Back to list of Stocks    See Also: Seasonal Analysis of YGenetic Algorithms Stock Portfolio Generator, and Best Months to Buy/Sell Stocks

Fourier Analysis of Y (Alleghany Corporation)


Y (Alleghany Corporation) appears to have interesting cyclic behaviour every 162 weeks (26.1305*sine), 211 weeks (25.858*sine), and 192 weeks (22.4395*sine).

Y (Alleghany Corporation) has an average price of 197.06 (topmost row, frequency = 0).



Click on the checkboxes shown on the right to see how the various frequencies contribute to the graph. Look for large magnitude coefficients (sine or cosine), as these are associated with frequencies which contribute most to the associated stock plot. If you find a large magnitude coefficient which dramatically changes the graph, look at the associated "Period" in weeks, as you may have found a significant recurring cycle for the stock of interest.

Right click on the graph above to see the menu of operations (download, full screen, etc.)

Fourier Analysis

Using data from 3/17/1980 to 9/8/2020 for Y (Alleghany Corporation), this program was able to calculate the following Fourier Series:
Sequence #Cosine Coefficients Sine Coefficients FrequenciesPeriod
0197.0649   0 
177.43716 -187.324 (1*2π)/21092,109 weeks
234.73254 -93.01374 (2*2π)/21091,055 weeks
320.41289 -79.76559 (3*2π)/2109703 weeks
4-3.77465 -71.24448 (4*2π)/2109527 weeks
5-4.71931 -32.72475 (5*2π)/2109422 weeks
67.90146 -40.95848 (6*2π)/2109352 weeks
7-3.57559 -34.288 (7*2π)/2109301 weeks
8-5.15221 -25.30449 (8*2π)/2109264 weeks
93.02861 -23.49479 (9*2π)/2109234 weeks
10-.63009 -25.85799 (10*2π)/2109211 weeks
11-6.18334 -22.43946 (11*2π)/2109192 weeks
12.3583 -12.75617 (12*2π)/2109176 weeks
132.94902 -26.13051 (13*2π)/2109162 weeks
14-11.85924 -16.99351 (14*2π)/2109151 weeks
15-3.10695 -13.17202 (15*2π)/2109141 weeks
16-2.93061 -16.17174 (16*2π)/2109132 weeks
17-8.1642 -15.49018 (17*2π)/2109124 weeks
18-6.03533 -9.65876 (18*2π)/2109117 weeks
19-7.3921 -8.92362 (19*2π)/2109111 weeks
20-5.77297 -7.696 (20*2π)/2109105 weeks
21-3.2581 -4.83722 (21*2π)/2109100 weeks
22-1.42105 -9.18907 (22*2π)/210996 weeks
23-4.23688 -7.89825 (23*2π)/210992 weeks
24-4.25867 -6.93657 (24*2π)/210988 weeks
25-3.43775 -7.347 (25*2π)/210984 weeks
26-7.23032 -5.81396 (26*2π)/210981 weeks
27-3.27004 -3.57265 (27*2π)/210978 weeks
28-6.15152 -4.12801 (28*2π)/210975 weeks
29-3.0745 -1.1902 (29*2π)/210973 weeks
30-2.6279 -2.16826 (30*2π)/210970 weeks
31-2.78341 -2.33096 (31*2π)/210968 weeks
32-3.17421 -.0673 (32*2π)/210966 weeks
33-.11559 -1.04887 (33*2π)/210964 weeks
34.09671 -1.18005 (34*2π)/210962 weeks
35.69432 -1.97293 (35*2π)/210960 weeks
36-.04975 -3.02049 (36*2π)/210959 weeks
37-1.21651 -1.19838 (37*2π)/210957 weeks
381.096 -1.10178 (38*2π)/210956 weeks
39.81473 -2.34166 (39*2π)/210954 weeks
