Back to list of Stocks    See Also: Seasonal Analysis of WTRGenetic Algorithms Stock Portfolio Generator, and Best Months to Buy/Sell Stocks

Fourier Analysis of WTR (Aqua America)


WTR (Aqua America) appears to have interesting cyclic behaviour every 208 weeks (1.1795*sine), 173 weeks (1.0662*sine), and 189 weeks (.8705*sine).

WTR (Aqua America) has an average price of 9.31 (topmost row, frequency = 0).



Click on the checkboxes shown on the right to see how the various frequencies contribute to the graph. Look for large magnitude coefficients (sine or cosine), as these are associated with frequencies which contribute most to the associated stock plot. If you find a large magnitude coefficient which dramatically changes the graph, look at the associated "Period" in weeks, as you may have found a significant recurring cycle for the stock of interest.

Right click on the graph above to see the menu of operations (download, full screen, etc.)

Fourier Analysis

Using data from 3/17/1980 to 1/27/2020 for WTR (Aqua America), this program was able to calculate the following Fourier Series:
Sequence #Cosine Coefficients Sine Coefficients FrequenciesPeriod
09.31031   0 
16.05777 -9.20028 (1*2π)/20812,081 weeks
22.67688 -4.78511 (2*2π)/20811,041 weeks
31.60792 -4.69206 (3*2π)/2081694 weeks
4.03508 -3.50339 (4*2π)/2081520 weeks
5.37309 -1.85109 (5*2π)/2081416 weeks
6.95268 -2.27911 (6*2π)/2081347 weeks
7.14109 -2.01173 (7*2π)/2081297 weeks
8.1564 -1.31042 (8*2π)/2081260 weeks
9.49041 -1.39289 (9*2π)/2081231 weeks
10-.03546 -1.17946 (10*2π)/2081208 weeks
11.41238 -.87054 (11*2π)/2081189 weeks
12.2993 -1.06619 (12*2π)/2081173 weeks
13.3562 -.94711 (13*2π)/2081160 weeks
14.18197 -1.04792 (14*2π)/2081149 weeks
15.03198 -.93334 (15*2π)/2081139 weeks
16-.11326 -.61104 (16*2π)/2081130 weeks
17.3003 -.57982 (17*2π)/2081122 weeks
18.14239 -.74836 (18*2π)/2081116 weeks
19.24509 -.66037 (19*2π)/2081110 weeks
20.15799 -.88301 (20*2π)/2081104 weeks
21-.0305 -.60349 (21*2π)/208199 weeks
22.32993 -.6197 (22*2π)/208195 weeks
23.10995 -.9667 (23*2π)/208190 weeks
24-.08512 -.7396 (24*2π)/208187 weeks
25.01334 -.67543 (25*2π)/208183 weeks
26-.07518 -.76183 (26*2π)/208180 weeks
27-.22303 -.62537 (27*2π)/208177 weeks
28-.11445 -.41375 (28*2π)/208174 weeks
29.02457 -.46115 (29*2π)/208172 weeks
30.0467 -.44047 (30*2π)/208169 weeks
31.13156 -.50875 (31*2π)/208167 weeks
32.06902 -.5699 (32*2π)/208165 weeks
33.03578 -.56681 (33*2π)/208163 weeks
34-.03108 -.56207 (34*2π)/208161 weeks
35-.04231 -.46955 (35*2π)/208159 weeks
36.03006 -.49639 (36*2π)/208158 weeks
37-.06776 -.54778 (37*2π)/208156 weeks
38-.16058 -.44066 (38*2π)/208155 weeks
39-.05244 -.26845 (39*2π)/208153 weeks
40.02179 -.40664 (40*2π)/208152 weeks
41-.07867 -.32143 (41*2π)/208151 weeks
42.03234 -.31898 (42*2π)/208150 weeks
43-.00516 -.42181 (43*2π)/208148 weeks
44-.1334 -.3567 (44*2π)/208147 weeks
