Back to list of Stocks    See Also: Seasonal Analysis of WSMGenetic Algorithms Stock Portfolio Generator, and Best Months to Buy/Sell Stocks

Fourier Analysis of WSM (Williams-Sonoma)


WSM (Williams-Sonoma) appears to have interesting cyclic behaviour every 191 weeks (2.5211*sine), 147 weeks (1.8434*sine), and 174 weeks (1.5668*sine).

WSM (Williams-Sonoma) has an average price of 19.48 (topmost row, frequency = 0).



Click on the checkboxes shown on the right to see how the various frequencies contribute to the graph. Look for large magnitude coefficients (sine or cosine), as these are associated with frequencies which contribute most to the associated stock plot. If you find a large magnitude coefficient which dramatically changes the graph, look at the associated "Period" in weeks, as you may have found a significant recurring cycle for the stock of interest.

Right click on the graph above to see the menu of operations (download, full screen, etc.)

Fourier Analysis

Using data from 7/7/1983 to 2/24/2020 for WSM (Williams-Sonoma), this program was able to calculate the following Fourier Series:
Sequence #Cosine Coefficients Sine Coefficients FrequenciesPeriod
019.48205   0 
17.71022 -18.85786 (1*2π)/19131,913 weeks
24.52927 -11.19353 (2*2π)/1913957 weeks
3-2.58488 -9.23687 (3*2π)/1913638 weeks
4-2.83364 -1.47689 (4*2π)/1913478 weeks
52.69703 -1.31065 (5*2π)/1913383 weeks
61.1267 -3.10403 (6*2π)/1913319 weeks
72.10894 -2.03192 (7*2π)/1913273 weeks
81.93145 -3.19512 (8*2π)/1913239 weeks
9.59798 -4.95181 (9*2π)/1913213 weeks
10-1.06678 -2.52114 (10*2π)/1913191 weeks
11-.47949 -1.56683 (11*2π)/1913174 weeks
12.05048 -1.37781 (12*2π)/1913159 weeks
13-.13729 -1.84338 (13*2π)/1913147 weeks
14.09174 -.28348 (14*2π)/1913137 weeks
15.82632 -1.26351 (15*2π)/1913128 weeks
16.8273 -1.61629 (16*2π)/1913120 weeks
17.02557 -1.69583 (17*2π)/1913113 weeks
18.27892 -1.37549 (18*2π)/1913106 weeks
19-.59106 -1.49261 (19*2π)/1913101 weeks
20.09172 -.28422 (20*2π)/191396 weeks
21.41101 -.80406 (21*2π)/191391 weeks
22.49633 -.95457 (22*2π)/191387 weeks
23.54091 -1.03395 (23*2π)/191383 weeks
24.30684 -1.15181 (24*2π)/191380 weeks
25.52965 -1.28785 (25*2π)/191377 weeks
26-.10575 -1.45348 (26*2π)/191374 weeks
27-.06065 -1.15386 (27*2π)/191371 weeks
28-.17672 -.80909 (28*2π)/191368 weeks
29.11642 -1.13072 (29*2π)/191366 weeks
30-.45703 -.66879 (30*2π)/191364 weeks
31.28891 -.60482 (31*2π)/191362 weeks
32.13563 -1.04696 (32*2π)/191360 weeks
33-.08346 -.9266 (33*2π)/191358 weeks
34-.15348 -1.05596 (34*2π)/191356 weeks
35-.5361 -.83551 (35*2π)/191355 weeks
