1.88283 (185*2π)/4993 weeks
1866.82498 1.75738 (186*2π)/4993 weeks
1877.33885 1.90701 (187*2π)/4993 weeks
1887.88681 2.13689 (188*2π)/4993 weeks
1898.13857 2.58603 (189*2π)/4993 weeks
1907.76427 3.36254 (190*2π)/4993 weeks
1917.30866 3.86418 (191*2π)/4993 weeks
1926.7854 3.56059 (192*2π)/4993 weeks
1936.39651 3.13181 (193*2π)/4993 weeks
1946.58735 3.11024 (194*2π)/4993 weeks
1956.6427 3.00387 (195*2π)/4993 weeks
1966.66101 2.98912 (196*2π)/4993 weeks
1976.5988 3.46595 (197*2π)/4993 weeks
1985.9316 3.69985 (198*2π)/4993 weeks
1995.04834 3.4881 (199*2π)/4993 weeks
2004.62867 2.27505 (200*2π)/4992 weeks
2014.93724 1.37094 (201*2π)/4992 weeks
2025.75511 1.06358 (202*2π)/4992 weeks
2036.36114 1.34739 (203*2π)/4992 weeks
2046.31629 1.39485 (204*2π)/4992 weeks
2056.20186 1.47772 (205*2π)/4992 weeks
2066.26135 1.19364 (206*2π)/4992 weeks
2076.28271 .96788 (207*2π)/4992 weeks
2086.8563 .43579 (208*2π)/4992 weeks
2097.56589 .46734 (209*2π)/4992 weeks
2108.30483 .96511 (210*2π)/4992 weeks
2118.69342 1.81278 (211*2π)/4992 weeks
2128.66097 2.28573 (212*2π)/4992 weeks
2138.56 3.13246 (213*2π)/4992 weeks
2148.11635 3.61789 (214*2π)/4992 weeks
2157.55079 4.17816 (215*2π)/4992 weeks
2166.65235 4.25294 (216*2π)/4992 weeks
2176.36284 4.02676 (217*2π)/4992 weeks
2185.98786 3.99244 (218*2π)/4992 weeks
2195.49228 4.12534 (219*2π)/4992 weeks
2204.67953 3.58255 (220*2π)/4992 weeks
2214.53008 2.85007 (221*2π)/4992 weeks
2225.04553 2.61861 (222*2π)/4992 weeks
2235.22422 2.58651 (223*2π)/4992 weeks
2244.7781 3.02725 (224*2π)/4992 weeks
2254.4105 2.91494 (225*2π)/4992 weeks
2263.65704 2.51002 (226*2π)/4992 weeks
2273.16838 1.72413 (227*2π)/4992 weeks
2283.36758 .91992 (228*2π)/4992 weeks
2293.69149 .04508 (229*2π)/4992 weeks
2304.26098 -.08651 (230*2π)/4992 weeks
2314.59238 -.41672 (231*2π)/4992 weeks
2325.36193 -.38815 (232*2π)/4992 weeks
2335.79947 -.21245 (233*2π)/4992 weeks
2345.92147 .01805 (234*2π)/4992 weeks
2355.97813 .12688 (235*2π)/4992 weeks
2366.25493 .40993 (236*2π)/4992 weeks
2376.293 .81984 (237*2π)/4992 weeks
2385.82026 1.09077 (238*2π)/4992 weeks
2395.0907 1.03444 (239*2π)/4992 weeks
2405.02568 .37063 (240*2π)/4992 weeks
2415.4888 -.23887 (241*2π)/4992 weeks
2426.40117 -.20377 (242*2π)/4992 weeks
2436.70091 .89215 (243*2π)/4992 weeks
2445.98164 1.37663 (244*2π)/4992 weeks
2455.33048 1.55081 (245*2π)/4992 weeks
2464.86815 1.15029 (246*2π)/4992 weeks
2474.36583 .73468 (247*2π)/4992 weeks
2484.42123 .15659 (248*2π)/4992 weeks
2494.8078 .01237 (249*2π)/4992 weeks
