Back to list of Stocks    See Also: Seasonal Analysis of VWIGXGenetic Algorithms Stock Portfolio Generator, and Fourier Calculator

Fourier Analysis of VWIGX (Vanguard International Growth F)


VWIGX (Vanguard International Growth F) appears to have interesting cyclic behaviour every 154 weeks (.8609*sine), 142 weeks (.7368*sine), and 168 weeks (.6351*cosine).

VWIGX (Vanguard International Growth F) has an average price of 9.64 (topmost row, frequency = 0).



Click on the checkboxes shown on the right to see how the various frequencies contribute to the graph. Look for large magnitude coefficients (sine or cosine), as these are associated with frequencies which contribute most to the associated stock plot. If you find a large magnitude coefficient which dramatically changes the graph, look at the associated "Period" in weeks, as you may have found a significant recurring cycle for the stock of interest.

Right click on the graph above to see the menu of operations (download, full screen, etc.)

Fourier Analysis

Using data from 9/30/1981 to 3/20/2017 for VWIGX (Vanguard International Growth F), this program was able to calculate the following Fourier Series:
Sequence #Cosine Coefficients Sine Coefficients FrequenciesPeriod
09.64485   0 
11.40949 -6.55023 (1*2π)/18511,851 weeks
2.44562 -3.51048 (2*2π)/1851926 weeks
3-.10486 -1.88348 (3*2π)/1851617 weeks
4.71204 -2.60545 (4*2π)/1851463 weeks
5-.90647 -1.79294 (5*2π)/1851370 weeks
6-.02144 -.43415 (6*2π)/1851309 weeks
7.17741 -1.13772 (7*2π)/1851264 weeks
8-.09949 -.85998 (8*2π)/1851231 weeks
9-.47283 -.61459 (9*2π)/1851206 weeks
10-.1903 .09995 (10*2π)/1851185 weeks
11.63507 -.62652 (11*2π)/1851168 weeks
12.20176 -.86085 (12*2π)/1851154 weeks
13-.11397 -.73681 (13*2π)/1851142 weeks
14-.02071 -.25267 (14*2π)/1851132 weeks
15.19415 -.3717 (15*2π)/1851123 weeks
16.06556 -.49389 (16*2π)/1851116 weeks
17-.00585 -.54424 (17*2π)/1851109 weeks
18-.06001 -.12786 (18*2π)/1851103 weeks
19.27536 -.35533 (19*2π)/185197 weeks
20.05392 -.54367 (20*2π)/185193 weeks
21-.08123 -.36453 (21*2π)/185188 weeks
22-.12185 -.27128 (22*2π)/185184 weeks
23.14665 -.14495 (23*2π)/185180 weeks
24.19958 -.4265 (24*2π)/185177 weeks
25.01062 -.49847 (25*2π)/185174 weeks
26-.17419 -.32741 (26*2π)/185171 weeks
27-.12538 -.18449 (27*2π)/185169 weeks
28-.01999 -.15887 (28*2π)/185166 weeks
29.09654 -.36167 (29*2π)/185164 weeks
30-.12676 -.36448 (30*2π)/185162 weeks
31-.13774 -.12216 (31*2π)/185160 weeks
32-.01849 -.10096 (32*2π)/185158 weeks
33-.0055 -.1537 (33*2π)/185156 weeks
34-.06692 -.17842 (34*2π)/185154 weeks
35-.02858 -.09055 (35*2π)/185153 weeks
36.09313 -.24619 (36*2π)/185151 weeks
37-.00616 -.14251 (37*2π)/185150 weeks
38.02668 -.25757 (38*2π)/185149 weeks
39-.09949 -.08787 (39*2π)/185147 weeks
40.0233 -.10071 (40*2π)/185146 weeks
41.09608 -.12674 (41*2π)/185145 weeks
42.02051 -.25463 (42*2π)/185144 weeks
43.01615 -.17699 (43*2π)/185143 weeks
44-.00279 -.16922 (44*2π)/185142 weeks
45.00873 -.17256 (45*2π)/185141 weeks
46-.11588 -.20586 (46*2π)/185140 weeks
47-.08451 -.08477 (47*2π)/185139 weeks
48-.03841 -.04758 (48*2π)/185139 weeks
49.12375 -.08415 (49*2π)/185138 weeks