36-.39643 -.54984 (36*2π)/191353 weeks
37-.12988 -.27004 (37*2π)/191352 weeks
38-.04339 -.60924 (38*2π)/191350 weeks
39-.03965 -.34717 (39*2π)/191349 weeks
40-.06675 -.49562 (40*2π)/191348 weeks
41.06172 -.62786 (41*2π)/191347 weeks
42-.34611 -.64344 (42*2π)/191346 weeks
43-.04595 -.18574 (43*2π)/191344 weeks
44-.28852 -.28336 (44*2π)/191343 weeks
45.42984 -.3205 (45*2π)/191343 weeks
46-.36564 -.47565 (46*2π)/191342 weeks
47.23715 -.26908 (47*2π)/191341 weeks
48-.08416 -.17097 (48*2π)/191340 weeks
49.43983 -.34771 (49*2π)/191339 weeks
50.45077 -.35685 (50*2π)/191338 weeks
51.12297 -1.19871 (51*2π)/191338 weeks
52-.045 -.4463 (52*2π)/191337 weeks
53-.19905 -.68283 (53*2π)/191336 weeks
54-.05925 -.49926 (54*2π)/191335 weeks
55-.1154 -.40055 (55*2π)/191335 weeks
56-.05808 -.52901 (56*2π)/191334 weeks
57-.06891 -.37652 (57*2π)/191334 weeks
58-.0224 -.55292 (58*2π)/191333 weeks
59-.09262 -.39845 (59*2π)/191332 weeks
60-.15768 -.68425 (60*2π)/191332 weeks
61-.45577 -.33493 (61*2π)/191331 weeks
62-.25462 -.17746 (62*2π)/191331 weeks
63-.05942 -.0164 (63*2π)/191330 weeks
64.08312 -.17112 (64*2π)/191330 weeks
65.09063 -.23406 (65*2π)/191329 weeks
66.1464 -.331 (66*2π)/191329 weeks
67.03654 -.46218 (67*2π)/191329 weeks
68-.05838 -.50323 (68*2π)/191328 weeks
69-.21286 -.19058 (69*2π)/191328 weeks
70.0978 -.11175 (70*2π)/191327 weeks
71.16949 -.44757 (71*2π)/191327 weeks
72-.04884 -.36583 (72*2π)/191327 weeks
73-.14319 -.29113 (73*2π)/191326 weeks
74.21833 -.12263 (74*2π)/191326 weeks
75.07716 -.63302 (75*2π)/191326 weeks
76-.13442 -.24283 (76*2π)/191325 weeks
77.04625 -.39814 (77*2π)/191325 weeks
78.03136 -.28641 (78*2π)/191325 weeks
79.08978 -.47623 (79*2π)/191324 weeks
80-.07049 -.49283 (80*2π)/191324 weeks
81-.12724 -.48129 (81*2π)/191324 weeks
82-.2664 -.22053 (82*2π)/191323 weeks
83.06308 -.35081 (83*2π)/191323 weeks
84-.27759 -.25186 (84*2π)/191323 weeks
85.06301 -.38505 (85*2π)/191323 weeks
86-.2118 -.21162 (86*2π)/191322 weeks
87-.11602 -.36892 (87*2π)/191322 weeks
88-.02834 -.16123 (88*2π)/191322 weeks
89-.16491 -.34952 (89*2π)/191321 weeks
90.04677 -.15875 (90*2π)/191321 weeks
91-.25211 -.38749 (91*2π)/191321 weeks
92.04553 -.02091 (92*2π)/191321 weeks
93.01198 -.37363 (93*2π)/191321 weeks
94-.07649 -.36818 (94*2π)/191320 weeks
95-.13115 -.30275 (95*2π)/191320 weeks
96-.23514 -.31391 (96*2π)/191320 weeks
97-.31636 -.15889 (97*2π)/191320 weeks
98-.11887 -.07328 (98*2π)/191320 weeks
99-.1683 -.06473 (99*2π)/191319 weeks
100-.02339 -.02052 (100*2π)/191319 weeks
101.04261 -.02185 (101*2π)/191319 weeks