2504.8078 -.01237 (250*2π)/4992 weeks
2514.42123 -.15659 (251*2π)/4992 weeks
2524.36583 -.73468 (252*2π)/4992 weeks
2534.86815 -1.15029 (253*2π)/4992 weeks
2545.33048 -1.55081 (254*2π)/4992 weeks
2555.98164 -1.37663 (255*2π)/4992 weeks
2566.70091 -.89215 (256*2π)/4992 weeks
2576.40117 .20377 (257*2π)/4992 weeks
2585.4888 .23887 (258*2π)/4992 weeks
2595.02568 -.37063 (259*2π)/4992 weeks
2605.0907 -1.03444 (260*2π)/4992 weeks
2615.82026 -1.09077 (261*2π)/4992 weeks
2626.293 -.81984 (262*2π)/4992 weeks
2636.25493 -.40993 (263*2π)/4992 weeks
2645.97813 -.12688 (264*2π)/4992 weeks
2655.92147 -.01805 (265*2π)/4992 weeks
2665.79947 .21245 (266*2π)/4992 weeks
2675.36193 .38815 (267*2π)/4992 weeks
2684.59238 .41672 (268*2π)/4992 weeks
2694.26098 .08651 (269*2π)/4992 weeks
2703.69149 -.04508 (270*2π)/4992 weeks
2713.36758 -.91992 (271*2π)/4992 weeks
2723.16838 -1.72413 (272*2π)/4992 weeks
2733.65704 -2.51002 (273*2π)/4992 weeks
2744.4105 -2.91494 (274*2π)/4992 weeks
2754.7781 -3.02725 (275*2π)/4992 weeks
2765.22422 -2.58651 (276*2π)/4992 weeks
2775.04553 -2.61861 (277*2π)/4992 weeks
2784.53008 -2.85007 (278*2π)/4992 weeks
2794.67953 -3.58255 (279*2π)/4992 weeks
2805.49228 -4.12534 (280*2π)/4992 weeks
2815.98786 -3.99244 (281*2π)/4992 weeks
2826.36284 -4.02676 (282*2π)/4992 weeks
2836.65235 -4.25294 (283*2π)/4992 weeks
2847.55079 -4.17816 (284*2π)/4992 weeks
2858.11635 -3.61789 (285*2π)/4992 weeks
2868.56 -3.13246 (286*2π)/4992 weeks
2878.66097 -2.28573 (287*2π)/4992 weeks
2888.69342 -1.81278 (288*2π)/4992 weeks
2898.30483 -.96511 (289*2π)/4992 weeks
2907.56589 -.46734 (290*2π)/4992 weeks
2916.8563 -.43579 (291*2π)/4992 weeks
2926.28271 -.96788 (292*2π)/4992 weeks
2936.26135 -1.19364 (293*2π)/4992 weeks
2946.20186 -1.47772 (294*2π)/4992 weeks
2956.31629 -1.39485 (295*2π)/4992 weeks
2966.36114 -1.34739 (296*2π)/4992 weeks
2975.75511 -1.06358 (297*2π)/4992 weeks
2984.93724 -1.37094 (298*2π)/4992 weeks
2994.62867 -2.27505 (299*2π)/4992 weeks
3005.04834 -3.4881 (300*2π)/4992 weeks
3015.9316 -3.69985 (301*2π)/4992 weeks
3026.5988 -3.46595 (302*2π)/4992 weeks
3036.66101 -2.98912 (303*2π)/4992 weeks
3046.6427 -3.00387 (304*2π)/4992 weeks
3056.58735 -3.11024 (305*2π)/4992 weeks
3066.39651 -3.13181 (306*2π)/4992 weeks
3076.7854 -3.56059 (307*2π)/4992 weeks
3087.30866 -3.86418 (308*2π)/4992 weeks
3097.76427 -3.36254 (309*2π)/4992 weeks
3108.13857 -2.58603 (310*2π)/4992 weeks
3117.88681 -2.13689 (311*2π)/4992 weeks
3127.33885 -1.90701 (312*2π)/4992 weeks
