Back to list of Stocks    See Also: Seasonal Analysis of WMTGenetic Algorithms Stock Portfolio Generator, and Best Months to Buy/Sell Stocks

Fourier Analysis of WMT (Walmart Inc)


WMT (Walmart Inc) appears to have interesting cyclic behaviour every 247 weeks (5.2478*sine), 206 weeks (3.3223*sine), and 225 weeks (3.0709*sine).

WMT (Walmart Inc) has an average price of 25.04 (topmost row, frequency = 0).



Click on the checkboxes shown on the right to see how the various frequencies contribute to the graph. Look for large magnitude coefficients (sine or cosine), as these are associated with frequencies which contribute most to the associated stock plot. If you find a large magnitude coefficient which dramatically changes the graph, look at the associated "Period" in weeks, as you may have found a significant recurring cycle for the stock of interest.

Right click on the graph above to see the menu of operations (download, full screen, etc.)

Fourier Analysis

Using data from 8/25/1972 to 1/13/2020 for WMT (Walmart Inc), this program was able to calculate the following Fourier Series:
Sequence #Cosine Coefficients Sine Coefficients FrequenciesPeriod
025.03811   0 
111.64527 -27.21766 (1*2π)/24742,474 weeks
25.13009 -10.2291 (2*2π)/24741,237 weeks
34.54688 -12.25037 (3*2π)/2474825 weeks
4-1.26333 -6.9611 (4*2π)/2474619 weeks
53.21997 -4.83635 (5*2π)/2474495 weeks
6.52243 -5.08377 (6*2π)/2474412 weeks
73.08683 -4.00781 (7*2π)/2474353 weeks
81.40611 -4.97267 (8*2π)/2474309 weeks
91.86632 -4.8386 (9*2π)/2474275 weeks
10.00217 -5.24782 (10*2π)/2474247 weeks
11-.5886 -3.07088 (11*2π)/2474225 weeks
12.37303 -3.32225 (12*2π)/2474206 weeks
13-.32591 -2.61446 (13*2π)/2474190 weeks
14.2309 -2.49074 (14*2π)/2474177 weeks
15-.19848 -2.1181 (15*2π)/2474165 weeks
16.389 -1.90927 (16*2π)/2474155 weeks
17.20853 -1.93991 (17*2π)/2474146 weeks
18.44719 -1.54389 (18*2π)/2474137 weeks
19.69822 -1.98913 (19*2π)/2474130 weeks
20.4207 -1.78068 (20*2π)/2474124 weeks
21.79908 -2.10798 (21*2π)/2474118 weeks
22-.07697 -2.43362 (22*2π)/2474112 weeks
23-.24796 -1.40668 (23*2π)/2474108 weeks
24.28956 -1.43761 (24*2π)/2474103 weeks
25.23685 -1.48165 (25*2π)/247499 weeks
26.45221 -1.48261 (26*2π)/247495 weeks
27.18903 -1.68905 (27*2π)/247492 weeks
28.30839 -1.30683 (28*2π)/247488 weeks
29.57804 -1.78086 (29*2π)/247485 weeks
30-.01833 -2.00042 (30*2π)/247482 weeks
31-.19266 -1.6161 (31*2π)/247480 weeks
32-.22239 -1.58917 (32*2π)/247477 weeks
33-.34171 -1.44186 (33*2π)/247475 weeks
34-.57582 -1.32852 (34*2π)/247473 weeks
35-.53895 -.87516 (35*2π)/247471 weeks
36-.32847 -.47699 (36*2π)/247469 weeks
37.21422 -.57623 (37*2π)/247467 weeks
38.38556 -.92354 (38*2π)/247465 weeks
39-.00952 -1.05083 (39*2π)/247463 weeks
40.26066 -.78444 (40*2π)/247462 weeks
41.14125 -1.18829 (41*2π)/247460 weeks
42.08929 -.95711 (42*2π)/247459 weeks
43.00085 -1.11239 (43*2π)/247458 weeks
44-.11149 -.90883 (44*2π)/247456 weeks
45.12178 -.85524 (45*2π)/247455 weeks
46-.0578 -.98651 (46*2π)/247454 weeks
47.01167 -.78265 (47*2π)/247453 weeks
48.16996 -.96151 (48*2π)/247452 weeks
49-.06665 -.90859 (49*2π)/247450 weeks
50.09802 -.93822 (50*2π)/247449 weeks
51-.05675 -1.05151 (51*2π)/247449 weeks
52-.0481 -.87391 (52*2π)/247448 weeks