102.01471 -.14624 (102*2π)/191319 weeks
103.18051 -.14267 (103*2π)/191319 weeks
104-.0751 -.26262 (104*2π)/191318 weeks
105.18476 -.17649 (105*2π)/191318 weeks
106-.0937 -.34552 (106*2π)/191318 weeks
107-.04422 -.21455 (107*2π)/191318 weeks
108-.06428 -.16984 (108*2π)/191318 weeks
109-.04086 -.2202 (109*2π)/191318 weeks
110-.03495 -.01469 (110*2π)/191317 weeks
111.17846 -.17275 (111*2π)/191317 weeks
112.14919 -.34058 (112*2π)/191317 weeks
113-.06636 -.3753 (113*2π)/191317 weeks
114-.12282 -.25972 (114*2π)/191317 weeks
115-.02778 -.18387 (115*2π)/191317 weeks
116-.1232 -.29369 (116*2π)/191316 weeks
117-.09593 -.10601 (117*2π)/191316 weeks
118.03399 -.16973 (118*2π)/191316 weeks
119-.01286 -.30412 (119*2π)/191316 weeks
120-.14893 -.21808 (120*2π)/191316 weeks
121-.16715 -.08927 (121*2π)/191316 weeks
122.03179 -.08892 (122*2π)/191316 weeks
123.00653 -.08753 (123*2π)/191316 weeks
124.14534 -.23395 (124*2π)/191315 weeks
125-.06736 -.26944 (125*2π)/191315 weeks
126-.02634 -.21236 (126*2π)/191315 weeks
127-.06978 -.20593 (127*2π)/191315 weeks
128.03519 -.1753 (128*2π)/191315 weeks
129-.0418 -.31598 (129*2π)/191315 weeks
130-.08066 -.24688 (130*2π)/191315 weeks
131-.13739 -.2129 (131*2π)/191315 weeks
132-.07361 -.14885 (132*2π)/191314 weeks
133-.12411 -.1672 (133*2π)/191314 weeks
134-.00188 -.15627 (134*2π)/191314 weeks
135-.0656 -.22154 (135*2π)/191314 weeks
136-.07511 -.21462 (136*2π)/191314 weeks
137-.07874 -.23659 (137*2π)/191314 weeks
138-.18351 -.19103 (138*2π)/191314 weeks
139-.16503 -.10397 (139*2π)/191314 weeks
140-.05622 -.05436 (140*2π)/191314 weeks
141-.06358 -.19277 (141*2π)/191314 weeks
142-.10527 -.08191 (142*2π)/191313 weeks
143-.12587 -.15702 (143*2π)/191313 weeks
144-.06925 -.02367 (144*2π)/191313 weeks
145-.05578 -.11682 (145*2π)/191313 weeks
146-.07887 -.05478 (146*2π)/191313 weeks
147.00578 -.1114 (147*2π)/191313 weeks
148-.01528 -.05833 (148*2π)/191313 weeks
149.02684 -.17645 (149*2π)/191313 weeks
150-.04025 -.13043 (150*2π)/191313 weeks
151-.01379 -.1176 (151*2π)/191313 weeks
152-.04362 -.12689 (152*2π)/191313 weeks
153.04684 -.12485 (153*2π)/191313 weeks
154.03748 -.22336 (154*2π)/191312 weeks
155-.07417 -.24806 (155*2π)/191312 weeks
156-.13436 -.19307 (156*2π)/191312 weeks
157-.11868 -.13652 (157*2π)/191312 weeks
158-.14874 -.10452 (158*2π)/191312 weeks
159-.04033 -.08733 (159*2π)/191312 weeks
160-.09065 -.12562 (160*2π)/191312 weeks
161-.06569 -.08841 (161*2π)/191312 weeks
162-.08624 -.16244 (162*2π)/191312 weeks
163-.18761 -.0551 (163*2π)/191312 weeks
164-.08894 .04803 (164*2π)/191312 weeks
165-.00084 .03685 (165*2π)/191312 weeks