3136.82498 -1.75738 (313*2π)/4992 weeks
3146.52636 -1.88283 (314*2π)/4992 weeks
3156.42999 -2.14774 (315*2π)/4992 weeks
3165.92701 -2.17434 (316*2π)/4992 weeks
3175.67433 -2.75566 (317*2π)/4992 weeks
3185.59693 -3.56292 (318*2π)/4992 weeks
3196.19562 -4.08028 (319*2π)/4992 weeks
3206.98832 -4.2854 (320*2π)/4992 weeks
3217.55029 -3.76499 (321*2π)/4992 weeks
3227.60185 -3.12763 (322*2π)/4992 weeks
3237.2348 -3.12016 (323*2π)/4992 weeks
3246.84957 -3.25136 (324*2π)/4992 weeks
3256.9717 -3.39633 (325*2π)/4992 weeks
3266.87318 -3.66493 (326*2π)/4992 weeks
3277.0992 -3.79956 (327*2π)/4992 weeks
3287.64384 -4.05514 (328*2π)/4992 weeks
3297.88427 -3.92189 (329*2π)/4992 weeks
3307.86768 -3.53958 (330*2π)/4992 weeks
3318.00973 -3.54581 (331*2π)/4992 weeks
3327.5801 -3.41463 (332*2π)/4992 weeks
3337.77783 -3.80041 (333*2π)/4991 weeks
3348.05848 -4.41334 (334*2π)/4991 weeks
3358.75855 -4.20105 (335*2π)/4991 weeks
3369.38491 -3.20513 (336*2π)/4991 weeks
3379.42592 -2.70429 (337*2π)/4991 weeks
3388.93154 -1.92693 (338*2π)/4991 weeks
3398.60517 -1.75701 (339*2π)/4991 weeks
3408.12254 -1.63129 (340*2π)/4991 weeks
3417.85156 -1.3899 (341*2π)/4991 weeks
3427.39371 -1.1304 (342*2π)/4991 weeks
3436.44479 -1.49215 (343*2π)/4991 weeks
3446.04578 -2.17426 (344*2π)/4991 weeks
3456.19302 -3.12786 (345*2π)/4991 weeks
3466.48464 -3.17702 (346*2π)/4991 weeks
3476.85899 -3.36578 (347*2π)/4991 weeks
3487.08828 -3.24264 (348*2π)/4991 weeks
3497.19396 -3.15992 (349*2π)/4991 weeks
3507.07322 -3.39553 (350*2π)/4991 weeks
3517.51964 -3.54906 (351*2π)/4991 weeks
3528.06516 -3.17752 (352*2π)/4991 weeks
3538.14861 -2.46387 (353*2π)/4991 weeks
3547.13444 -2.02432 (354*2π)/4991 weeks
3556.62692 -2.14186 (355*2π)/4991 weeks
3566.60767 -2.69699 (356*2π)/4991 weeks
3576.83221 -2.55437 (357*2π)/4991 weeks
3586.66156 -2.3723 (358*2π)/4991 weeks
3596.17509 -1.7922 (359*2π)/4991 weeks
3605.57057 -1.93737 (360*2π)/4991 weeks
3614.62503 -2.87803 (361*2π)/4991 weeks
3624.3192 -3.59539 (362*2π)/4991 weeks
3634.64339 -4.68249 (363*2π)/4991 weeks
3645.17272 -5.23723 (364*2π)/4991 weeks
3656.0127 -5.47259 (365*2π)/4991 weeks
3666.59249 -5.16474 (366*2π)/4991 weeks
3676.75517 -4.88191 (367*2π)/4991 weeks
3686.79663 -4.60764 (368*2π)/4991 weeks
3696.65055 -4.63558 (369*2π)/4991 weeks
3706.592 -4.2454 (370*2π)/4991 weeks
3716.58081 -4.6248 (371*2π)/4991 weeks
3726.75253 -4.65323 (372*2π)/4991 weeks
3736.57802 -4.21761 (373*2π)/4991 weeks
3745.81798 -4.32075 (374*2π)/4991 weeks
3755.58922 -5.03112 (375*2π)/4991 weeks