401.3625 -3.38154 (40*2π)/210953 weeks
41-1.20496 -2.466 (41*2π)/210951 weeks
42-.42198 -.20312 (42*2π)/210950 weeks
431.74579 -.55042 (43*2π)/210949 weeks
442.4814 -1.88667 (44*2π)/210948 weeks
451.67399 -2.56852 (45*2π)/210947 weeks
461.33648 -1.94689 (46*2π)/210946 weeks
473.64711 -2.6672 (47*2π)/210945 weeks
481.20108 -4.22969 (48*2π)/210944 weeks
491.10622 -2.77617 (49*2π)/210943 weeks
50.63862 -3.33266 (50*2π)/210942 weeks
51.7871 -3.86021 (51*2π)/210941 weeks
52-.33785 -1.93335 (52*2π)/210941 weeks
531.42222 -2.68405 (53*2π)/210940 weeks
54.46999 -2.58089 (54*2π)/210939 weeks
55.28513 -1.67835 (55*2π)/210938 weeks
562.31475 -1.00523 (56*2π)/210938 weeks
572.20495 -3.7181 (57*2π)/210937 weeks
581.10489 -2.50932 (58*2π)/210936 weeks
593.00797 -3.28926 (59*2π)/210936 weeks
601.0555 -4.77556 (60*2π)/210935 weeks
61-.01745 -2.73789 (61*2π)/210935 weeks
62.64206 -3.05937 (62*2π)/210934 weeks
63.78801 -2.60083 (63*2π)/210933 weeks
641.37071 -2.69509 (64*2π)/210933 weeks
652.27894 -2.85202 (65*2π)/210932 weeks
661.60822 -4.24643 (66*2π)/210932 weeks
67.68906 -4.14313 (67*2π)/210931 weeks
68.12103 -4.17485 (68*2π)/210931 weeks
69.12947 -3.89425 (69*2π)/210931 weeks
70.14144 -3.74858 (70*2π)/210930 weeks
71-.47839 -3.82947 (71*2π)/210930 weeks
72-.84917 -2.62552 (72*2π)/210929 weeks
73-.6871 -2.20299 (73*2π)/210929 weeks
74-.07514 -1.99978 (74*2π)/210929 weeks
75.50831 -2.29043 (75*2π)/210928 weeks
761.51625 -1.90317 (76*2π)/210928 weeks
771.89877 -3.52255 (77*2π)/210927 weeks
78.36288 -4.34746 (78*2π)/210927 weeks
79-.64858 -3.31199 (79*2π)/210927 weeks
80-.03575 -3.65272 (80*2π)/210926 weeks
81-.48945 -3.77323 (81*2π)/210926 weeks
82-.38994 -3.2103 (82*2π)/210926 weeks
83-.82069 -3.11737 (83*2π)/210925 weeks
84-1.02858 -2.804 (84*2π)/210925 weeks
85-1.23688 -2.77178 (85*2π)/210925 weeks
86-.82992 -2.53937 (86*2π)/210925 weeks
87-.55992 -3.06026 (87*2π)/210924 weeks
88-1.56785 -2.6199 (88*2π)/210924 weeks
89-1.03208 -1.34615 (89*2π)/210924 weeks
90-1.03584 -2.06034 (90*2π)/210923 weeks
91-.34113 -1.82073 (91*2π)/210923 weeks
92-.74418 -2.82257 (92*2π)/210923 weeks
93-1.01569 -2.4404 (93*2π)/210923 weeks
94-1.45805 -1.43284 (94*2π)/210922 weeks
95-.3378 -1.68985 (95*2π)/210922 weeks
96-1.30689 -1.4453 (96*2π)/210922 weeks
97-.67394 -1.46516 (97*2π)/210922 weeks
98-.48655 -1.67107 (98*2π)/210922 weeks
99-.9063 -1.90228 (99*2π)/210921 weeks
100-.47464 -.48266 (100*2π)/210921 weeks
101.43952 -1.37021 (101*2π)/210921 weeks
102-.33498 -2.8659 (102*2π)/210921 weeks
103-2.22917 -1.76002 (103*2π)/210920 weeks
104-.18157 -.94343 (104*2π)/210920 weeks
105-.4798 -2.10854 (105*2π)/210920 weeks
106-1.53625 -1.57761 (106*2π)/210920 weeks
107-1.27725 -.09649 (107*2π)/210920 weeks
108-.32898 -1.1754 (108*2π)/210920 weeks
109-.89945 -.66541 (109*2π)/210919 weeks
110-.59995 -.55898 (110*2π)/210919 weeks