45-.07369 -.27754 (45*2π)/208146 weeks
46-.11122 -.22012 (46*2π)/208145 weeks
47.01869 -.21317 (47*2π)/208144 weeks
48-.00035 -.24452 (48*2π)/208143 weeks
49-.01177 -.30633 (49*2π)/208142 weeks
50-.08523 -.23283 (50*2π)/208142 weeks
51-.04132 -.2052 (51*2π)/208141 weeks
52-.01308 -.15096 (52*2π)/208140 weeks
53.0367 -.18912 (53*2π)/208139 weeks
54.0912 -.17634 (54*2π)/208139 weeks
55.10557 -.29118 (55*2π)/208138 weeks
56.03258 -.25348 (56*2π)/208137 weeks
57.10815 -.25892 (57*2π)/208137 weeks
58.09672 -.36469 (58*2π)/208136 weeks
59-.02248 -.3593 (59*2π)/208135 weeks
60.0043 -.30824 (60*2π)/208135 weeks
61-.05304 -.35116 (61*2π)/208134 weeks
62-.07231 -.24095 (62*2π)/208134 weeks
63-.01371 -.25063 (63*2π)/208133 weeks
64-.0365 -.241 (64*2π)/208133 weeks
65-.01532 -.24461 (65*2π)/208132 weeks
66-.07332 -.23533 (66*2π)/208132 weeks
67-.03506 -.17769 (67*2π)/208131 weeks
68-.01326 -.1701 (68*2π)/208131 weeks
69.05654 -.20319 (69*2π)/208130 weeks
70-.03907 -.23486 (70*2π)/208130 weeks
71-.01394 -.15734 (71*2π)/208129 weeks
72-.01761 -.19073 (72*2π)/208129 weeks
73-.0592 -.14634 (73*2π)/208129 weeks
74.02726 -.09963 (74*2π)/208128 weeks
75.04118 -.16191 (75*2π)/208128 weeks
76.04528 -.15288 (76*2π)/208127 weeks
77.04546 -.18679 (77*2π)/208127 weeks
78.01559 -.2017 (78*2π)/208127 weeks
79.0008 -.18667 (79*2π)/208126 weeks
80.02032 -.20075 (80*2π)/208126 weeks
81-.01576 -.21919 (81*2π)/208126 weeks
82-.05839 -.17373 (82*2π)/208125 weeks
83-.001 -.15386 (83*2π)/208125 weeks
84-.03571 -.1714 (84*2π)/208125 weeks
85-.00357 -.15806 (85*2π)/208124 weeks
86-.0181 -.16527 (86*2π)/208124 weeks
87.00436 -.15464 (87*2π)/208124 weeks
88.0062 -.16309 (88*2π)/208124 weeks
89.0161 -.17568 (89*2π)/208123 weeks
90.00329 -.15647 (90*2π)/208123 weeks
91.03157 -.18222 (91*2π)/208123 weeks
92.01475 -.19094 (92*2π)/208123 weeks
93.00397 -.18968 (93*2π)/208122 weeks
94.02338 -.18628 (94*2π)/208122 weeks
95-.02335 -.21546 (95*2π)/208122 weeks
96-.03531 -.15216 (96*2π)/208122 weeks
97-.01081 -.17215 (97*2π)/208121 weeks
98-.03174 -.14265 (98*2π)/208121 weeks
99-.00093 -.13561 (99*2π)/208121 weeks
100.01709 -.13929 (100*2π)/208121 weeks
101.01579 -.15886 (101*2π)/208121 weeks
102-.01208 -.15213 (102*2π)/208120 weeks
103-.01079 -.15547 (103*2π)/208120 weeks
104-.04578 -.13748 (104*2π)/208120 weeks
105-.01201 -.10292 (105*2π)/208120 weeks
106-.0092 -.12123 (106*2π)/208120 weeks
107-.01196 -.09975 (107*2π)/208119 weeks
108.00067 -.08523 (108*2π)/208119 weeks
109.02719 -.08304 (109*2π)/208119 weeks
110.04926 -.10185 (110*2π)/208119 weeks
111.05843 -.13044 (111*2π)/208119 weeks
112.03153 -.17083 (112*2π)/208119 weeks
113-.00152 -.13716 (113*2π)/208118 weeks
114.02839 -.12778 (114*2π)/208118 weeks
115.05189 -.16216 (115*2π)/208118 weeks
116-.00139 -.20447 (116*2π)/208118 weeks
117-.01849 -.16866 (117*2π)/208118 weeks
118-.03366 -.15728 (118*2π)/208118 weeks