3766.03947 -5.62326 (376*2π)/4991 weeks
3775.98582 -5.44314 (377*2π)/4991 weeks
3785.7471 -5.82491 (378*2π)/4991 weeks
3796.12809 -6.42486 (379*2π)/4991 weeks
3806.91178 -6.67007 (380*2π)/4991 weeks
3817.69346 -6.54444 (381*2π)/4991 weeks
3827.76591 -6.31072 (382*2π)/4991 weeks
3837.69607 -5.32269 (383*2π)/4991 weeks
3847.53069 -5.25883 (384*2π)/4991 weeks
3856.83261 -5.5482 (385*2π)/4991 weeks
3866.98088 -5.48036 (386*2π)/4991 weeks
3876.81024 -6.03139 (387*2π)/4991 weeks
3886.8175 -6.06306 (388*2π)/4991 weeks
3897.16242 -6.38223 (389*2π)/4991 weeks
3907.67775 -6.60565 (390*2π)/4991 weeks
3918.13669 -6.17961 (391*2π)/4991 weeks
3928.56026 -5.63874 (392*2π)/4991 weeks
3938.13634 -4.86882 (393*2π)/4991 weeks
3947.44361 -4.40143 (394*2π)/4991 weeks
3956.79452 -4.40674 (395*2π)/4991 weeks
3966.25104 -4.45551 (396*2π)/4991 weeks
3975.74024 -4.28288 (397*2π)/4991 weeks
3984.56352 -5.67751 (398*2π)/4991 weeks
3993.96232 -6.58023 (399*2π)/4991 weeks
4004.73923 -8.16183 (400*2π)/4991 weeks
4015.61462 -8.89068 (401*2π)/4991 weeks
4026.61262 -8.92759 (402*2π)/4991 weeks
4037.45301 -7.81533 (403*2π)/4991 weeks
4047.14241 -7.431 (404*2π)/4991 weeks
4056.68526 -7.36786 (405*2π)/4991 weeks
4066.06738 -8.15308 (406*2π)/4991 weeks
4076.3918 -8.26527 (407*2π)/4991 weeks
4087.18363 -8.26815 (408*2π)/4991 weeks
4097.38902 -7.71057 (409*2π)/4991 weeks
4105.93119 -7.74131 (410*2π)/4991 weeks
4114.91104 -8.69062 (411*2π)/4991 weeks
4124.8489 -10.69577 (412*2π)/4991 weeks
4135.89141 -12.44991 (413*2π)/4991 weeks
4147.91644 -13.02726 (414*2π)/4991 weeks
41510.12546 -13.35198 (415*2π)/4991 weeks
41611.6889 -11.69551 (416*2π)/4991 weeks
41712.7591 -9.9235 (417*2π)/4991 weeks
41812.09377 -8.34789 (418*2π)/4991 weeks
41910.87691 -7.29999 (419*2π)/4991 weeks
42010.24378 -6.86101 (420*2π)/4991 weeks
4219.77105 -6.97198 (421*2π)/4991 weeks
4228.59664 -7.35239 (422*2π)/4991 weeks
4238.67135 -8.54913 (423*2π)/4991 weeks
4249.54255 -8.55617 (424*2π)/4991 weeks
4259.72363 -8.05838 (425*2π)/4991 weeks
4269.54734 -8.20752 (426*2π)/4991 weeks
4279.98819 -7.63309 (427*2π)/4991 weeks
4289.08696 -6.71509 (428*2π)/4991 weeks
4297.36321 -6.30768 (429*2π)/4991 weeks
4306.89592 -7.93084 (430*2π)/4991 weeks
4317.34712 -9.79078 (431*2π)/4991 weeks
4328.23395 -9.52907 (432*2π)/4991 weeks
4339.47135 -9.11908 (433*2π)/4991 weeks
4349.10751 -8.4214 (434*2π)/4991 weeks
4358.19832 -7.12499 (435*2π)/4991 weeks
4366.97965 -6.48349 (436*2π)/4991 weeks
4374.72542 -7.4316 (437*2π)/4991 weeks