111.3759 -.51894 (111*2π)/210919 weeks
112-.60073 -1.1597 (112*2π)/210919 weeks
113-.72613 -.09277 (113*2π)/210919 weeks
114.59364 .20827 (114*2π)/210919 weeks
115.5595 -1.60489 (115*2π)/210918 weeks
116-.36904 .04271 (116*2π)/210918 weeks
1171.54112 -.37971 (117*2π)/210918 weeks
1181.39124 -1.35809 (118*2π)/210918 weeks
119.43591 -1.91123 (119*2π)/210918 weeks
120.40128 -1.70308 (120*2π)/210918 weeks
121-.36996 -2.05084 (121*2π)/210917 weeks
122-.16184 -.65518 (122*2π)/210917 weeks
123.19412 -.70562 (123*2π)/210917 weeks
124.98814 -.59694 (124*2π)/210917 weeks
125.77993 -1.53728 (125*2π)/210917 weeks
126.22578 -1.55918 (126*2π)/210917 weeks
127.84497 -.79319 (127*2π)/210917 weeks
1281.61868 -2.26708 (128*2π)/210916 weeks
129.00266 -2.8154 (129*2π)/210916 weeks
130-.56163 -1.51595 (130*2π)/210916 weeks
131.62089 -.93364 (131*2π)/210916 weeks
132.70462 -2.54936 (132*2π)/210916 weeks
133-.47202 -2.26148 (133*2π)/210916 weeks
134-.13344 -1.44535 (134*2π)/210916 weeks
135.26984 -1.72686 (135*2π)/210916 weeks
136-.38654 -2.09548 (136*2π)/210916 weeks
137-.68762 -.96909 (137*2π)/210915 weeks
138.74479 -1.34577 (138*2π)/210915 weeks
139-.28626 -2.33359 (139*2π)/210915 weeks
140-.20772 -1.27113 (140*2π)/210915 weeks
141.30795 -1.50716 (141*2π)/210915 weeks
142.27689 -2.25739 (142*2π)/210915 weeks
143-.85263 -2.13489 (143*2π)/210915 weeks
144-.47164 -1.46914 (144*2π)/210915 weeks
145-.57399 -1.80094 (145*2π)/210915 weeks
146-.43057 -1.40988 (146*2π)/210914 weeks
147-.60902 -1.15172 (147*2π)/210914 weeks
148.18245 -1.06166 (148*2π)/210914 weeks
149-.31935 -1.52742 (149*2π)/210914 weeks
150-.02685 -1.44232 (150*2π)/210914 weeks
151-.16368 -1.6068 (151*2π)/210914 weeks
152.08486 -1.68155 (152*2π)/210914 weeks
153-.79282 -1.78239 (153*2π)/210914 weeks
154-.46726 -.82009 (154*2π)/210914 weeks
155.36589 -1.8395 (155*2π)/210914 weeks
156-.84392 -2.1467 (156*2π)/210914 weeks
157-.88077 -.92904 (157*2π)/210913 weeks
158.30984 -1.11367 (158*2π)/210913 weeks
159-.22858 -2.02327 (159*2π)/210913 weeks
160-1.05848 -1.6258 (160*2π)/210913 weeks
161-.58533 -1.14571 (161*2π)/210913 weeks
162-.1259 -1.75578 (162*2π)/210913 weeks
163-1.15544 -1.95317 (163*2π)/210913 weeks
164-.94279 -.8088 (164*2π)/210913 weeks
165-.45831 -1.65126 (165*2π)/210913 weeks
166-1.57691 -1.36398 (166*2π)/210913 weeks
167-1.08866 -.58248 (167*2π)/210913 weeks
168-.14655 -.73595 (168*2π)/210913 weeks
169-.64554 -1.58 (169*2π)/210912 weeks
170-1.05022 -.99634 (170*2π)/210912 weeks
171-1.11668 -.54723 (171*2π)/210912 weeks
172-.46982 -.62056 (172*2π)/210912 weeks
173-1.035 -.74625 (173*2π)/210912 weeks
174-.14264 -.31262 (174*2π)/210912 weeks
175-.18419 -.96125 (175*2π)/210912 weeks
176-.69091 -.91497 (176*2π)/210912 weeks
177-.77222 -.49976 (177*2π)/210912 weeks
178-.34773 -.71583 (178*2π)/210912 weeks
179-.63183 -.57241 (179*2π)/210912 weeks