166.10583 -.00106 (166*2π)/191312 weeks
167.0492 -.11105 (167*2π)/191311 weeks
168.09072 -.12533 (168*2π)/191311 weeks
169.0031 -.11405 (169*2π)/191311 weeks
170.07508 -.13179 (170*2π)/191311 weeks
171.02235 -.21637 (171*2π)/191311 weeks
172-.01606 -.16102 (172*2π)/191311 weeks
173.03742 -.17389 (173*2π)/191311 weeks
174-.03368 -.24328 (174*2π)/191311 weeks
175-.05696 -.16807 (175*2π)/191311 weeks
176-.07803 -.19891 (176*2π)/191311 weeks
177-.05879 -.13018 (177*2π)/191311 weeks
178-.08152 -.16828 (178*2π)/191311 weeks
179-.02873 -.11901 (179*2π)/191311 weeks
180-.10393 -.19665 (180*2π)/191311 weeks
181-.10498 -.1221 (181*2π)/191311 weeks
182-.04809 -.0824 (182*2π)/191311 weeks
183-.06745 -.18436 (183*2π)/191310 weeks
184-.13863 -.14673 (184*2π)/191310 weeks
185-.1323 -.10739 (185*2π)/191310 weeks
186-.10896 -.03981 (186*2π)/191310 weeks
187-.08364 -.10297 (187*2π)/191310 weeks
188-.112 .01275 (188*2π)/191310 weeks
189-.03999 -.0562 (189*2π)/191310 weeks
190-.06371 .03667 (190*2π)/191310 weeks
191.08216 -.02957 (191*2π)/191310 weeks
192.05842 -.16138 (192*2π)/191310 weeks
193-.06882 -.10013 (193*2π)/191310 weeks
194.00483 -.11177 (194*2π)/191310 weeks
195-.03893 -.1041 (195*2π)/191310 weeks
196-.03138 -.1443 (196*2π)/191310 weeks
197-.09323 -.07354 (197*2π)/191310 weeks
198-.04921 -.06318 (198*2π)/191310 weeks
199.01317 -.03126 (199*2π)/191310 weeks
200.00179 -.08703 (200*2π)/191310 weeks
201.05235 -.10996 (201*2π)/191310 weeks
202-.00866 -.16234 (202*2π)/19139 weeks
203-.01146 -.1558 (203*2π)/19139 weeks
204-.06803 -.1803 (204*2π)/19139 weeks
205-.09724 -.11851 (205*2π)/19139 weeks
206-.09893 -.09765 (206*2π)/19139 weeks
207-.07956 -.09068 (207*2π)/19139 weeks
208-.09337 -.03785 (208*2π)/19139 weeks
209-.01915 -.05383 (209*2π)/19139 weeks
210-.04801 -.06972 (210*2π)/19139 weeks
211.0089 -.1124 (211*2π)/19139 weeks
212-.13465 -.10192 (212*2π)/19139 weeks
213-.06082 -.0129 (213*2π)/19139 weeks
214-.07014 .00814 (214*2π)/19139 weeks
215.07581 .03794 (215*2π)/19139 weeks
216.08145 -.13769 (216*2π)/19139 weeks
217-.0188 -.1157 (217*2π)/19139 weeks
218.03366 -.06984 (218*2π)/19139 weeks
219-.008 -.16158 (219*2π)/19139 weeks
220-.01465 -.10539 (220*2π)/19139 weeks
221-.07214 -.10234 (221*2π)/19139 weeks
222.02798 -.1208 (222*2π)/19139 weeks
223-.07106 -.09013 (223*2π)/19139 weeks
224.00759 -.10839 (224*2π)/19139 weeks
225-.04078 -.1134 (225*2π)/19139 weeks
226-.0309 -.08025 (226*2π)/19138 weeks
227-.04562 -.12248 (227*2π)/19138 weeks
228.0421 -.06883 (228*2π)/19138 weeks
229-.06923 -.18118 (229*2π)/19138 weeks