53-.15951 -1.15808 (53*2π)/247447 weeks
54-.32769 -.82611 (54*2π)/247446 weeks
55-.34939 -.86185 (55*2π)/247445 weeks
56-.27045 -.55878 (56*2π)/247444 weeks
57-.12158 -.69313 (57*2π)/247443 weeks
58-.19117 -.7445 (58*2π)/247443 weeks
59-.28964 -.76572 (59*2π)/247442 weeks
60-.45598 -.54717 (60*2π)/247441 weeks
61-.22528 -.44537 (61*2π)/247441 weeks
62-.42714 -.35266 (62*2π)/247440 weeks
63.06048 -.10383 (63*2π)/247439 weeks
64.03593 -.57477 (64*2π)/247439 weeks
65-.10171 -.2338 (65*2π)/247438 weeks
66.24266 -.5068 (66*2π)/247437 weeks
67-.11166 -.49827 (67*2π)/247437 weeks
68.09218 -.31803 (68*2π)/247436 weeks
69.13333 -.50402 (69*2π)/247436 weeks
70.14689 -.39358 (70*2π)/247435 weeks
71.24727 -.59726 (71*2π)/247435 weeks
72.16395 -.64737 (72*2π)/247434 weeks
73.04125 -.77663 (73*2π)/247434 weeks
74-.12263 -.53374 (74*2π)/247433 weeks
75.16691 -.56092 (75*2π)/247433 weeks
76-.01066 -.72839 (76*2π)/247433 weeks
77.04787 -.61014 (77*2π)/247432 weeks
78-.07787 -.90009 (78*2π)/247432 weeks
79-.34614 -.65304 (79*2π)/247431 weeks
80-.26192 -.55802 (80*2π)/247431 weeks
81-.41308 -.37498 (81*2π)/247431 weeks
82-.03931 -.24134 (82*2π)/247430 weeks
83-.07876 -.45471 (83*2π)/247430 weeks
84-.08166 -.29559 (84*2π)/247429 weeks
85.0605 -.53875 (85*2π)/247429 weeks
86-.20526 -.41727 (86*2π)/247429 weeks
87.0026 -.37408 (87*2π)/247428 weeks
88-.1298 -.545 (88*2π)/247428 weeks
89-.1814 -.24939 (89*2π)/247428 weeks
90.0106 -.38453 (90*2π)/247427 weeks
91-.12712 -.31635 (91*2π)/247427 weeks
92.04706 -.30155 (92*2π)/247427 weeks
93.05633 -.35309 (93*2π)/247427 weeks
94.07457 -.45011 (94*2π)/247426 weeks
95-.0532 -.52701 (95*2π)/247426 weeks
96-.06309 -.33354 (96*2π)/247426 weeks
97.01792 -.49988 (97*2π)/247426 weeks
98-.13276 -.41205 (98*2π)/247425 weeks
99-.00117 -.3954 (99*2π)/247425 weeks
100-.17296 -.47695 (100*2π)/247425 weeks
101-.05019 -.26093 (101*2π)/247424 weeks
102-.03859 -.50186 (102*2π)/247424 weeks
103-.25715 -.31757 (103*2π)/247424 weeks
104-.00057 -.22522 (104*2π)/247424 weeks
105-.0442 -.36724 (105*2π)/247424 weeks
106-.07897 -.28221 (106*2π)/247423 weeks
107.0413 -.29485 (107*2π)/247423 weeks
108.01884 -.39888 (108*2π)/247423 weeks
109-.11395 -.36448 (109*2π)/247423 weeks
110.03598 -.29695 (110*2π)/247422 weeks
111-.03519 -.42484 (111*2π)/247422 weeks
112-.09178 -.35954 (112*2π)/247422 weeks
113-.07555 -.31103 (113*2π)/247422 weeks
114-.01686 -.33978 (114*2π)/247422 weeks
115-.0838 -.33681 (115*2π)/247422 weeks
116-.05368 -.28784 (116*2π)/247421 weeks
117.00825 -.31734 (117*2π)/247421 weeks
118-.01445 -.37398 (118*2π)/247421 weeks
119-.11155 -.34651 (119*2π)/247421 weeks
120-.00715 -.27558 (120*2π)/247421 weeks
121-.00237 -.35468 (121*2π)/247420 weeks
122-.03999 -.42098 (122*2π)/247420 weeks
123-.13256 -.3469 (123*2π)/247420 weeks
124-.06462 -.27869 (124*2π)/247420 weeks
125.00308 -.40349 (125*2π)/247420 weeks
126-.19656 -.39703 (126*2π)/247420 weeks
127-.11289 -.27932 (127*2π)/247419 weeks
128-.14425 -.34792 (128*2π)/247419 weeks
129-.22425 -.23659 (129*2π)/247419 weeks
130-.07063 -.19154 (130*2π)/247419 weeks
131-.12359 -.1713 (131*2π)/247419 weeks
132.08549 -.23791 (132*2π)/247419 weeks
133-.10382 -.36943 (133*2π)/247419 weeks
134-.10509 -.24689 (134*2π)/247418 weeks