4383.60496 -8.61242 (438*2π)/4991 weeks
4393.28625 -11.50509 (439*2π)/4991 weeks
4404.75902 -13.05682 (440*2π)/4991 weeks
4416.159 -13.89924 (441*2π)/4991 weeks
4426.72263 -13.62358 (442*2π)/4991 weeks
4437.25545 -13.71829 (443*2π)/4991 weeks
4447.81605 -13.98513 (444*2π)/4991 weeks
4458.58583 -14.4602 (445*2π)/4991 weeks
4467.7916 -13.84341 (446*2π)/4991 weeks
4479.55922 -14.05789 (447*2π)/4991 weeks
44810.20242 -14.51098 (448*2π)/4991 weeks
44910.86654 -14.15433 (449*2π)/4991 weeks
45010.31444 -12.57772 (450*2π)/4991 weeks
45110.02918 -12.18751 (451*2π)/4991 weeks
4529.51202 -11.13521 (452*2π)/4991 weeks
4538.41058 -11.11882 (453*2π)/4991 weeks
4546.86288 -10.95098 (454*2π)/4991 weeks
4555.57137 -11.06193 (455*2π)/4991 weeks
4563.25914 -11.95224 (456*2π)/4991 weeks
4572.66664 -15.01091 (457*2π)/4991 weeks
4582.88298 -16.45278 (458*2π)/4991 weeks
4592.55597 -17.7815 (459*2π)/4991 weeks
4601.41376 -18.7725 (460*2π)/4991 weeks
4611.24705 -22.09809 (461*2π)/4991 weeks
4621.92868 -25.38918 (462*2π)/4991 weeks
4632.9334 -29.16418 (463*2π)/4991 weeks
4646.92787 -31.6071 (464*2π)/4991 weeks
46511.00499 -32.34958 (465*2π)/4991 weeks
46614.2208 -31.55694 (466*2π)/4991 weeks
46717.32645 -31.6247 (467*2π)/4991 weeks
46819.84322 -28.74949 (468*2π)/4991 weeks
46920.30328 -26.43139 (469*2π)/4991 weeks
47019.81374 -25.67861 (470*2π)/4991 weeks
47119.38388 -24.63345 (471*2π)/4991 weeks
47220.36667 -23.557 (472*2π)/4991 weeks
47319.02108 -23.03661 (473*2π)/4991 weeks
47417.24009 -23.85306 (474*2π)/4991 weeks
47517.29748 -23.62063 (475*2π)/4991 weeks
47618.95306 -24.32754 (476*2π)/4991 weeks
47715.16615 -23.31129 (477*2π)/4991 weeks
47812.58309 -24.38311 (478*2π)/4991 weeks
4799.78525 -31.32685 (479*2π)/4991 weeks
48016.03876 -37.3718 (480*2π)/4991 weeks
48120.76893 -39.33964 (481*2π)/4991 weeks
48225.72805 -37.17897 (482*2π)/4991 weeks
48326.59277 -32.84752 (483*2π)/4991 weeks
48423.11253 -32.44738 (484*2π)/4991 weeks
48520.73931 -32.86247 (485*2π)/4991 weeks
48622.30755 -36.26907 (486*2π)/4991 weeks
48719.58949 -38.4169 (487*2π)/4991 weeks
48819.87042 -43.72953 (488*2π)/4991 weeks
48916.22934 -49.30973 (489*2π)/4991 weeks
49016.57991 -59.93106 (490*2π)/4991 weeks
49127.77112 -71.30797 (491*2π)/4991 weeks
49239.13498 -82.07095 (492*2π)/4991 weeks
49352.57499 -80.83436 (493*2π)/4991 weeks
49452.51034 -80.05611 (494*2π)/4991 weeks
49558.49372 -96.25742 (495*2π)/4991 weeks
49684.96974 -132.1856 (496*2π)/4991 weeks
497149.4694 -154.8203 (497*2π)/4991 weeks



Back to list of Stocks