Back to list of Stocks    See Also: Seasonal Analysis of VXZGenetic Algorithms Stock Portfolio Generator, and Fourier Calculator

Fourier Analysis of VXZ (iPath S&P 500 VIX Mid-Term Futu)


VXZ (iPath S&P 500 VIX Mid-Term Futu) appears to have interesting cyclic behaviour every 32 weeks (15.4876*sine), 35 weeks (14.7972*sine), and 41 weeks (11.1735*sine).

VXZ (iPath S&P 500 VIX Mid-Term Futu) has an average price of 159.22 (topmost row, frequency = 0).



Click on the checkboxes shown on the right to see how the various frequencies contribute to the graph. Look for large magnitude coefficients (sine or cosine), as these are associated with frequencies which contribute most to the associated stock plot. If you find a large magnitude coefficient which dramatically changes the graph, look at the associated "Period" in weeks, as you may have found a significant recurring cycle for the stock of interest.

Right click on the graph above to see the menu of operations (download, full screen, etc.)

Fourier Analysis

Using data from 2/20/2009 to 1/17/2017 for VXZ (iPath S&P 500 VIX Mid-Term Futu), this program was able to calculate the following Fourier Series:
Sequence #Cosine Coefficients Sine Coefficients FrequenciesPeriod
0159.2197   0 
144.05526 134.8759 (1*2π)/414414 weeks
21.07978 43.63605 (2*2π)/414207 weeks
37.95855 40.61712 (3*2π)/414138 weeks
4-4.20973 20.56133 (4*2π)/414104 weeks
516.8658 14.47181 (5*2π)/41483 weeks
611.35738 30.22658 (6*2π)/41469 weeks
7-1.86626 27.44988 (7*2π)/41459 weeks
8-4.86758 11.6424 (8*2π)/41452 weeks
94.73671 8.64951 (9*2π)/41446 weeks
102.323 11.17354 (10*2π)/41441 weeks
117.01554 9.00258 (11*2π)/41438 weeks
127.76936 14.79717 (12*2π)/41435 weeks
13-.75531 15.48762 (13*2π)/41432 weeks
14-.50943 8.47424 (14*2π)/41430 weeks
151.63928 10.05052 (15*2π)/41428 weeks
16.02312 8.78726 (16*2π)/41426 weeks
171.64655 6.96441 (17*2π)/41424 weeks
183.07877 6.15242 (18*2π)/41423 weeks
192.44049 9.63696 (19*2π)/41422 weeks
20-.75448 8.5949 (20*2π)/41421 weeks
21-.4902 6.68335 (21*2π)/41420 weeks
22.1952 7.29074 (22*2π)/41419 weeks
23-.55062 5.62785 (23*2π)/41418 weeks
241.57796 4.16173 (24*2π)/41417 weeks
252.07328 5.25155 (25*2π)/41417 weeks
26.31527 6.4949 (26*2π)/41416 weeks
27-.48263 5.7879 (27*2π)/41415 weeks
28-.98643 4.24496 (28*2π)/41415 weeks
29.56541 3.41504 (29*2π)/41414 weeks
30-.35228 2.80612 (30*2π)/41414 weeks
313.42085 2.9714 (31*2π)/41413 weeks
32.40916 6.98452 (32*2π)/41413 weeks
33-1.27519 2.90405 (33*2π)/41413 weeks
342.00239 3.76816 (34*2π)/41412 weeks
35-.49115 5.3048 (35*2π)/41412 weeks
36-1.44913 1.10529 (36*2π)/41412 weeks
37.51664 2.07037 (37*2π)/41411 weeks
38.81689 1.84493 (38*2π)/41411 weeks
391.83056 2.75463 (39*2π)/41411 weeks
401.70434 2.65346 (40*2π)/41410 weeks
411.50592 3.15339 (41*2π)/41410 weeks
421.00055 2.42721 (42*2π)/41410 weeks