230-.02953 -.13234 (230*2π)/19138 weeks
231-.13996 -.08133 (231*2π)/19138 weeks
232-.03954 -.07882 (232*2π)/19138 weeks
233-.04485 -.02519 (233*2π)/19138 weeks
234-.00806 -.14315 (234*2π)/19138 weeks
235-.06809 -.04926 (235*2π)/19138 weeks
236-.03398 -.09635 (236*2π)/19138 weeks
237-.02138 -.04737 (237*2π)/19138 weeks
238-.02395 -.09896 (238*2π)/19138 weeks
239-.01214 -.11887 (239*2π)/19138 weeks
240-.09681 -.09803 (240*2π)/19138 weeks
241-.00695 -.08562 (241*2π)/19138 weeks
242-.10081 -.05612 (242*2π)/19138 weeks
243-.01585 -.06796 (243*2π)/19138 weeks
244-.03269 -.05006 (244*2π)/19138 weeks
245-.03532 -.06191 (245*2π)/19138 weeks
246.05155 -.06604 (246*2π)/19138 weeks
247-.00197 -.15985 (247*2π)/19138 weeks
248-.07448 -.06177 (248*2π)/19138 weeks
249.01508 -.13489 (249*2π)/19138 weeks
250-.07521 -.09434 (250*2π)/19138 weeks
251-.00389 -.11231 (251*2π)/19138 weeks
252-.07545 -.11376 (252*2π)/19138 weeks
253-.0842 -.09852 (253*2π)/19138 weeks
254-.05892 -.00927 (254*2π)/19138 weeks
255.00171 -.06322 (255*2π)/19138 weeks
256.00374 -.10364 (256*2π)/19137 weeks
257-.04362 -.06723 (257*2π)/19137 weeks
258.01809 -.10144 (258*2π)/19137 weeks
259-.00677 -.13809 (259*2π)/19137 weeks
260-.06793 -.18639 (260*2π)/19137 weeks
261-.14147 -.08525 (261*2π)/19137 weeks
262-.11367 -.01641 (262*2π)/19137 weeks
263.0212 .00018 (263*2π)/19137 weeks
264-.00405 -.11807 (264*2π)/19137 weeks
265-.02916 -.11783 (265*2π)/19137 weeks
266-.07905 -.06691 (266*2π)/19137 weeks
267-.00898 -.05108 (267*2π)/19137 weeks
268-.03392 -.13554 (268*2π)/19137 weeks
269-.10165 -.07185 (269*2π)/19137 weeks
270-.03327 -.04293 (270*2π)/19137 weeks
271-.03385 -.07229 (271*2π)/19137 weeks
272-.00622 -.07842 (272*2π)/19137 weeks
273-.06269 -.10093 (273*2π)/19137 weeks
274-.07729 -.07654 (274*2π)/19137 weeks
275-.01944 -.02438 (275*2π)/19137 weeks
276-.02472 -.09944 (276*2π)/19137 weeks
277-.03955 -.07101 (277*2π)/19137 weeks
278-.05178 -.04841 (278*2π)/19137 weeks
279.0167 -.08823 (279*2π)/19137 weeks
280-.07477 -.07999 (280*2π)/19137 weeks
281-.04016 -.09025 (281*2π)/19137 weeks
282-.04673 -.04971 (282*2π)/19137 weeks
283-.0337 -.07092 (283*2π)/19137 weeks
284-.03251 -.06483 (284*2π)/19137 weeks
285-.03911 -.10778 (285*2π)/19137 weeks
286-.08249 -.06079 (286*2π)/19137 weeks
287-.0791 -.05717 (287*2π)/19137 weeks
288-.07793 -.00175 (288*2π)/19137 weeks
289-.00629 .02298 (289*2π)/19137 weeks
290.02843 -.02895 (290*2π)/19137 weeks
291.05802 -.06308 (291*2π)/19137 weeks
292.00319 -.11868 (292*2π)/19137 weeks
293-.03154 -.08315 (293*2π)/19137 weeks
294-.02025 -.06724 (294*2π)/19137 weeks
