Back to list of Stocks    See Also: Seasonal Analysis of WMTGenetic Algorithms Stock Portfolio Generator, and Best Months to Buy/Sell Stocks

Fourier Analysis of WMT (Walmart Inc)


WMT (Walmart Inc) appears to have interesting cyclic behaviour every 247 weeks (5.4515*sine), 224 weeks (3.1793*sine), and 117 weeks (1.0298*cosine).

WMT (Walmart Inc) has an average price of 23.43 (topmost row, frequency = 0).



Click on the checkboxes shown on the right to see how the various frequencies contribute to the graph. Look for large magnitude coefficients (sine or cosine), as these are associated with frequencies which contribute most to the associated stock plot. If you find a large magnitude coefficient which dramatically changes the graph, look at the associated "Period" in weeks, as you may have found a significant recurring cycle for the stock of interest.

Right click on the graph above to see the menu of operations (download, full screen, etc.)

Fourier Analysis

Using data from 8/25/1972 to 11/18/2019 for WMT (Walmart Inc), this program was able to calculate the following Fourier Series:
Sequence #Cosine Coefficients Sine Coefficients FrequenciesPeriod
023.42982   0 
113.6986 -27.87678 (1*2π)/24662,466 weeks
23.5224 -9.3592 (2*2π)/24661,233 weeks
35.13753 -12.31769 (3*2π)/2466822 weeks
4-1.76149 -7.18572 (4*2π)/2466617 weeks
52.99754 -4.20831 (5*2π)/2466493 weeks
6.577 -5.52919 (6*2π)/2466411 weeks
72.53587 -3.05941 (7*2π)/2466352 weeks
81.85666 -5.29862 (8*2π)/2466308 weeks
91.52872 -4.12154 (9*2π)/2466274 weeks
10.59042 -5.45151 (10*2π)/2466247 weeks
11-.90631 -3.17931 (11*2π)/2466224 weeks
12.62246 -3.03363 (12*2π)/2466206 weeks
13-.56022 -3.02074 (13*2π)/2466190 weeks
14.21692 -2.06547 (14*2π)/2466176 weeks
15-.24049 -2.56544 (15*2π)/2466164 weeks
16.09472 -1.43114 (16*2π)/2466154 weeks
17.2585 -2.1562 (17*2π)/2466145 weeks
18.05977 -1.26512 (18*2π)/2466137 weeks
19.84635 -1.73898 (19*2π)/2466130 weeks
20.16231 -1.71839 (20*2π)/2466123 weeks
211.02984 -1.58367 (21*2π)/2466117 weeks
22.05511 -2.62813 (22*2π)/2466112 weeks
23-.29561 -1.23001 (23*2π)/2466107 weeks
24.28783 -1.53163 (24*2π)/2466103 weeks
25.0479 -1.17844 (25*2π)/246699 weeks
26.59416 -1.33902 (26*2π)/246695 weeks
27.09742 -1.53139 (27*2π)/246691 weeks
28.42865 -1.02132 (28*2π)/246688 weeks
29.65401 -1.57078 (29*2π)/246685 weeks
30.39088 -1.67881 (30*2π)/246682 weeks
31.08184 -1.81168 (31*2π)/246680 weeks
32-.01897 -1.45364 (32*2π)/246677 weeks
33.00245 -1.70665 (33*2π)/246675 weeks
34-.47312 -1.52495 (34*2π)/246673 weeks
35-.48058 -1.2153 (35*2π)/246670 weeks
36-.67983 -.84373 (36*2π)/246669 weeks
37-.05005 -.35482 (37*2π)/246667 weeks
38.20489 -.88512 (38*2π)/246665 weeks
39-.01934 -.80662 (39*2π)/246663 weeks
40.16813 -.75873 (40*2π)/246662 weeks
41.15646 -.88559 (41*2π)/246660 weeks
42.19972 -.8839 (42*2π)/246659 weeks
43.0566 -1.02695 (43*2π)/246657 weeks
44.00839 -.83361 (44*2π)/246656 weeks
45.04852 -.84362 (45*2π)/246655 weeks
46.08064 -.81947 (46*2π)/246654 weeks
47-.00239 -.80108 (47*2π)/246652 weeks
48.18016 -.6865 (48*2π)/246651 weeks
49.12619 -.88244 (49*2π)/246650 weeks
50.13663 -.73096 (50*2π)/246649 weeks
51.24016 -.89441 (51*2π)/246648 weeks
52.08791 -.87231 (52*2π)/246647 weeks
53.26172 -.96067 (53*2π)/246647 weeks
54-.05513 -1.11479 (54*2π)/246646 weeks