431.10083 2.28838 (43*2π)/41410 weeks
44.74531 2.7894 (44*2π)/4149 weeks
451.88483 1.80415 (45*2π)/4149 weeks
461.59966 3.35935 (46*2π)/4149 weeks
47.49914 2.82399 (47*2π)/4149 weeks
48.47342 2.44698 (48*2π)/4149 weeks
49.78787 1.6008 (49*2π)/4148 weeks
501.09279 1.91804 (50*2π)/4148 weeks
512.33744 2.28899 (51*2π)/4148 weeks
521.70824 3.40962 (52*2π)/4148 weeks
53.28745 2.74434 (53*2π)/4148 weeks
54.3249 2.08184 (54*2π)/4148 weeks
55.7214 2.46741 (55*2π)/4148 weeks
56-.09696 1.5438 (56*2π)/4147 weeks
571.3999 -.26204 (57*2π)/4147 weeks
583.55731 2.35736 (58*2π)/4147 weeks
59.73587 3.54726 (59*2π)/4147 weeks
60.50455 2.14623 (60*2π)/4147 weeks
61.4192 2.16907 (61*2π)/4147 weeks
62.09983 .88392 (62*2π)/4147 weeks
632.43762 .60104 (63*2π)/4147 weeks
642.19183 2.75489 (64*2π)/4146 weeks
65.6069 2.1724 (65*2π)/4146 weeks
661.18748 2.01564 (66*2π)/4146 weeks
671.11694 1.68853 (67*2π)/4146 weeks
681.34398 1.70275 (68*2π)/4146 weeks
691.22703 1.76966 (69*2π)/4146 weeks
701.22019 2.09987 (70*2π)/4146 weeks
71-.02599 2.10605 (71*2π)/4146 weeks
72.6233 .84104 (72*2π)/4146 weeks
731.26985 1.46759 (73*2π)/4146 weeks
741.0544 1.4844 (74*2π)/4146 weeks
751.02984 1.23916 (75*2π)/4146 weeks
761.1977 1.74104 (76*2π)/4145 weeks
77.88807 1.4023 (77*2π)/4145 weeks
781.38735 .76367 (78*2π)/4145 weeks
791.71394 1.90047 (79*2π)/4145 weeks
80.91036 1.11348 (80*2π)/4145 weeks
811.51998 1.35639 (81*2π)/4145 weeks
821.14546 2.00419 (82*2π)/4145 weeks
83.76293 1.88604 (83*2π)/4145 weeks
84.6433 1.19083 (84*2π)/4145 weeks
851.45179 .81033 (85*2π)/4145 weeks
861.48882 1.8712 (86*2π)/4145 weeks
87.45215 1.15555 (87*2π)/4145 weeks
88.84922 1.15553 (88*2π)/4145 weeks
89.98253 1.13925 (89*2π)/4145 weeks
901.60683 1.24997 (90*2π)/4145 weeks
911.42465 1.51511 (91*2π)/4145 weeks
921.35904 1.16214 (92*2π)/4145 weeks
931.59773 1.76851 (93*2π)/4144 weeks
94.50209 1.53664 (94*2π)/4144 weeks
95.86729 1.26801 (95*2π)/4144 weeks
96.8201 1.6712 (96*2π)/4144 weeks
97.38382 1.1823 (97*2π)/4144 weeks
981.00712 .65624 (98*2π)/4144 weeks
991.27669 1.31704 (99*2π)/4144 weeks
100.91903 1.43026 (100*2π)/4144 weeks
1011.03236 1.14418 (101*2π)/4144 weeks
102.71814 .86788 (102*2π)/4144 weeks
1031.15828 .8246 (103*2π)/4144 weeks
1041.10282 1.43439 (104*2π)/4144 weeks
105.70197 1.0007 (105*2π)/4144 weeks
1061.57515 .9798 (106*2π)/4144 weeks
1071.17781 1.75002 (107*2π)/4144 weeks
108.68097 1.28215 (108*2π)/4144 weeks
109.4457 .93333 (109*2π)/4144 weeks
110.53458 .71704 (110*2π)/4144 weeks
111.65123 .94273 (111*2π)/4144 weeks
1121.16489 .86766 (112*2π)/4144 weeks
113.76976 1.20548 (113*2π)/4144 weeks
114.19162 .6547 (114*2π)/4144 weeks
115.9171 .2004 (115*2π)/4144 weeks
116.96357 .61164 (116*2π)/4144 weeks
117.88281 .43331 (117*2π)/4144 weeks
1181.36604 .5462 (118*2π)/4144 weeks
1191.4226 1.23709 (119*2π)/4143 weeks
120.59044 1.12597 (120*2π)/4143 weeks
121.53578 .4051 (121*2π)/4143 weeks