295-.0169 -.05487 (295*2π)/19136 weeks
296.03052 -.06717 (296*2π)/19136 weeks
297.05284 -.10672 (297*2π)/19136 weeks
298-.02121 -.18573 (298*2π)/19136 weeks
299-.07571 -.12702 (299*2π)/19136 weeks
300-.07959 -.13676 (300*2π)/19136 weeks
301-.10586 -.05812 (301*2π)/19136 weeks
302-.05363 -.05183 (302*2π)/19136 weeks
303-.00889 -.04269 (303*2π)/19136 weeks
304-.02077 -.11586 (304*2π)/19136 weeks
305-.06906 -.11217 (305*2π)/19136 weeks
306-.10307 -.06301 (306*2π)/19136 weeks
307-.02341 -.04199 (307*2π)/19136 weeks
308-.06966 -.11857 (308*2π)/19136 weeks
309-.106 -.05047 (309*2π)/19136 weeks
310-.06297 .01702 (310*2π)/19136 weeks
311.0073 -.04658 (311*2π)/19136 weeks
312-.03095 -.04916 (312*2π)/19136 weeks
313.01745 -.08042 (313*2π)/19136 weeks
314-.03638 -.0953 (314*2π)/19136 weeks
315-.04997 -.10082 (315*2π)/19136 weeks
316-.03794 -.08964 (316*2π)/19136 weeks
317-.1004 -.08837 (317*2π)/19136 weeks
318-.06024 -.04011 (318*2π)/19136 weeks
319-.05265 -.07135 (319*2π)/19136 weeks
320-.08104 -.03779 (320*2π)/19136 weeks
321-.0315 -.02811 (321*2π)/19136 weeks
322-.02971 -.05659 (322*2π)/19136 weeks
323-.01781 -.06557 (323*2π)/19136 weeks
324-.0141 -.0671 (324*2π)/19136 weeks
325-.08128 -.12742 (325*2π)/19136 weeks
326-.07063 -.03675 (326*2π)/19136 weeks
327-.07477 -.03395 (327*2π)/19136 weeks
328-.00774 -.03358 (328*2π)/19136 weeks
329-.04642 -.07039 (329*2π)/19136 weeks
330-.02861 -.05753 (330*2π)/19136 weeks
331-.05525 -.04199 (331*2π)/19136 weeks
332.00356 -.10507 (332*2π)/19136 weeks
333-.06452 -.07566 (333*2π)/19136 weeks
334-.09115 -.1038 (334*2π)/19136 weeks
335-.08899 -.01577 (335*2π)/19136 weeks
336-.09055 -.00751 (336*2π)/19136 weeks
337.0101 .00429 (337*2π)/19136 weeks
338-.02963 -.0417 (338*2π)/19136 weeks
339.0086 -.06795 (339*2π)/19136 weeks
340-.01635 -.06079 (340*2π)/19136 weeks
341-.05762 -.09063 (341*2π)/19136 weeks
342-.01367 -.02319 (342*2π)/19136 weeks
343-.02032 -.11267 (343*2π)/19136 weeks
344-.05851 -.04337 (344*2π)/19136 weeks
345-.01653 -.10543 (345*2π)/19136 weeks
346-.06889 -.08347 (346*2π)/19136 weeks
347-.12326 -.1173 (347*2π)/19136 weeks
348-.09395 .04918 (348*2π)/19135 weeks
349-.03908 -.04841 (349*2π)/19135 weeks
350-.05252 -.00112 (350*2π)/19135 weeks
351-.03737 -.03169 (351*2π)/19135 weeks
352-.01631 .00093 (352*2π)/19135 weeks
353-.01938 -.04911 (353*2π)/19135 weeks
354-.02312 .005 (354*2π)/19135 weeks
355.01364 -.05282 (355*2π)/19135 weeks
356-.02206 -.04473 (356*2π)/19135 weeks
357.01601 -.05989 (357*2π)/19135 weeks
358-.03993 -.05153 (358*2π)/19135 weeks
359.0324 -.04726 (359*2π)/19135 weeks