180-.24258 -.37471 (180*2π)/210912 weeks
181.12176 -.36966 (181*2π)/210912 weeks
182.35494 -1.05081 (182*2π)/210912 weeks
183-.38886 -1.48291 (183*2π)/210912 weeks
184-.77023 -.76752 (184*2π)/210911 weeks
185-.39772 -.86922 (185*2π)/210911 weeks
186-.49597 -.58618 (186*2π)/210911 weeks
187-.30598 -.89482 (187*2π)/210911 weeks
188-.73951 -.73137 (188*2π)/210911 weeks
189-.67497 -.53097 (189*2π)/210911 weeks
190-.32038 -.43782 (190*2π)/210911 weeks
191-.70156 -.44214 (191*2π)/210911 weeks
192.06438 .11901 (192*2π)/210911 weeks
193.24907 -.43442 (193*2π)/210911 weeks
194.08192 -.79899 (194*2π)/210911 weeks
195-.18469 -.58665 (195*2π)/210911 weeks
196.08126 -.49052 (196*2π)/210911 weeks
197.25312 -.83655 (197*2π)/210911 weeks
198-.23108 -.67905 (198*2π)/210911 weeks
199.30733 -.63286 (199*2π)/210911 weeks
200-.29345 -1.1303 (200*2π)/210911 weeks
201-.41311 -.34734 (201*2π)/210910 weeks
202.25714 -.36167 (202*2π)/210910 weeks
203.42793 -.61708 (203*2π)/210910 weeks
204.37703 -.8533 (204*2π)/210910 weeks
205.36544 -1.03108 (205*2π)/210910 weeks
206.31227 -1.16917 (206*2π)/210910 weeks
207.08123 -1.31029 (207*2π)/210910 weeks
208-.03438 -1.14079 (208*2π)/210910 weeks
209.17145 -1.22934 (209*2π)/210910 weeks
210-.2585 -1.49548 (210*2π)/210910 weeks
211-.30836 -.8281 (211*2π)/210910 weeks
212-.15055 -1.37539 (212*2π)/210910 weeks
213-.30556 -1.00437 (213*2π)/210910 weeks
214-.24391 -1.17143 (214*2π)/210910 weeks
215-.11666 -1.10518 (215*2π)/210910 weeks
216-.2768 -1.3839 (216*2π)/210910 weeks
217-.6366 -1.25618 (217*2π)/210910 weeks
218-.66778 -.94021 (218*2π)/210910 weeks
219-.49865 -.99374 (219*2π)/210910 weeks
220-.45766 -.87131 (220*2π)/210910 weeks
221-.54823 -.72912 (221*2π)/210910 weeks
222-.22608 -.55439 (222*2π)/210910 weeks
223-.20748 -1.0017 (223*2π)/21099 weeks
224-.29746 -1.10473 (224*2π)/21099 weeks
225-.48741 -.90352 (225*2π)/21099 weeks
226-.16463 -.89937 (226*2π)/21099 weeks
227-.17262 -1.11369 (227*2π)/21099 weeks
228-.45815 -1.10579 (228*2π)/21099 weeks
229-.25803 -1.33653 (229*2π)/21099 weeks
230-1.23507 -1.39811 (230*2π)/21099 weeks
231-.75096 -.46338 (231*2π)/21099 weeks
232-.41528 -.78358 (232*2π)/21099 weeks
233-.48205 -.95771 (233*2π)/21099 weeks
234-.94767 -.8859 (234*2π)/21099 weeks
235-.87414 -.70898 (235*2π)/21099 weeks
236-.73516 -.45871 (236*2π)/21099 weeks
237-.54545 -.85093 (237*2π)/21099 weeks
238-.90658 -.69408 (238*2π)/21099 weeks
239-.81333 -.3873 (239*2π)/21099 weeks
240-.86866 -.24096 (240*2π)/21099 weeks
241-.44998 -.12085 (241*2π)/21099 weeks
242-.31668 -.58882 (242*2π)/21099 weeks
243-.38469 -.32708 (243*2π)/21099 weeks
244-.31901 -.71103 (244*2π)/21099 weeks
245-.69222 -.30975 (245*2π)/21099 weeks
246-.45713 -.28723 (246*2π)/21099 weeks
247-.36687 -.5363 (247*2π)/21099 weeks
248-.60108 -.55838 (248*2π)/21099 weeks
249-.43454 -.24485 (249*2π)/21098 weeks