55-.10064 -.91851 (55*2π)/246645 weeks
56-.17427 -.87933 (56*2π)/246644 weeks
57-.09844 -.7119 (57*2π)/246643 weeks
58.06965 -.82788 (58*2π)/246643 weeks
59-.12951 -1.00109 (59*2π)/246642 weeks
60-.24044 -.85283 (60*2π)/246641 weeks
61-.2891 -.86364 (61*2π)/246640 weeks
62-.48113 -.72338 (62*2π)/246640 weeks
63-.36756 -.38698 (63*2π)/246639 weeks
64-.12139 -.52882 (64*2π)/246639 weeks
65-.32895 -.47678 (65*2π)/246638 weeks
66-.06614 -.34148 (66*2π)/246637 weeks
67-.11566 -.57819 (67*2π)/246637 weeks
68-.27896 -.37625 (68*2π)/246636 weeks
69-.02802 -.31717 (69*2π)/246636 weeks
70-.15662 -.35926 (70*2π)/246635 weeks
71.07259 -.19506 (71*2π)/246635 weeks
72.15763 -.39144 (72*2π)/246634 weeks
73.14662 -.48922 (73*2π)/246634 weeks
74-.01629 -.51789 (74*2π)/246633 weeks
75.0267 -.32249 (75*2π)/246633 weeks
76.20706 -.44831 (76*2π)/246632 weeks
77.09417 -.42026 (77*2π)/246632 weeks
78.38019 -.54353 (78*2π)/246632 weeks
79.0783 -.82058 (79*2π)/246631 weeks
80.03172 -.6681 (80*2π)/246631 weeks
81-.16552 -.8101 (81*2π)/246630 weeks
82-.26743 -.41476 (82*2π)/246630 weeks
83.01194 -.5175 (83*2π)/246630 weeks
84-.25249 -.45465 (84*2π)/246629 weeks
85.11878 -.34367 (85*2π)/246629 weeks
86-.1267 -.64556 (86*2π)/246629 weeks
87-.06282 -.28973 (87*2π)/246628 weeks
88.07456 -.62951 (88*2π)/246628 weeks
89-.26876 -.48095 (89*2π)/246628 weeks
90.00452 -.40358 (90*2π)/246627 weeks
91-.23498 -.51848 (91*2π)/246627 weeks
92-.11044 -.28168 (92*2π)/246627 weeks
93-.14641 -.36668 (93*2π)/246627 weeks
94.00922 -.20145 (94*2π)/246626 weeks
95.05997 -.47685 (95*2π)/246626 weeks
96-.14332 -.31913 (96*2π)/246626 weeks
97.12128 -.34837 (97*2π)/246625 weeks
98-.10409 -.45227 (98*2π)/246625 weeks
99.06742 -.28047 (99*2π)/246625 weeks
100-.01862 -.55369 (100*2π)/246625 weeks
101-.10441 -.28163 (101*2π)/246624 weeks
102.11625 -.43354 (102*2π)/246624 weeks
103-.11681 -.5247 (103*2π)/246624 weeks
104-.11868 -.35601 (104*2π)/246624 weeks
105-.07359 -.38145 (105*2π)/246623 weeks
106-.09403 -.38373 (106*2π)/246623 weeks
107-.16494 -.30765 (107*2π)/246623 weeks
108.03468 -.25099 (108*2π)/246623 weeks
109-.08346 -.4378 (109*2π)/246623 weeks
110-.09745 -.22443 (110*2π)/246622 weeks
111.04404 -.33018 (111*2π)/246622 weeks
112-.05668 -.35787 (112*2π)/246622 weeks
113-.02781 -.34008 (113*2π)/246622 weeks
114-.0794 -.32494 (114*2π)/246622 weeks
115.00045 -.32532 (115*2π)/246621 weeks
116-.11493 -.37463 (116*2π)/246621 weeks
117-.07614 -.22293 (117*2π)/246621 weeks
118.01442 -.30562 (118*2π)/246621 weeks
119-.06133 -.33276 (119*2π)/246621 weeks
120-.06198 -.28728 (120*2π)/246621 weeks
121-.08195 -.23114 (121*2π)/246620 weeks
122.08289 -.22766 (122*2π)/246620 weeks
123-.01707 -.38132 (123*2π)/246620 weeks
124-.06855 -.23815 (124*2π)/246620 weeks
125.05405 -.22473 (125*2π)/246620 weeks
126.06915 -.33267 (126*2π)/246620 weeks
127.02293 -.31752 (127*2π)/246619 weeks
128.06143 -.3377 (128*2π)/246619 weeks
129.03002 -.43408 (129*2π)/246619 weeks
130-.07645 -.39404 (130*2π)/246619 weeks
131-.10687 -.37451 (131*2π)/246619 weeks
132-.11787 -.22702 (132*2π)/246619 weeks
133.04285 -.26547 (133*2π)/246619 weeks
134.00388 -.33375 (134*2π)/246618 weeks
135.02296 -.37557 (135*2π)/246618 weeks
136-.11292 -.43349 (136*2π)/246618 weeks
137-.13604 -.26123 (137*2π)/246618 weeks