360-.01419 -.0526 (360*2π)/19135 weeks
361.03294 -.07841 (361*2π)/19135 weeks
362.01276 -.08867 (362*2π)/19135 weeks
363.03735 -.10691 (363*2π)/19135 weeks
364-.0261 -.18185 (364*2π)/19135 weeks
365-.05718 -.13339 (365*2π)/19135 weeks
366-.12772 -.1408 (366*2π)/19135 weeks
367-.10246 -.04521 (367*2π)/19135 weeks
368-.05565 -.04485 (368*2π)/19135 weeks
369-.04374 -.09409 (369*2π)/19135 weeks
370-.07927 -.0974 (370*2π)/19135 weeks
371-.09077 -.0767 (371*2π)/19135 weeks
372-.13988 -.07091 (372*2π)/19135 weeks
373-.09132 .03673 (373*2π)/19135 weeks
374-.04801 -.02186 (374*2π)/19135 weeks
375-.03122 -.02379 (375*2π)/19135 weeks
376-.06125 -.02964 (376*2π)/19135 weeks
377-.02747 -.01388 (377*2π)/19135 weeks
378-.04139 -.04059 (378*2π)/19135 weeks
379-.01179 -.04956 (379*2π)/19135 weeks
380-.05873 -.01113 (380*2π)/19135 weeks
381-.00169 -.0753 (381*2π)/19135 weeks
382-.04541 -.02669 (382*2π)/19135 weeks
383-.04788 -.08358 (383*2π)/19135 weeks
384-.02771 -.00581 (384*2π)/19135 weeks
385-.04729 -.07454 (385*2π)/19135 weeks
386-.00219 -.03653 (386*2π)/19135 weeks
387-.06114 -.04655 (387*2π)/19135 weeks
388.00846 -.07152 (388*2π)/19135 weeks
389-.03323 -.06109 (389*2π)/19135 weeks
390-.04066 -.09711 (390*2π)/19135 weeks
391-.06472 -.05966 (391*2π)/19135 weeks
392-.0599 -.06605 (392*2π)/19135 weeks
393-.06872 -.06052 (393*2π)/19135 weeks
394-.05598 -.00455 (394*2π)/19135 weeks
395-.02748 -.09011 (395*2π)/19135 weeks
396-.05644 -.02724 (396*2π)/19135 weeks
397-.03528 -.06317 (397*2π)/19135 weeks
398-.03186 -.08984 (398*2π)/19135 weeks
399-.11004 -.08203 (399*2π)/19135 weeks
400-.07627 -.02291 (400*2π)/19135 weeks
401-.0775 -.03239 (401*2π)/19135 weeks
402-.06187 -.03432 (402*2π)/19135 weeks
403-.06657 -.00927 (403*2π)/19135 weeks
404-.05063 -.01381 (404*2π)/19135 weeks
405-.04417 -.0477 (405*2π)/19135 weeks
406-.07107 -.00009 (406*2π)/19135 weeks
407-.03045 -.01143 (407*2π)/19135 weeks
408-.02067 .01515 (408*2π)/19135 weeks
409.02428 -.05216 (409*2π)/19135 weeks
410-.02479 -.04763 (410*2π)/19135 weeks
411-.02154 -.06837 (411*2π)/19135 weeks
412-.01619 -.06534 (412*2π)/19135 weeks
413-.03668 -.0682 (413*2π)/19135 weeks
414-.05085 -.08896 (414*2π)/19135 weeks
415-.05454 -.03512 (415*2π)/19135 weeks
416-.02593 -.08079 (416*2π)/19135 weeks
417-.07329 -.09377 (417*2π)/19135 weeks
418-.0673 -.05042 (418*2π)/19135 weeks
419-.07474 -.0767 (419*2π)/19135 weeks
420-.08193 -.04364 (420*2π)/19135 weeks
421-.07217 -.04532 (421*2π)/19135 weeks
422-.08483 -.04605 (422*2π)/19135 weeks
423-.08474 -.01681 (423*2π)/19135 weeks
