Back to list of Stocks    See Also: Seasonal Analysis of WFCGenetic Algorithms Stock Portfolio Generator, and Fourier Calculator

# Fourier Analysis of WFC (Wells Fargo & Company Common St)

WFC (Wells Fargo & Company Common St) appears to have interesting cyclic behaviour every 234 weeks (1.8311*sine), 156 weeks (1.2583*sine), and 213 weeks (1.1082*sine).

WFC (Wells Fargo & Company Common St) has an average price of 11.94 (topmost row, frequency = 0).

Click on the checkboxes shown on the right to see how the various frequencies contribute to the graph. Look for large magnitude coefficients (sine or cosine), as these are associated with frequencies which contribute most to the associated stock plot. If you find a large magnitude coefficient which dramatically changes the graph, look at the associated "Period" in weeks, as you may have found a significant recurring cycle for the stock of interest.

## Fourier Analysis

Using data from 6/1/1972 to 3/20/2017 for WFC (Wells Fargo & Company Common St), this program was able to calculate the following Fourier Series:
Sequence #Cosine Coefficients Sine Coefficients FrequenciesPeriod
011.94255   0
17.86099 -13.51175 (1*2π)/23382,338 weeks
21.87794 -5.76815 (2*2π)/23381,169 weeks
32.85257 -4.94003 (3*2π)/2338779 weeks
41.83594 -4.79782 (4*2π)/2338585 weeks
51.04824 -4.84584 (5*2π)/2338468 weeks
6-.66392 -4.02209 (6*2π)/2338390 weeks
7-.49161 -2.40307 (7*2π)/2338334 weeks
8-.28136 -2.27877 (8*2π)/2338292 weeks
9-.22588 -1.87626 (9*2π)/2338260 weeks
10-.51919 -1.83112 (10*2π)/2338234 weeks
11-.52345 -1.1082 (11*2π)/2338213 weeks
12-.21179 -.8662 (12*2π)/2338195 weeks
13.14584 -.69401 (13*2π)/2338180 weeks
14.38764 -1.06635 (14*2π)/2338167 weeks
15-.05056 -1.25834 (15*2π)/2338156 weeks
16-.16821 -.78487 (16*2π)/2338146 weeks
17.01586 -.64359 (17*2π)/2338138 weeks
18.16599 -.62213 (18*2π)/2338130 weeks
19.28218 -.73107 (19*2π)/2338123 weeks
20.18477 -.7302 (20*2π)/2338117 weeks
21.29722 -.77947 (21*2π)/2338111 weeks
22.05941 -.83866 (22*2π)/2338106 weeks
23.04668 -.69133 (23*2π)/2338102 weeks
24.06614 -.54922 (24*2π)/233897 weeks
25.24964 -.56316 (25*2π)/233894 weeks
26.1902 -.69084 (26*2π)/233890 weeks
27.13465 -.60051 (27*2π)/233887 weeks
28.18624 -.69079 (28*2π)/233884 weeks
29.00866 -.54461 (29*2π)/233881 weeks
30.32038 -.46737 (30*2π)/233878 weeks
31.25842 -.83174 (31*2π)/233875 weeks
32-.04763 -.71408 (32*2π)/233873 weeks
33.02087 -.61417 (33*2π)/233871 weeks
34-.16762 -.5755 (34*2π)/233869 weeks
35-.02575 -.22026 (35*2π)/233867 weeks
36.3215 -.34741 (36*2π)/233865 weeks
37.32807 -.59939 (37*2π)/233863 weeks
38.13471 -.8145 (38*2π)/233862 weeks
39-.1443 -.6822 (39*2π)/233860 weeks
40-.18497 -.49947 (40*2π)/233858 weeks
41-.11324 -.30923 (41*2π)/233857 weeks
42.09035 -.3252 (42*2π)/233856 weeks
43.07227 -.44474 (43*2π)/233854 weeks
44-.00173 -.4197 (44*2π)/233853 weeks
45.03114 -.35015 (45*2π)/233852 weeks
46.0852 -.31464 (46*2π)/233851 weeks
47.21237 -.42935 (47*2π)/233850 weeks
48.07237 -.56453 (48*2π)/233849 weeks
49-.07335 -.50154 (49*2π)/233848 weeks
50-.11088 -.32793 (50*2π)/233847 weeks
51.07059 -.22734 (51*2π)/233846 weeks