119-.01385 -.16816 (119*2π)/208117 weeks
120-.0789 -.11464 (120*2π)/208117 weeks
121.0339 -.08484 (121*2π)/208117 weeks
122.01173 -.15329 (122*2π)/208117 weeks
123.00109 -.1709 (123*2π)/208117 weeks
124-.03499 -.13188 (124*2π)/208117 weeks
125.00533 -.13385 (125*2π)/208117 weeks
126-.01408 -.11784 (126*2π)/208117 weeks
127.00388 -.13462 (127*2π)/208116 weeks
128-.02573 -.12062 (128*2π)/208116 weeks
129.00793 -.11274 (129*2π)/208116 weeks
130.00072 -.1452 (130*2π)/208116 weeks
131-.02859 -.10873 (131*2π)/208116 weeks
132.0222 -.09265 (132*2π)/208116 weeks
133.02436 -.12783 (133*2π)/208116 weeks
134-.00047 -.13379 (134*2π)/208116 weeks
135.01589 -.12087 (135*2π)/208115 weeks
136.00578 -.16636 (136*2π)/208115 weeks
137-.04966 -.13635 (137*2π)/208115 weeks
138-.02381 -.10785 (138*2π)/208115 weeks
139-.02217 -.1134 (139*2π)/208115 weeks
140-.02102 -.10514 (140*2π)/208115 weeks
141.00531 -.1051 (141*2π)/208115 weeks
142-.0059 -.15109 (142*2π)/208115 weeks
143-.0279 -.13043 (143*2π)/208115 weeks
144-.03085 -.1491 (144*2π)/208114 weeks
145-.05969 -.10597 (145*2π)/208114 weeks
146-.01955 -.09734 (146*2π)/208114 weeks
147-.00815 -.12484 (147*2π)/208114 weeks
148-.04403 -.1367 (148*2π)/208114 weeks
149-.0327 -.09937 (149*2π)/208114 weeks
150-.02654 -.10864 (150*2π)/208114 weeks
151-.01952 -.10902 (151*2π)/208114 weeks
152-.03028 -.10615 (152*2π)/208114 weeks
153.00147 -.1074 (153*2π)/208114 weeks
154-.01079 -.13942 (154*2π)/208114 weeks
155-.02109 -.13827 (155*2π)/208113 weeks
156-.05967 -.1276 (156*2π)/208113 weeks
157-.03715 -.06877 (157*2π)/208113 weeks
158.0013 -.09746 (158*2π)/208113 weeks
159-.02712 -.10344 (159*2π)/208113 weeks
160-.00042 -.1008 (160*2π)/208113 weeks
161-.02763 -.13063 (161*2π)/208113 weeks
162-.06048 -.08229 (162*2π)/208113 weeks
163-.01317 -.05638 (163*2π)/208113 weeks
164-.01022 -.08962 (164*2π)/208113 weeks
165-.02742 -.07123 (165*2π)/208113 weeks
166.01256 -.06793 (166*2π)/208113 weeks
167-.00325 -.10394 (167*2π)/208112 weeks
168-.00104 -.07879 (168*2π)/208112 weeks
169-.00387 -.09759 (169*2π)/208112 weeks
170-.01245 -.08321 (170*2π)/208112 weeks
171-.00876 -.10223 (171*2π)/208112 weeks
172-.03228 -.1024 (172*2π)/208112 weeks
173-.0372 -.07965 (173*2π)/208112 weeks
174-.01889 -.07231 (174*2π)/208112 weeks
175-.0014 -.07928 (175*2π)/208112 weeks
176-.02613 -.08798 (176*2π)/208112 weeks
177.00745 -.06288 (177*2π)/208112 weeks
178.00981 -.12091 (178*2π)/208112 weeks
179-.03234 -.11455 (179*2π)/208112 weeks
180-.02494 -.08509 (180*2π)/208112 weeks
181.00418 -.09816 (181*2π)/208111 weeks
182-.0194 -.11256 (182*2π)/208111 weeks
183-.02151 -.09923 (183*2π)/208111 weeks
184-.01449 -.10691 (184*2π)/208111 weeks
185-.02033 -.11845 (185*2π)/208111 weeks
186-.03786 -.12449 (186*2π)/208111 weeks
187-.05514 -.09242 (187*2π)/208111 weeks
188-.02906 -.07154 (188*2π)/208111 weeks
189-.01269 -.08588 (189*2π)/208111 weeks
190-.03098 -.10475 (190*2π)/208111 weeks