424-.04694 -.02169 (424*2π)/19135 weeks
425-.05445 -.04516 (425*2π)/19135 weeks
426-.07924 -.05071 (426*2π)/19134 weeks
427-.07408 -.0092 (427*2π)/19134 weeks
428-.06856 -.01905 (428*2π)/19134 weeks
429-.05095 -.00629 (429*2π)/19134 weeks
430-.02723 -.00832 (430*2π)/19134 weeks
431-.0544 -.08128 (431*2π)/19134 weeks
432-.07095 .00561 (432*2π)/19134 weeks
433-.05955 -.04688 (433*2π)/19134 weeks
434-.0628 .00062 (434*2π)/19134 weeks
435-.04897 -.00641 (435*2π)/19134 weeks
436-.05429 -.02598 (436*2π)/19134 weeks
437-.01819 .01238 (437*2π)/19134 weeks
438-.02781 -.04296 (438*2π)/19134 weeks
439-.02812 -.0052 (439*2π)/19134 weeks
440-.00501 -.04887 (440*2π)/19134 weeks
441-.03378 -.03615 (441*2π)/19134 weeks
442-.03386 -.07583 (442*2π)/19134 weeks
443-.03647 -.0373 (443*2π)/19134 weeks
444-.04186 -.08655 (444*2π)/19134 weeks
445-.06911 -.05611 (445*2π)/19134 weeks
446-.09405 -.06056 (446*2π)/19134 weeks
447-.07012 -.01704 (447*2π)/19134 weeks
448-.08573 -.01613 (448*2π)/19134 weeks
449-.02474 -.01967 (449*2π)/19134 weeks
450-.0628 -.03879 (450*2π)/19134 weeks
451-.05869 -.02002 (451*2π)/19134 weeks
452-.05106 -.05937 (452*2π)/19134 weeks
453-.0998 -.01343 (453*2π)/19134 weeks
454-.06918 -.02645 (454*2π)/19134 weeks
455-.07968 .02237 (455*2π)/19134 weeks
456-.0317 .01037 (456*2π)/19134 weeks
457-.02158 -.01238 (457*2π)/19134 weeks
458-.02385 -.05132 (458*2π)/19134 weeks
459-.10221 -.05275 (459*2π)/19134 weeks
460-.07132 .00813 (460*2π)/19134 weeks
461-.08652 -.00684 (461*2π)/19134 weeks
462-.07273 .04578 (462*2π)/19134 weeks
463-.01272 .05212 (463*2π)/19134 weeks
464-.00406 -.00294 (464*2π)/19134 weeks
465-.02051 .00686 (465*2π)/19134 weeks
466.00537 .00239 (466*2π)/19134 weeks
467.00336 -.031 (467*2π)/19134 weeks
468-.03142 -.04055 (468*2π)/19134 weeks
469-.03472 -.01472 (469*2π)/19134 weeks
470-.01348 -.02447 (470*2π)/19134 weeks
471-.04247 -.02433 (471*2π)/19134 weeks
472-.01602 .00387 (472*2π)/19134 weeks
473-.00416 -.04519 (473*2π)/19134 weeks
474-.04501 -.02128 (474*2π)/19134 weeks
475-.01952 -.00771 (475*2π)/19134 weeks
476.02675 -.01918 (476*2π)/19134 weeks
477-.04255 -.08108 (477*2π)/19134 weeks
478-.04393 -.01351 (478*2π)/19134 weeks
479-.0278 -.039 (479*2π)/19134 weeks
480-.03266 -.02035 (480*2π)/19134 weeks
481-.00699 -.03042 (481*2π)/19134 weeks
482-.03695 -.05494 (482*2π)/19134 weeks
483-.04101 -.03663 (483*2π)/19134 weeks
484-.03952 -.033 (484*2π)/19134 weeks
485-.03452 -.03896 (485*2π)/19134 weeks
486-.06193 -.04404 (486*2π)/19134 weeks
487-.06185 -.01036 (487*2π)/19134 weeks
488-.02309 .01961 (488*2π)/19134 weeks
489-.01403