1221.30533 .41543 (122*2π)/4143 weeks
1231.15676 .7562 (123*2π)/4143 weeks
1241.16145 1.1628 (124*2π)/4143 weeks
125.69606 .74957 (125*2π)/4143 weeks
126.99083 .58286 (126*2π)/4143 weeks
1271.08914 .63044 (127*2π)/4143 weeks
1281.30378 .80824 (128*2π)/4143 weeks
1291.06071 .8375 (129*2π)/4143 weeks
1301.14009 1.2447 (130*2π)/4143 weeks
131.69688 .99465 (131*2π)/4143 weeks
132.78988 .63136 (132*2π)/4143 weeks
133.76506 .66117 (133*2π)/4143 weeks
134.91432 .75675 (134*2π)/4143 weeks
135.68222 .72484 (135*2π)/4143 weeks
136.88373 .51624 (136*2π)/4143 weeks
137.71019 .76718 (137*2π)/4143 weeks
138.97838 .28395 (138*2π)/4143 weeks
1391.22741 .56581 (139*2π)/4143 weeks
1401.21488 .74515 (140*2π)/4143 weeks
141.8311 .98196 (141*2π)/4143 weeks
142.7172 .75022 (142*2π)/4143 weeks
143.63248 .51658 (143*2π)/4143 weeks
144.64822 .51403 (144*2π)/4143 weeks
145.71706 .11065 (145*2π)/4143 weeks
1461.59711 .2912 (146*2π)/4143 weeks
1471.50481 1.51469 (147*2π)/4143 weeks
148.31628 1.16424 (148*2π)/4143 weeks
149.68353 .63479 (149*2π)/4143 weeks
150.29709 .68457 (150*2π)/4143 weeks
151.24168 .19986 (151*2π)/4143 weeks
1521.22814 .13733 (152*2π)/4143 weeks
153.82351 1.24789 (153*2π)/4143 weeks
154-.13342 .45047 (154*2π)/4143 weeks
155.20489 .12284 (155*2π)/4143 weeks
156.47383 .12069 (156*2π)/4143 weeks
157.56383 -.30214 (157*2π)/4143 weeks
1581.26024 -.06285 (158*2π)/4143 weeks
159.88602 .684 (159*2π)/4143 weeks
160.50496 .46807 (160*2π)/4143 weeks
161.51185 -.00826 (161*2π)/4143 weeks
162.39364 .02567 (162*2π)/4143 weeks
163.61544 -.48626 (163*2π)/4143 weeks
1641.56753 -.53846 (164*2π)/4143 weeks
1651.50363 .32858 (165*2π)/4143 weeks
1661.17202 .53482 (166*2π)/4142 weeks
167.72069 .87095 (167*2π)/4142 weeks
168.09959 .11277 (168*2π)/4142 weeks
169.91401 -.78658 (169*2π)/4142 weeks
1701.38862 .12211 (170*2π)/4142 weeks
1711.08192 .0473 (171*2π)/4142 weeks
1721.27506 .15369 (172*2π)/4142 weeks
1731.05281 .38936 (173*2π)/4142 weeks
174.63444 .12273 (174*2π)/4142 weeks
175.96949 -.01916 (175*2π)/4142 weeks
1761.03014 .17091 (176*2π)/4142 weeks
177.80653 .08154 (177*2π)/4142 weeks
178.99691 -.1946 (178*2π)/4142 weeks
1791.40986 .3469 (179*2π)/4142 weeks
180.30956 .17163 (180*2π)/4142 weeks
1811.04333 -.37195 (181*2π)/4142 weeks
182.85827 .20977 (182*2π)/4142 weeks
1831.03773 -.50164 (183*2π)/4142 weeks
1841.71891 -.04533 (184*2π)/4142 weeks
1851.01256 .54296 (185*2π)/4142 weeks
186.74919 .15498 (186*2π)/4142 weeks
1871.11278 .1222 (187*2π)/4142 weeks
188.75279 .14234 (188*2π)/4142 weeks
189.83745 -.08034 (189*2π)/4142 weeks
190.79897 -.2461 (190*2π)/4142 weeks
1911.45276 -.41833 (191*2π)/4142 weeks
192.93545 -.04272 (192*2π)/4142 weeks
1931.33414 -.32022 (193*2π)/4142 weeks
1941.31426 .32571 (194*2π)/4142 weeks
195.58558 .07722 (195*2π)/4142 weeks
1961.34557 -.5034 (196*2π)/4142 weeks
1971.65025 -.11155 (197*2π)/4142 weeks