138-.03744 -.32677 (138*2π)/246618 weeks
139-.13987 -.29175 (139*2π)/246618 weeks
140-.07933 -.26977 (140*2π)/246618 weeks
141-.1034 -.1903 (141*2π)/246617 weeks
142.05549 -.2455 (142*2π)/246617 weeks
143-.04007 -.32292 (143*2π)/246617 weeks
144-.01826 -.2717 (144*2π)/246617 weeks
145-.02509 -.38992 (145*2π)/246617 weeks
146-.18901 -.24336 (146*2π)/246617 weeks
147.06793 -.2364 (147*2π)/246617 weeks
148-.11075 -.40338 (148*2π)/246617 weeks
149-.13497 -.22348 (149*2π)/246617 weeks
150-.07135 -.23865 (150*2π)/246616 weeks
151-.03585 -.18897 (151*2π)/246616 weeks
152.06717 -.34075 (152*2π)/246616 weeks
153-.19096 -.35635 (153*2π)/246616 weeks
154-.05918 -.16828 (154*2π)/246616 weeks
155-.05147 -.30818 (155*2π)/246616 weeks
156-.06776 -.2412 (156*2π)/246616 weeks
157-.07061 -.31423 (157*2π)/246616 weeks
158-.14395 -.22931 (158*2π)/246616 weeks
159-.01141 -.2196 (159*2π)/246616 weeks
160-.10136 -.30982 (160*2π)/246615 weeks
161-.08593 -.23945 (161*2π)/246615 weeks
162-.12425 -.26472 (162*2π)/246615 weeks
163-.11347 -.21033 (163*2π)/246615 weeks
164-.09825 -.17777 (164*2π)/246615 weeks
165.00179 -.20491 (165*2π)/246615 weeks
166-.08085 -.34553 (166*2π)/246615 weeks
167-.19644 -.18359 (167*2π)/246615 weeks
168-.02756 -.20463 (168*2π)/246615 weeks
169-.19537 -.25349 (169*2π)/246615 weeks
170-.10042 -.0702 (170*2π)/246615 weeks
171-.03549 -.19649 (171*2π)/246614 weeks
172-.07949 -.13224 (172*2π)/246614 weeks
173.03223 -.2162 (173*2π)/246614 weeks
174-.15202 -.26227 (174*2π)/246614 weeks
175-.08983 -.07563 (175*2π)/246614 weeks
176-.00076 -.18596 (176*2π)/246614 weeks
177-.07026 -.17538 (177*2π)/246614 weeks
178-.02646 -.14837 (178*2π)/246614 weeks
179-.03677 -.18063 (179*2π)/246614 weeks
180-.00191 -.13731 (180*2π)/246614 weeks
181.01736 -.22158 (181*2π)/246614 weeks
182-.02854 -.19584 (182*2π)/246614 weeks
183.00212 -.22586 (183*2π)/246613 weeks
184-.08382 -.21598 (184*2π)/246613 weeks
185.02468 -.11158 (185*2π)/246613 weeks
186.05845 -.29668 (186*2π)/246613 weeks
187-.0531 -.25198 (187*2π)/246613 weeks
188-.01774 -.2752 (188*2π)/246613 weeks
189-.09158 -.26485 (189*2π)/246613 weeks
190-.06071 -.23341 (190*2π)/246613 weeks
191-.10085 -.27713 (191*2π)/246613 weeks
192-.11831 -.16881 (192*2π)/246613 weeks
193-.02786 -.24605 (193*2π)/246613 weeks
194-.12794 -.22958 (194*2π)/246613 weeks
195-.06526 -.26222 (195*2π)/246613 weeks
196-.235 -.25818 (196*2π)/246613 weeks
197-.16988 -.07268 (197*2π)/246613 weeks
198-.07375 -.16473 (198*2π)/246612 weeks
199-.12999 -.13261 (199*2π)/246612 weeks
200-.10474 -.18401 (200*2π)/246612 weeks
201-.1912 -.06618 (201*2π)/246612 weeks
202-.03149 -.06353 (202*2π)/246612 weeks
203-.08049 -.09583 (203*2π)/246612 weeks
204-.00653 -.07513 (204*2π)/246612 weeks
205-.04832 -.15548 (205*2π)/246612 weeks
206-.03471 -.03135 (206*2π)/246612 weeks
207.07734 -.16685 (207*2π)/246612 weeks
208-.04568 -.14289 (208*2π)/246612 weeks
209.06766 -.19099 (209*2π)/246612 weeks
210-.09117 -.21616 (210*2π)/246612 weeks
211.01201 -.14817 (211*2π)/246612 weeks
212-.0859 -.28696 (212*2π)/246612 weeks
213-.15753 -.08939 (213*2π)/246612 weeks
214-.00052 -.15262 (214*2π)/246612 weeks
215-.15715 -.13758 (215*2π)/246611 weeks
216.0124 -.03967 (216*2π)/246611 weeks
217-.01929 -.21044 (217*2π)/246611 weeks
218-.10468 -.10464 (218*2π)/246611 weeks
219-.0065