135-.15022 -.2835 (135*2π)/247418 weeks
136-.12896 -.09287 (136*2π)/247418 weeks
137.06221 -.2155 (137*2π)/247418 weeks
138-.08774 -.23919 (138*2π)/247418 weeks
139.02778 -.20908 (139*2π)/247418 weeks
140-.05297 -.26249 (140*2π)/247418 weeks
141.07065 -.24701 (141*2π)/247418 weeks
142-.12798 -.39332 (142*2π)/247417 weeks
143-.08678 -.1797 (143*2π)/247417 weeks
144-.07856 -.28355 (144*2π)/247417 weeks
145-.12276 -.16327 (145*2π)/247417 weeks
146.03786 -.16987 (146*2π)/247417 weeks
147-.05383 -.32631 (147*2π)/247417 weeks
148-.10449 -.14722 (148*2π)/247417 weeks
149.02423 -.18984 (149*2π)/247417 weeks
150.02355 -.26082 (150*2π)/247416 weeks
151-.05947 -.30186 (151*2π)/247416 weeks
152-.12374 -.2395 (152*2π)/247416 weeks
153-.0641 -.10498 (153*2π)/247416 weeks
154.07554 -.23741 (154*2π)/247416 weeks
155-.08476 -.26281 (155*2π)/247416 weeks
156-.03306 -.19024 (156*2π)/247416 weeks
157-.02513 -.20869 (157*2π)/247416 weeks
158-.00644 -.18846 (158*2π)/247416 weeks
159.00834 -.27524 (159*2π)/247416 weeks
160-.08869 -.1934 (160*2π)/247415 weeks
161.02717 -.18915 (161*2π)/247415 weeks
162-.00076 -.22844 (162*2π)/247415 weeks
163.00387 -.21794 (163*2π)/247415 weeks
164.03205 -.28404 (164*2π)/247415 weeks
165-.08777 -.27778 (165*2π)/247415 weeks
166-.07068 -.1524 (166*2π)/247415 weeks
167.07848 -.19823 (167*2π)/247415 weeks
168-.01146 -.29067 (168*2π)/247415 weeks
169-.01152 -.20541 (169*2π)/247415 weeks
170.067 -.30823 (170*2π)/247415 weeks
171-.09304 -.33116 (171*2π)/247414 weeks
172-.05346 -.23429 (172*2π)/247414 weeks
173-.09109 -.29133 (173*2π)/247414 weeks
174-.07068 -.14454 (174*2π)/247414 weeks
175.06315 -.29276 (175*2π)/247414 weeks
176-.14011 -.32228 (176*2π)/247414 weeks
177-.06668 -.17388 (177*2π)/247414 weeks
178-.0616 -.30402 (178*2π)/247414 weeks
179-.11568 -.19849 (179*2π)/247414 weeks
180-.06023 -.26018 (180*2π)/247414 weeks
181-.1698 -.19911 (181*2π)/247414 weeks
182-.04393 -.15787 (182*2π)/247414 weeks
183-.11122 -.21502 (183*2π)/247414 weeks
184-.04052 -.11522 (184*2π)/247413 weeks
185-.05572 -.3014 (185*2π)/247413 weeks
186-.18955 -.09746 (186*2π)/247413 weeks
187.00258 -.12116 (187*2π)/247413 weeks
188-.07197 -.13364 (188*2π)/247413 weeks
189.03932 -.13432 (189*2π)/247413 weeks
190-.02747 -.18702 (190*2π)/247413 weeks
191.015 -.14623 (191*2π)/247413 weeks
192.03398 -.23146 (192*2π)/247413 weeks
193-.0617 -.19581 (193*2π)/247413 weeks
194.02932 -.17409 (194*2π)/247413 weeks
195-.02381 -.19493 (195*2π)/247413 weeks
196.09211 -.17587 (196*2π)/247413 weeks
197.05102 -.34346 (197*2π)/247413 weeks
198-.08543 -.28816 (198*2π)/247412 weeks
199-.03379 -.25243 (199*2π)/247412 weeks
200-.06417 -.23505 (200*2π)/247412 weeks
201.00986 -.30084 (201*2π)/247412 weeks
202-.15098 -.31718 (202*2π)/247412 weeks
203-.10648 -.23655 (203*2π)/247412 weeks
204-.16212 -.24281 (204*2π)/247412 weeks
205-.11609 -.17324 (205*2π)/247412 weeks
206-.1064 -.23865 (206*2π)/247412 weeks
207-.20152 -.15799 (207*2π)/247412 weeks
208-.07052 -.12036 (208*2π)/247412 weeks
209-.13505 -.14161 (209*2π)/247412 weeks
210-.01264 -.09885 (210*2π)/247412 weeks
211-.07282 -.19476 (211*2π)/247412 weeks
212-.03221 -.10263 (212*2π)/247412 weeks
213.03 -.24 (213*2π)/247412 weeks
214-.12019 -.23614 (214*2π)/247412 weeks
215-.0553 -.17625