250-.29787 -.4581 (250*2π)/21098 weeks
251-.50665 -.60417 (251*2π)/21098 weeks
252-.94062 -.15433 (252*2π)/21098 weeks
253-.09896 .04978 (253*2π)/21098 weeks
254-.27913 -.69613 (254*2π)/21098 weeks
255-.67631 -.19999 (255*2π)/21098 weeks
256-.23314 .02875 (256*2π)/21098 weeks
257-.35048 -.39857 (257*2π)/21098 weeks
258-.88583 .17124 (258*2π)/21098 weeks
259.12474 .46845 (259*2π)/21098 weeks
260.41964 -.23826 (260*2π)/21098 weeks
261.18372 -.53551 (261*2π)/21098 weeks
262-.21846 -.28571 (262*2π)/21098 weeks
263-.00304 -.36813 (263*2π)/21098 weeks
264-.20372 -.29076 (264*2π)/21098 weeks
265-.00994 -.22557 (265*2π)/21098 weeks
266.05648 -.33978 (266*2π)/21098 weeks
267.10648 -.26073 (267*2π)/21098 weeks
268.05369 -.24244 (268*2π)/21098 weeks
269.21261 -.29629 (269*2π)/21098 weeks
270.22601 -.58505 (270*2π)/21098 weeks
271-.03314 -.66075 (271*2π)/21098 weeks
272.02529 -.4919 (272*2π)/21098 weeks
273.18228 -.54594 (273*2π)/21098 weeks
274-.02457 -.56196 (274*2π)/21098 weeks
275-.04661 -.76758 (275*2π)/21098 weeks
276-.22587 -.61639 (276*2π)/21098 weeks
277-.21031 -.5015 (277*2π)/21098 weeks
278-.10365 -.3712 (278*2π)/21098 weeks
279.00283 -.40773 (279*2π)/21098 weeks
280-.11651 -.33662 (280*2π)/21098 weeks
281-.09698 -.09534 (281*2π)/21098 weeks
282.27578 -.10724 (282*2π)/21097 weeks
283.61571 -.53617 (283*2π)/21097 weeks
284.16195 -.80629 (284*2π)/21097 weeks
285.10461 -.31849 (285*2π)/21097 weeks
286.61829 -.59762 (286*2π)/21097 weeks
287.28585 -.8565 (287*2π)/21097 weeks
288.2551 -.91434 (288*2π)/21097 weeks
289.16276 -1.05397 (289*2π)/21097 weeks
290.0737 -.87946 (290*2π)/21097 weeks
291-.04197 -.89577 (291*2π)/21097 weeks
292.02292 -.73478 (292*2π)/21097 weeks
293-.20705 -.97858 (293*2π)/21097 weeks
294-.17534 -.59673 (294*2π)/21097 weeks
295.17828 -.6112 (295*2π)/21097 weeks
296.40666 -.98865 (296*2π)/21097 weeks
297-.04546 -1.2821 (297*2π)/21097 weeks
298-.4151 -1.02924 (298*2π)/21097 weeks
299-.27151 -.64076 (299*2π)/21097 weeks
300-.05842 -1.07434 (300*2π)/21097 weeks
301-.60975 -.95255 (301*2π)/21097 weeks
302-.29308 -.35008 (302*2π)/21097 weeks
303.15319 -.60489 (303*2π)/21097 weeks
304-.15728 -.98152 (304*2π)/21097 weeks
305-.34161 -.65714 (305*2π)/21097 weeks
306.05946 -.73371 (306*2π)/21097 weeks
307.00593 -1.09755 (307*2π)/21097 weeks
308-.2446 -.847 (308*2π)/21097 weeks
309-.02926 -.69803 (309*2π)/21097 weeks
310.21958 -1.28365 (310*2π)/21097 weeks
311-.65183 -1.59032 (311*2π)/21097 weeks
312-.72332 -.87564 (312*2π)/21097 weeks
313-.33916 -1.08627 (313*2π)/21097 weeks
314-.75546 -1.1801 (314*2π)/21097 weeks
315-1.10735 -.65136 (315*2π)/21097 weeks
316-.67695 -.28458 (316*2π)/21097 weeks
317-.48146 -.56531 (317*2π)/21097 weeks
318-.49328 -.54812 (318*2π)/21097 weeks
319-.48084 -.40489 (319*2π)/21097 weeks
320-.08046 -.46063 (320*2π)/21097 weeks