52.17755 -.38836 (52*2π)/233845 weeks
53.11214 -.47543 (53*2π)/233844 weeks
54.00374 -.56214 (54*2π)/233843 weeks
55-.18236 -.47398 (55*2π)/233843 weeks
56-.18446 -.22017 (56*2π)/233842 weeks
57.04066 -.15775 (57*2π)/233841 weeks
58.14152 -.24932 (58*2π)/233840 weeks
59.18874 -.41455 (59*2π)/233840 weeks
60-.00242 -.5099 (60*2π)/233839 weeks
61-.09151 -.38418 (61*2π)/233838 weeks
62-.09497 -.30368 (62*2π)/233838 weeks
63.00979 -.19093 (63*2π)/233837 weeks
64.1439 -.33533 (64*2π)/233837 weeks
65.04303 -.44558 (65*2π)/233836 weeks
66-.08007 -.43181 (66*2π)/233835 weeks
67-.1661 -.31713 (67*2π)/233835 weeks
68-.05911 -.1583 (68*2π)/233834 weeks
69.08321 -.24363 (69*2π)/233834 weeks
70.05642 -.33215 (70*2π)/233833 weeks
71-.0175 -.36279 (71*2π)/233833 weeks
72-.04661 -.30853 (72*2π)/233832 weeks
73-.04303 -.2856 (73*2π)/233832 weeks
74-.00088 -.24569 (74*2π)/233832 weeks
75.05079 -.33596 (75*2π)/233831 weeks
76-.10108 -.38029 (76*2π)/233831 weeks
77-.09928 -.22407 (77*2π)/233830 weeks
78-.03527 -.23078 (78*2π)/233830 weeks
79-.00442 -.2044 (79*2π)/233830 weeks
80.10974 -.29035 (80*2π)/233829 weeks
81-.04059 -.45804 (81*2π)/233829 weeks
82-.19607 -.31002 (82*2π)/233829 weeks
83-.1132 -.19903 (83*2π)/233828 weeks
84-.07819 -.20115 (84*2π)/233828 weeks
85.00357 -.2121 (85*2π)/233828 weeks
86-.04772 -.33363 (86*2π)/233827 weeks
87-.15025 -.24382 (87*2π)/233827 weeks
88-.10046 -.21714 (88*2π)/233827 weeks
89-.12976 -.17163 (89*2π)/233826 weeks
90-.03497 -.13292 (90*2π)/233826 weeks
91-.02378 -.25302 (91*2π)/233826 weeks
92-.14489 -.2214 (92*2π)/233825 weeks
93-.13929 -.12831 (93*2π)/233825 weeks
94-.08497 -.06921 (94*2π)/233825 weeks
95.0313 -.06069 (95*2π)/233825 weeks
96.03937 -.17972 (96*2π)/233824 weeks
97-.00001 -.15791 (97*2π)/233824 weeks
98.04274 -.19581 (98*2π)/233824 weeks
99-.02685 -.23007 (99*2π)/233824 weeks
100-.02396 -.16953 (100*2π)/233823 weeks
101-.02791 -.20833 (101*2π)/233823 weeks
102-.03702 -.15263 (102*2π)/233823 weeks
103.02599 -.18824 (103*2π)/233823 weeks
104-.03391 -.23568 (104*2π)/233822 weeks
105-.07133 -.20127 (105*2π)/233822 weeks
106-.0798 -.15527 (106*2π)/233822 weeks
107-.04127 -.10998 (107*2π)/233822 weeks
108.03855 -.11721 (108*2π)/233822 weeks
109.057 -.2299 (109*2π)/233821 weeks
110-.02942 -.25168 (110*2π)/233821 weeks
111-.0664 -.25686 (111*2π)/233821 weeks
112-.14929 -.2071 (112*2π)/233821 weeks
113-.10288 -.08786 (113*2π)/233821 weeks
114-.00067 -.14289 (114*2π)/233821 weeks
115-.0638 -.18928 (115*2π)/233820 weeks
116-.08265 -.17368 (116*2π)/233820 weeks
117-.11061 -.12771 (117*2π)/233820 weeks
118-.0706 -.0939 (118*2π)/233820 weeks
119-.02903 -.10042 (119*2π)/233820 weeks
120-.02982 -.15704 (120*2π)/233819 weeks
121-.09378 -.14254 (121*2π)/233819 weeks
122-.09438 -.09637 (122*2π)/233819 weeks
123-.07529 -.05757 (123*2π)/233819 weeks
124-.01641 -.03514 (124*2π)/233819 weeks
125.01476 -.09576 (125*2π)/233819 weeks
126-.01627 -.09741 (126*2π)/233819 weeks
127.00773 -.12408 (127*2π)/233818 weeks
128-.09811 -.1123 (128*2π)/233818 weeks
129-.01268 .0279 (129*2π)/233818 weeks
130.08524 -.0679 (130*2π)/233818 weeks
131.05887 -.0972 (131*2π)/233818 weeks
132.06866 -.1591 (132*2π)/233818 weeks