191-.02957 -.07494 (191*2π)/208111 weeks
192-.01511 -.10615 (192*2π)/208111 weeks
193-.04871 -.09066 (193*2π)/208111 weeks
194-.04777 -.07357 (194*2π)/208111 weeks
195-.03362 -.04969 (195*2π)/208111 weeks
196-.01357 -.06979 (196*2π)/208111 weeks
197-.02546 -.08046 (197*2π)/208111 weeks
198-.04857 -.0588 (198*2π)/208111 weeks
199.00108 -.04455 (199*2π)/208110 weeks
200-.01585 -.08463 (200*2π)/208110 weeks
201-.03235 -.05803 (201*2π)/208110 weeks
202-.01152 -.04909 (202*2π)/208110 weeks
203-.00131 -.08258 (203*2π)/208110 weeks
204-.02959 -.06391 (204*2π)/208110 weeks
205.00374 -.07096 (205*2π)/208110 weeks
206-.01252 -.07983 (206*2π)/208110 weeks
207-.0079 -.08644 (207*2π)/208110 weeks
208-.02974 -.08752 (208*2π)/208110 weeks
209-.02913 -.0813 (209*2π)/208110 weeks
210-.02071 -.07799 (210*2π)/208110 weeks
211-.02307 -.08792 (211*2π)/208110 weeks
212-.01994 -.07047 (212*2π)/208110 weeks
213.00374 -.08757 (213*2π)/208110 weeks
214-.01727 -.11422 (214*2π)/208110 weeks
215-.04179 -.11229 (215*2π)/208110 weeks
216-.05436 -.09484 (216*2π)/208110 weeks
217-.04868 -.0898 (217*2π)/208110 weeks
218-.06813 -.06795 (218*2π)/208110 weeks
219-.04214 -.04298 (219*2π)/208110 weeks
220-.02482 -.04958 (220*2π)/20819 weeks
221-.01715 -.05984 (221*2π)/20819 weeks
222-.02023 -.07876 (222*2π)/20819 weeks
223-.04468 -.06729 (223*2π)/20819 weeks
224-.0271 -.04643 (224*2π)/20819 weeks
225-.02295 -.05578 (225*2π)/20819 weeks
226-.02904 -.04489 (226*2π)/20819 weeks
227.00043 -.03678 (227*2π)/20819 weeks
228.00012 -.07061 (228*2π)/20819 weeks
229-.01679 -.06843 (229*2π)/20819 weeks
230-.02652 -.06183 (230*2π)/20819 weeks
231-.02154 -.05804 (231*2π)/20819 weeks
232-.03002 -.05253 (232*2π)/20819 weeks
233-.01744 -.05951 (233*2π)/20819 weeks
234-.03954 -.05874 (234*2π)/20819 weeks
235-.03548 -.03404 (235*2π)/20819 weeks
236-.00755 -.03251 (236*2π)/20819 weeks
237-.01268 -.04703 (237*2π)/20819 weeks
238-.01026 -.04247 (238*2π)/20819 weeks
239-.00756 -.04068 (239*2π)/20819 weeks
240.0098 -.06094 (240*2π)/20819 weeks
241-.01678 -.05051 (241*2π)/20819 weeks
242.0219 -.04954 (242*2π)/20819 weeks
243.00455 -.08041 (243*2π)/20819 weeks
244-.00838 -.07613 (244*2π)/20819 weeks
245-.01919 -.07158 (245*2π)/20818 weeks
246-.00296 -.06011 (246*2π)/20818 weeks
247-.00688 -.08089 (247*2π)/20818 weeks
248-.01813 -.06395 (248*2π)/20818 weeks
249.00163 -.05689 (249*2π)/20818 weeks
250.00651 -.07796 (250*2π)/20818 weeks
251-.01129 -.09064 (251*2π)/20818 weeks
252-.03299 -.07775 (252*2π)/20818 weeks
253-.02015 -.06951 (253*2π)/20818 weeks
254-.04139 -.06904 (254*2π)/20818 weeks
255-.0198 -.03518 (255*2π)/20818 weeks
256-.00304 -.05377 (256*2π)/20818 weeks
257-.00619 -.06173 (257*2π)/20818 weeks
258-.01461 -.06183 (258*2π)/20818 weeks
259-.01098 -.06295 (259*2π)/20818 weeks
260-.01537 -.05561 (260*2π)/20818 weeks
261-.00075 -.06967 (261*2π)/20818 weeks