321-.47716 -.8775 (321*2π)/21097 weeks
322-.57698 -.52784 (322*2π)/21097 weeks
323-.48712 -.46261 (323*2π)/21097 weeks
324.01421 -.78688 (324*2π)/21097 weeks
325-.82065 -.89979 (325*2π)/21096 weeks
326-.40855 -.16052 (326*2π)/21096 weeks
327-.24533 -.68623 (327*2π)/21096 weeks
328-.64051 -.76675 (328*2π)/21096 weeks
329-.68227 -.40367 (329*2π)/21096 weeks
330-.28766 -.39174 (330*2π)/21096 weeks
331-.42853 -.56354 (331*2π)/21096 weeks
332-.54043 -.3239 (332*2π)/21096 weeks
333-.18852 -.24954 (333*2π)/21096 weeks
334-.28772 -.74881 (334*2π)/21096 weeks
335-.64198 -.67496 (335*2π)/21096 weeks
336-.421 -.04616 (336*2π)/21096 weeks
337.09385 -.47798 (337*2π)/21096 weeks
338-.26148 -.737 (338*2π)/21096 weeks
339-.48048 -.61126 (339*2π)/21096 weeks
340-.23198 -.65978 (340*2π)/21096 weeks
341-.57095 -.86376 (341*2π)/21096 weeks
342-.58607 -.51982 (342*2π)/21096 weeks
343-.60441 -.58094 (343*2π)/21096 weeks
344-.75091 -.49912 (344*2π)/21096 weeks
345-.92804 -.15248 (345*2π)/21096 weeks
346-.22072 .12476 (346*2π)/21096 weeks
347-.10984 -.36249 (347*2π)/21096 weeks
348-.21859 -.52478 (348*2π)/21096 weeks
349-.59584 -.45484 (349*2π)/21096 weeks
350-.36014 -.07866 (350*2π)/21096 weeks
351-.12088 -.4315 (351*2π)/21096 weeks
352-.46382 -.53638 (352*2π)/21096 weeks
353-.39979 -.23917 (353*2π)/21096 weeks
354-.07521 -.38644 (354*2π)/21096 weeks
355-.52845 -.69255 (355*2π)/21096 weeks
356-.49879 -.08735 (356*2π)/21096 weeks
357-.10091 -.427 (357*2π)/21096 weeks
358-.35907 -.51633 (358*2π)/21096 weeks
359-.43302 -.44205 (359*2π)/21096 weeks
360-.37647 -.28247 (360*2π)/21096 weeks
361-.45732 -.57937 (361*2π)/21096 weeks
362-.72061 -.28041 (362*2π)/21096 weeks
363-.39399 .08487 (363*2π)/21096 weeks
364-.0917 -.24373 (364*2π)/21096 weeks
365-.37646 -.28623 (365*2π)/21096 weeks
366-.33056 -.01599 (366*2π)/21096 weeks
367.01429 -.07136 (367*2π)/21096 weeks
368.11418 -.48603 (368*2π)/21096 weeks
369-.40154 -.53946 (369*2π)/21096 weeks
370-.13711 -.27703 (370*2π)/21096 weeks
371-.14961 -.68427 (371*2π)/21096 weeks
372-.61861 -.54357 (372*2π)/21096 weeks
373-.40964 -.00698 (373*2π)/21096 weeks
374-.10567 -.45539 (374*2π)/21096 weeks
375-.4659 -.44654 (375*2π)/21096 weeks
376-.5202 -.12257 (376*2π)/21096 weeks
377-.02935 -.02625 (377*2π)/21096 weeks
378-.02658 -.38307 (378*2π)/21096 weeks
379-.17979 -.43043 (379*2π)/21096 weeks
380-.3798 -.35605 (380*2π)/21096 weeks
381.07085 -.3485 (381*2π)/21096 weeks
382-.39846 -.72322 (382*2π)/21096 weeks
383-.38702 -.14648 (383*2π)/21096 weeks
384.06152 -.31917 (384*2π)/21095 weeks
385-.22914 -.93559 (385*2π)/21095 weeks
386-.85791 -.375 (386*2π)/21095 weeks
387-.27201 -.006 (387*2π)/21095 weeks
388-.00643 -.4486 (388*2π)/21095 weeks
389-.43021 -.7534 (389*2π)/21095 weeks
390-.75179 -.11394 (390*2π)/21095 weeks
391-.15859 -.04357 (391*2π)/21095 weeks
392-.2924 -.43642