133-.0373 -.15417 (133*2π)/233818 weeks
134-.00538 -.05884 (134*2π)/233817 weeks
135.07795 -.07762 (135*2π)/233817 weeks
136.10129 -.15154 (136*2π)/233817 weeks
137.05464 -.22274 (137*2π)/233817 weeks
138-.04578 -.21646 (138*2π)/233817 weeks
139-.08035 -.13416 (139*2π)/233817 weeks
140-.02344 -.05634 (140*2π)/233817 weeks
141.07825 -.09714 (141*2π)/233817 weeks
142.05105 -.20423 (142*2π)/233816 weeks
143-.0248 -.19795 (143*2π)/233816 weeks
144-.07321 -.17442 (144*2π)/233816 weeks
145-.08478 -.07944 (145*2π)/233816 weeks
146.01913 -.05322 (146*2π)/233816 weeks
147.05287 -.12824 (147*2π)/233816 weeks
148.00574 -.16209 (148*2π)/233816 weeks
149-.01173 -.14927 (149*2π)/233816 weeks
150-.02989 -.13414 (150*2π)/233816 weeks
151-.0157 -.1185 (151*2π)/233815 weeks
152-.01734 -.12095 (152*2π)/233815 weeks
153-.00916 -.10963 (153*2π)/233815 weeks
154-.00095 -.11522 (154*2π)/233815 weeks
155-.00327 -.1253 (155*2π)/233815 weeks
156-.00535 -.10232 (156*2π)/233815 weeks
157.02274 -.1127 (157*2π)/233815 weeks
158.02727 -.14061 (158*2π)/233815 weeks
159-.01033 -.14652 (159*2π)/233815 weeks
160.0054 -.12514 (160*2π)/233815 weeks
161-.01666 -.1452 (161*2π)/233815 weeks
162.00295 -.09031 (162*2π)/233814 weeks
163.05314 -.14981 (163*2π)/233814 weeks
164.00338 -.17552 (164*2π)/233814 weeks
165-.01147 -.17482 (165*2π)/233814 weeks
166-.05661 -.15947 (166*2π)/233814 weeks
167-.02804 -.10586 (167*2π)/233814 weeks
168.00068 -.14111 (168*2π)/233814 weeks
169-.02732 -.13739 (169*2π)/233814 weeks
170-.00907 -.142 (170*2π)/233814 weeks
171-.04264 -.13601 (171*2π)/233814 weeks
172-.00282 -.11269 (172*2π)/233814 weeks
173-.00473 -.15304 (173*2π)/233814 weeks
174-.01188 -.14415 (174*2π)/233813 weeks
175-.01806 -.17702 (175*2π)/233813 weeks
176-.06279 -.16719 (176*2π)/233813 weeks
177-.06619 -.1263 (177*2π)/233813 weeks
178-.0437 -.12076 (178*2π)/233813 weeks
179-.03812 -.1257 (179*2π)/233813 weeks
180-.02711 -.119 (180*2π)/233813 weeks
181-.00702 -.1528 (181*2π)/233813 weeks
182-.04982 -.19433 (182*2π)/233813 weeks
183-.10824 -.16753 (183*2π)/233813 weeks
184-.12728 -.11887 (184*2π)/233813 weeks
185-.09689 -.06945 (185*2π)/233813 weeks
186-.07683 -.07044 (186*2π)/233813 weeks
187-.04621 -.06253 (187*2π)/233813 weeks
188-.05129 -.07666 (188*2π)/233812 weeks
189-.01896 -.0618 (189*2π)/233812 weeks
190-.01723 -.10676 (190*2π)/233812 weeks
191-.04871 -.1086 (191*2π)/233812 weeks
192-.04738 -.07444 (192*2π)/233812 weeks
193-.01643 -.09081 (193*2π)/233812 weeks
194-.03742 -.1067 (194*2π)/233812 weeks
195-.03775 -.07696 (195*2π)/233812 weeks
196-.00045 -.0991 (196*2π)/233812 weeks
197-.03324 -.1332 (197*2π)/233812 weeks
198-.05051 -.10765 (198*2π)/233812 weeks
199-.03935 -.11263 (199*2π)/233812 weeks
200-.06213 -.11441 (200*2π)/233812 weeks
201-.06296 -.10146 (201*2π)/233812 weeks
202-.06046 -.11172 (202*2π)/233812 weeks
203-.11204 -.10246 (203*2π)/233812 weeks
204-.10004 -.03105 (204*2π)/233811 weeks
205-.05472 -.01233 (205*2π)/233811 weeks
206.00106 -.02745 (206*2π)/233811 weeks
207-.00867 -.09198 (207*2π)/233811 weeks
208-.05467 -.07374 (208*2π)/233811 weeks
209-.03608 -.04036 (209*2π)/233811 weeks
210-.01429 -.03984