1981.70689 .23279 (198*2π)/4142 weeks
1991.32551 .53595 (199*2π)/4142 weeks
200.75386 .44818 (200*2π)/4142 weeks
201.41905 -.08351 (201*2π)/4142 weeks
2021.06144 -.66476 (202*2π)/4142 weeks
2031.6874 -.09802 (203*2π)/4142 weeks
2041.28501 .33872 (204*2π)/4142 weeks
2051.35594 -.00583 (205*2π)/4142 weeks
2061.18093 .68212 (206*2π)/4142 weeks
207.14667   (207*2π)/4142 weeks
2081.18093 -.68212 (208*2π)/4142 weeks
2091.35594 .00583 (209*2π)/4142 weeks
2101.28501 -.33872 (210*2π)/4142 weeks
2111.6874 .09802 (211*2π)/4142 weeks
2121.06144 .66476 (212*2π)/4142 weeks
213.41905 .08351 (213*2π)/4142 weeks
214.75386 -.44818 (214*2π)/4142 weeks
2151.32551 -.53595 (215*2π)/4142 weeks
2161.70689 -.23279 (216*2π)/4142 weeks
2171.65025 .11155 (217*2π)/4142 weeks
2181.34557 .5034 (218*2π)/4142 weeks
219.58558 -.07722 (219*2π)/4142 weeks
2201.31426 -.32571 (220*2π)/4142 weeks
2211.33414 .32022 (221*2π)/4142 weeks
222.93545 .04272 (222*2π)/4142 weeks
2231.45276 .41833 (223*2π)/4142 weeks
224.79897 .2461 (224*2π)/4142 weeks
225.83745 .08034 (225*2π)/4142 weeks
226.75279 -.14234 (226*2π)/4142 weeks
2271.11278 -.1222 (227*2π)/4142 weeks
228.74919 -.15498 (228*2π)/4142 weeks
2291.01256 -.54296 (229*2π)/4142 weeks
2301.71891 .04533 (230*2π)/4142 weeks
2311.03773 .50164 (231*2π)/4142 weeks
232.85827 -.20977 (232*2π)/4142 weeks
2331.04333 .37195 (233*2π)/4142 weeks
234.30956 -.17163 (234*2π)/4142 weeks
2351.40986 -.3469 (235*2π)/4142 weeks
236.99691 .1946 (236*2π)/4142 weeks
237.80653 -.08154 (237*2π)/4142 weeks
2381.03014 -.17091 (238*2π)/4142 weeks
239.96949 .01916 (239*2π)/4142 weeks
240.63444 -.12273 (240*2π)/4142 weeks
2411.05281 -.38936 (241*2π)/4142 weeks
2421.27506 -.15369 (242*2π)/4142 weeks
2431.08192 -.0473 (243*2π)/4142 weeks
2441.38862 -.12211 (244*2π)/4142 weeks
245.91401 .78658 (245*2π)/4142 weeks
246.09959 -.11277 (246*2π)/4142 weeks
247.72069 -.87095 (247*2π)/4142 weeks
2481.17202 -.53482 (248*2π)/4142 weeks
2491.50363 -.32858 (249*2π)/4142 weeks
2501.56753 .53846 (250*2π)/4142 weeks
251.61544 .48626 (251*2π)/4142 weeks
252.39364 -.02567 (252*2π)/4142 weeks
253.51185 .00826 (253*2π)/4142 weeks
254.50496 -.46807 (254*2π)/4142 weeks
255.88602 -.684 (255*2π)/4142 weeks
2561.26024 .06285 (256*2π)/4142 weeks
257.56383 .30214 (257*2π)/4142 weeks
258.47383 -.12069 (258*2π)/4142 weeks
259.20489 -.12284 (259*2π)/4142 weeks
260-.13342 -.45047 (260*2π)/4142 weeks
261.82351 -1.24789 (261*2π)/4142 weeks
2621.22814 -.13733 (262*2π)/4142 weeks
263.24168 -.19986 (263*2π)/4142 weeks
264.29709 -.68457 (264*2π)/4142 weeks
265.68353 -.63479 (265*2π)/4142 weeks
266.31628 -1.16424 (266*2π)/4142 weeks
2671.50481 -1.51469 (267*2π)/4142 weeks
2681.59711 -.2912 (268*2π)/4142 weeks
269.71706 -.11065 (269*2π)/4142 weeks
270.64822 -.51403 (270*2π)/4142 weeks
271.63248 -.51658 (271*2π)/4142 weeks
272.7172 -.75022 (272*2π)/4142 weeks