262-.02594 -.07036 (262*2π)/20818 weeks
263-.02666 -.0538 (263*2π)/20818 weeks
264-.01122 -.06259 (264*2π)/20818 weeks
265-.04008 -.07336 (265*2π)/20818 weeks
266-.02563 -.04067 (266*2π)/20818 weeks
267-.00756 -.05519 (267*2π)/20818 weeks
268-.01992 -.06094 (268*2π)/20818 weeks
269-.00894 -.03812 (269*2π)/20818 weeks
270.01139 -.08037 (270*2π)/20818 weeks
271-.02954 -.07741 (271*2π)/20818 weeks
272-.01901 -.06343 (272*2π)/20818 weeks
273-.01326 -.05903 (273*2π)/20818 weeks
274-.0053 -.0674 (274*2π)/20818 weeks
275-.00909 -.07289 (275*2π)/20818 weeks
276-.01635 -.08296 (276*2π)/20818 weeks
277-.0242 -.07267 (277*2π)/20818 weeks
278-.01435 -.07398 (278*2π)/20817 weeks
279-.01961 -.06342 (279*2π)/20817 weeks
280.00688 -.06865 (280*2π)/20817 weeks
281-.01285 -.09711 (281*2π)/20817 weeks
282-.03951 -.07508 (282*2π)/20817 weeks
283-.01863 -.05972 (283*2π)/20817 weeks
284-.02179 -.07926 (284*2π)/20817 weeks
285-.0183 -.06318 (285*2π)/20817 weeks
286-.02068 -.08016 (286*2π)/20817 weeks
287-.03036 -.05786 (287*2π)/20817 weeks
288-.0171 -.0673 (288*2π)/20817 weeks
289-.03112 -.08361 (289*2π)/20817 weeks
290-.05471 -.07068 (290*2π)/20817 weeks
291-.04445 -.04619 (291*2π)/20817 weeks
292-.03417 -.05032 (292*2π)/20817 weeks
293-.04243 -.03932 (293*2π)/20817 weeks
294-.01903 -.03487 (294*2π)/20817 weeks
295-.03412 -.05178 (295*2π)/20817 weeks
296-.02487 -.03024 (296*2π)/20817 weeks
297-.01659 -.04293 (297*2π)/20817 weeks
298-.00385 -.04222 (298*2π)/20817 weeks
299-.02053 -.06465 (299*2π)/20817 weeks
300-.01566 -.04362 (300*2π)/20817 weeks
301-.01494 -.07195 (301*2π)/20817 weeks
302-.02116 -.05386 (302*2π)/20817 weeks
303-.02112 -.07526 (303*2π)/20817 weeks
304-.0355 -.05078 (304*2π)/20817 weeks
305-.01524 -.05577 (305*2π)/20817 weeks
306-.01988 -.06594 (306*2π)/20817 weeks
307-.03904 -.06307 (307*2π)/20817 weeks
308-.02369 -.04514 (308*2π)/20817 weeks
309-.02095 -.05666 (309*2π)/20817 weeks
310-.01989 -.05444 (310*2π)/20817 weeks
311-.02045 -.05552 (311*2π)/20817 weeks
312-.01901 -.05582 (312*2π)/20817 weeks
313-.027 -.05983 (313*2π)/20817 weeks
314-.02901 -.04847 (314*2π)/20817 weeks
315-.02029 -.04949 (315*2π)/20817 weeks
316-.01883 -.05285 (316*2π)/20817 weeks
317-.01487 -.0553 (317*2π)/20817 weeks
318-.03015 -.06022 (318*2π)/20817 weeks
319-.02298 -.03692 (319*2π)/20817 weeks
320-.01687 -.06236 (320*2π)/20817 weeks
321-.03473 -.05327 (321*2π)/20816 weeks
322-.03086 -.0489 (322*2π)/20816 weeks
323-.02397 -.04682 (323*2π)/20816 weeks
324-.03646 -.05894 (324*2π)/20816 weeks
325-.05021 -.03609 (325*2π)/20816 weeks
326-.02308 -.02424 (326*2π)/20816 weeks
327-.02298 -.04287 (327*2π)/20816 weeks
328-.01848 -.0368 (328*2π)/20816 weeks
329-.01771 -.04266 (329*2π)/20816 weeks
330-.00735 -.05047 (330*2π)/20816 weeks
331-.02948 -.06295 (331*2π)/20816 weeks
332-.02146 -.04876 (332*2π)/20816 weeks
333-.0216 -.06224 (333*2π)/20816 weeks
334-.02576 -.05968 (334*2π)/20816 weeks
335-.0353 -.06042 (335*2π)/20816 weeks
336-.04394 -.04933 (336*2π)/20816 weeks
337-.0257 -.03187 (337*2π)/20816 weeks
338-.00936 -.05424 (338*2π)/20816 weeks
339-.02246 -.05947 (339*2π)/20816 weeks
340-.02162 -.05678 (340*2π)/20816 weeks
341-.02418 -.05891 (341*2π)/20816 weeks
342-.03066 -.05524 (342*2π)/20816 weeks
343-.03036 -.04847 (343*2π)/20816 weeks
344-.02581 -.04663 (344*2π)/20816 weeks
345-.02949 -.05555 (345*2π)/20816 weeks
346-.03562 -.04369 (346*2π)/20816 weeks
347-.02857 -.03727 (347*2π)/20816 weeks
348-.01317 -.03431 (348*2π)/20816 weeks
349-.01754 -.05478 (349*2π)/20816 weeks
350-.03354 -.04739 (350*2π)/20816 weeks
351-.03271 -.04127 (351*2π)/20816 weeks
352-.02669 -.04021 (352*2π)/20816 weeks
353-.03413 -.0487 (353*2π)/20816 weeks
354-.03877 -.02647 (354*2π)/20816 weeks
355-.02024 -.02912 (355*2π)/20816 weeks
356-.02605 -.03515 (356*2π)/20816 weeks
357-.02873 -.03799 (357*2π)/20816 weeks
358-.02363 -.03198 (358*2π)/20816 weeks
359-.02601 -.03976 (359*2π)/20816 weeks
360-.01903 -.03733 (360*2π)/20816 weeks
361-.02998 -.05006 (361*2π)/20816 weeks
362-.03295 -.03571 (362*2π)/20816 weeks
363-.02369 -.03693 (363*2π)/20816 weeks
364-.02328 -.04735 (364*2π)/20816 weeks
365-.0297 -.03825 (365*2π)/20816 weeks
366-.01325 -.04084 (366*2π)/20816 weeks
367-.02231 -.05753 (367*2π)/20816 weeks
368-.04052 -.0489 (368*2π)/20816 weeks
369-.02468 -.03879 (369*2π)/20816 weeks
370-.03217 -.04931 (370*2π)/20816 weeks
371-.03158 -.03246 (371*2π)/20816 weeks
372-.01727 -.03624 (372*2π)/20816 weeks
373-.02212 -.04274 (373*2π)/20816 weeks
374-.01782 -.03864 (374*2π)/20816 weeks
375-.019 -.04749 (375*2π)/20816 weeks
376-.02501 -.04102 (376*2π)/20816 weeks
377-.01624 -.03842 (377*2π)/20816 weeks
378-.01461 -.04644 (378*2π)/20816 weeks
379-.01955 -.04422 (379*2π)/20815 weeks
380-.01807 -.04639 (380*2π)/20815 weeks
381-.02297 -.04886 (381*2π)/20815 weeks
382-.03205 -.04511 (382*2π)/20815 weeks
383-.0251 -.04055 (383*2π)/20815 weeks
384-.03113 -.0476 (384*2π)/20815 weeks
385-.02723 -.0366 (385*2π)/20815 weeks
386-.02421 -.04515 (386*2π)/20815 weeks
387-.03626 -.04485 (387*2π)/20815 weeks
388-.0396 -.03827 (388*2π)/20815 weeks
389-.03819 -.03144 (389*2π)/20815 weeks
390-.02595 -.0356 (390*2π)/20815 weeks
391-.03766 -.03987 (391*2π)/20815 weeks
392-.02697 -.02704 (392*2π)/20815 weeks
393-.02867 -.04214 (393*2π)/20815 weeks
394-.04063 -.03793 (394*2π)/20815 weeks
395-.03921 -.02256 (395*2π)/20815 weeks
396-.01468 -.02701 (396*2π)/20815 weeks
397-.02539 -.04277 (397*2π)/20815 weeks
398-.0261 -.02778 (398*2π)/20815 weeks
399-.01332 -.03084 (399*2π)/20815 weeks
400-.01217 -.04469 (400*2π)/20815 weeks
401-.02553 -.04796 (401*2π)/20815 weeks
402-.02068 -.04042 (402*2π)/20815 weeks
403-.0177 -.04818 (403*2π)/20815 weeks
404-.02834 -.0452 (404*2π)/20815 weeks
405-.02033 -.03723 (405*2π)/20815 weeks
406-.02255 -.04486 (406*2π)/20815 weeks
407-.0266 -.04212