273.8311 -.98196 (273*2π)/4142 weeks
2741.21488 -.74515 (274*2π)/4142 weeks
2751.22741 -.56581 (275*2π)/4142 weeks
276.97838 -.28395 (276*2π)/4142 weeks
277.71019 -.76718 (277*2π)/4141 weeks
278.88373 -.51624 (278*2π)/4141 weeks
279.68222 -.72484 (279*2π)/4141 weeks
280.91432 -.75675 (280*2π)/4141 weeks
281.76506 -.66117 (281*2π)/4141 weeks
282.78988 -.63136 (282*2π)/4141 weeks
283.69688 -.99465 (283*2π)/4141 weeks
2841.14009 -1.2447 (284*2π)/4141 weeks
2851.06071 -.8375 (285*2π)/4141 weeks
2861.30378 -.80824 (286*2π)/4141 weeks
2871.08914 -.63044 (287*2π)/4141 weeks
288.99083 -.58286 (288*2π)/4141 weeks
289.69606 -.74957 (289*2π)/4141 weeks
2901.16145 -1.1628 (290*2π)/4141 weeks
2911.15676 -.7562 (291*2π)/4141 weeks
2921.30533 -.41543 (292*2π)/4141 weeks
293.53578 -.4051 (293*2π)/4141 weeks
294.59044 -1.12597 (294*2π)/4141 weeks
2951.4226 -1.23709 (295*2π)/4141 weeks
2961.36604 -.5462 (296*2π)/4141 weeks
297.88281 -.43331 (297*2π)/4141 weeks
298.96357 -.61164 (298*2π)/4141 weeks
299.9171 -.2004 (299*2π)/4141 weeks
300.19162 -.6547 (300*2π)/4141 weeks
301.76976 -1.20548 (301*2π)/4141 weeks
3021.16489 -.86766 (302*2π)/4141 weeks
303.65123 -.94273 (303*2π)/4141 weeks
304.53458 -.71704 (304*2π)/4141 weeks
305.4457 -.93333 (305*2π)/4141 weeks
306.68097 -1.28215 (306*2π)/4141 weeks
3071.17781 -1.75002 (307*2π)/4141 weeks
3081.57515 -.9798 (308*2π)/4141 weeks
309.70197 -1.0007 (309*2π)/4141 weeks
3101.10282 -1.43439 (310*2π)/4141 weeks
3111.15828 -.8246 (311*2π)/4141 weeks
312.71814 -.86788 (312*2π)/4141 weeks
3131.03236 -1.14418 (313*2π)/4141 weeks
314.91903 -1.43026 (314*2π)/4141 weeks
3151.27669 -1.31704 (315*2π)/4141 weeks
3161.00712 -.65624 (316*2π)/4141 weeks
317.38382 -1.1823 (317*2π)/4141 weeks
318.8201 -1.6712 (318*2π)/4141 weeks
319.86729 -1.26801 (319*2π)/4141 weeks
320.50209 -1.53664 (320*2π)/4141 weeks
3211.59773 -1.76851 (321*2π)/4141 weeks
3221.35904 -1.16214 (322*2π)/4141 weeks
3231.42465 -1.51511 (323*2π)/4141 weeks
3241.60683 -1.24997 (324*2π)/4141 weeks
325.98253 -1.13925 (325*2π)/4141 weeks
326.84922 -1.15553 (326*2π)/4141 weeks
327.45215 -1.15555 (327*2π)/4141 weeks
3281.48882 -1.8712 (328*2π)/4141 weeks
3291.45179 -.81033 (329*2π)/4141 weeks
330.6433 -1.19083 (330*2π)/4141 weeks
331.76293 -1.88604 (331*2π)/4141 weeks
3321.14546 -2.00419 (332*2π)/4141 weeks
3331.51998 -1.35639 (333*2π)/4141 weeks
334.91036 -1.11348 (334*2π)/4141 weeks
3351.71394 -1.90047 (335*2π)/4141 weeks
3361.38735 -.76367 (336*2π)/4141 weeks
337.88807 -1.4023 (337*2π)/4141 weeks
3381.1977 -1.74104 (338*2π)/4141 weeks
3391.02984 -1.23916 (339*2π)/4141 weeks
3401.0544 -1.4844 (340*2π)/4141 weeks
3411.26985 -1.46759 (341*2π)/4141 weeks
342.6233 -.84104 (342*2π)/4141 weeks
343-.02599 -2.10605 (343*2π)/4141 weeks
3441.22019 -2.09987 (344*2π)/4141 weeks
3451.22703 -1.76966 (345*2π)/4141 weeks
3461.34398 -1.70275 (346*2π)/4141 weeks
3471.11694 -1.68853 (347*2π)/4141 weeks
3481.18748 -2.01564 (348*2π)/4141 weeks
349.6069 -2.1724 (349*2π)/4141 weeks
3502.19183 -2.75489 (350*2π)/4141 weeks
3512.43762 -.60104 (351*2π)/4141 weeks
352.09983 -.88392 (352*2π)/4141 weeks
353.4192 -2.16907 (353*2π)/4141 weeks
354.50455 -2.14623 (354*2π)/4141 weeks
355.73587 -3.54726 (355*2π)/4141 weeks
3563.55731 -2.35736 (356*2π)/4141 weeks
3571.3999 .26204 (357*2π)/4141 weeks
358-.09696 -1.5438 (358*2π)/4141 weeks
359.7214 -2.46741 (359*2π)/4141 weeks
360.3249 -2.08184 (360*2π)/4141 weeks
361.28745 -2.74434 (361*2π)/4141 weeks
3621.70824 -3.40962 (362*2π)/4141 weeks
3632.33744 -2.28899 (363*2π)/4141 weeks
3641.09279 -1.91804 (364*2π)/4141 weeks
365.78787 -1.6008 (365*2π)/4141 weeks
366.47342 -2.44698 (366*2π)/4141 weeks
367.49914 -2.82399 (367*2π)/4141 weeks
3681.59966 -3.35935 (368*2π)/4141 weeks
3691.88483 -1.80415 (369*2π)/4141 weeks
370.74531 -2.7894 (370*2π)/4141 weeks
3711.10083 -2.28838 (371*2π)/4141 weeks
3721.00055 -2.42721 (372*2π)/4141 weeks
3731.50592 -3.15339 (373*2π)/4141 weeks
3741.70434 -2.65346 (374*2π)/4141 weeks
3751.83056 -2.75463 (375*2π)/4141 weeks
376.81689 -1.84493 (376*2π)/4141 weeks
377.51664 -2.07037 (377*2π)/4141 weeks
378-1.44913 -1.10529 (378*2π)/4141 weeks
379-.49115 -5.3048 (379*2π)/4141 weeks
3802.00239 -3.76816 (380*2π)/4141 weeks
381-1.27519 -2.90405 (381*2π)/4141 weeks
382.40916 -6.98452 (382*2π)/4141 weeks
3833.42085 -2.9714 (383*2π)/4141 weeks
384-.35228 -2.80612 (384*2π)/4141 weeks
385.56541 -3.41504 (385*2π)/4141 weeks
386-.98643 -4.24496 (386*2π)/4141 weeks
387-.48263 -5.7879 (387*2π)/4141 weeks
388.31527 -6.4949 (388*2π)/4141 weeks
3892.07328 -5.25155 (389*2π)/4141 weeks
3901.57796 -4.16173 (390*2π)/4141 weeks
391-.55062 -5.62785 (391*2π)/4141 weeks
392.1952 -7.29074 (392*2π)/4141 weeks
393-.4902 -6.68335 (393*2π)/4141 weeks
394-.75448 -8.5949 (394*2π)/4141 weeks
3952.44049 -9.63696 (395*2π)/4141 weeks
3963.07877 -6.15242 (396*2π)/4141 weeks
3971.64655 -6.96441 (397*2π)/4141 weeks
398.02312 -8.78726 (398*2π)/4141 weeks
3991.63928 -10.05052 (399*2π)/4141 weeks
400-.50943 -8.47424 (400*2π)/4141 weeks
401-.75531 -15.48762 (401*2π)/4141 weeks
4027.76936 -14.79717 (402*2π)/4141 weeks
4037.01554 -9.00258 (403*2π)/4141 weeks
4042.323 -11.17354 (404*2π)/4141 weeks
4054.73671 -8.64951 (405*2π)/4141 weeks
406-4.86758 -11.6424 (406*2π)/4141 weeks
407-1.86626 -27.44988 (407*2π)/4141 weeks
40811.35738 -30.22658 (408*2π)/4141 weeks
40916.8658 -14.47181 (409*2π)/4141 weeks
410-4.20973 -20.56133 (410*2π)/4141 weeks
4117.95855 -40.61712 (411*2π)/4141 weeks
4121.07978 -43.63605 (412*2π)/4141 weeks

Problems, Comments, Suggestions? Click here to contact Greg Thatcher

Please read my Disclaimer





Copyright (c) 2013 Thatcher Development Software, LLC. All rights reserved. No claim to original U.S. Gov't works.