50-.01337 -.12964 (50*2π)/185137 weeks
51-.04797 -.13727 (51*2π)/185136 weeks
52.03426 -.08427 (52*2π)/185136 weeks
53.0138 -.1358 (53*2π)/185135 weeks
54.05255 -.08138 (54*2π)/185134 weeks
55.04031 -.13396 (55*2π)/185134 weeks
56.05734 -.12947 (56*2π)/185133 weeks
57.02438 -.17412 (57*2π)/185132 weeks
58-.01819 -.18645 (58*2π)/185132 weeks
59-.07278 -.11807 (59*2π)/185131 weeks
60.03623 -.062 (60*2π)/185131 weeks
61.04393 -.08745 (61*2π)/185130 weeks
62.02886 -.16778 (62*2π)/185130 weeks
63-.06678 -.14257 (63*2π)/185129 weeks
64.01504 -.089 (64*2π)/185129 weeks
65.00655 -.15986 (65*2π)/185128 weeks
66-.04412 -.11978 (66*2π)/185128 weeks
67-.04559 -.08077 (67*2π)/185128 weeks
68.0105 -.0817 (68*2π)/185127 weeks
69-.03213 -.09508 (69*2π)/185127 weeks
70.00524 -.08227 (70*2π)/185126 weeks
71-.01485 -.08161 (71*2π)/185126 weeks
72.07038 -.08956 (72*2π)/185126 weeks
73-.01829 -.12725 (73*2π)/185125 weeks
74-.01163 -.05584 (74*2π)/185125 weeks
75-.01188 -.07433 (75*2π)/185125 weeks
76.04235 -.06718 (76*2π)/185124 weeks
77.05959 -.13129 (77*2π)/185124 weeks
78.01552 -.10037 (78*2π)/185124 weeks
79.04593 -.12039 (79*2π)/185123 weeks
80.00282 -.14863 (80*2π)/185123 weeks
81-.00935 -.12084 (81*2π)/185123 weeks
82-.01214 -.11691 (82*2π)/185123 weeks
83.01902 -.10942 (83*2π)/185122 weeks
84-.01581 -.15492 (84*2π)/185122 weeks
85-.02604 -.09828 (85*2π)/185122 weeks
86.00874 -.10922 (86*2π)/185122 weeks
87-.00775 -.1174 (87*2π)/185121 weeks
88-.07182 -.18282 (88*2π)/185121 weeks
89-.08312 -.07512 (89*2π)/185121 weeks
90-.03079 -.03841 (90*2π)/185121 weeks
91-.00135 -.05707 (91*2π)/185120 weeks
92-.0187 -.13747 (92*2π)/185120 weeks
93-.06122 -.0954 (93*2π)/185120 weeks
94-.02813 -.0669 (94*2π)/185120 weeks
95.00234 -.09209 (95*2π)/185119 weeks
96-.08098 -.08667 (96*2π)/185119 weeks
97-.04676 -.0315 (97*2π)/185119 weeks
98-.03646 -.03144 (98*2π)/185119 weeks
99-.00698 -.0476 (99*2π)/185119 weeks
100.00235 -.06483 (100*2π)/185119 weeks
101-.01506 -.09881 (101*2π)/185118 weeks
102-.02491 -.02519 (102*2π)/185118 weeks
103.00321 -.04486 (103*2π)/185118 weeks
104.01425 -.04782 (104*2π)/185118 weeks
105-.02802 -.09916 (105*2π)/185118 weeks
106-.02835 -.04428 (106*2π)/185117 weeks
107.03787 -.05733 (107*2π)/185117 weeks
108.02181 -.09589 (108*2π)/185117 weeks
109-.02189 -.10075 (109*2π)/185117 weeks
110-.0279 -.0366 (110*2π)/185117 weeks
111.00141 -.03942 (111*2π)/185117 weeks
112.02561 -.10042 (112*2π)/185117 weeks
113-.01062 -.12285 (113*2π)/185116 weeks
114-.05779 -.08444 (114*2π)/185116 weeks
115-.06706 -.03986 (115*2π)/185116 weeks
116.00329 -.01363 (116*2π)/185116 weeks
117.00804 -.07921 (117*2π)/185116 weeks
118-.03572 -.0675 (118*2π)/185116 weeks
119-.03259 -.05359 (119*2π)/185116 weeks
120.00831 -.03115 (120*2π)/185115 weeks
121-.00076 -.08217 (121*2π)/185115 weeks
122-.05788 -.05369 (122*2π)/185115 weeks
123-.01723 -.04032 (123*2π)/185115 weeks
124-.00966 -.05993 (124*2π)/185115 weeks
125-.00456 -.0386 (125*2π)/185115 weeks
126-.00905 -.05442 (126*2π)/185115 weeks
127.00134 -.04569 (127*2π)/185115 weeks
128-.03271 -.08119 (128*2π)/185114 weeks
129-.01789 -.04623 (129*2π)/185114 weeks
130-.03359 -.0586 (130*2π)/185114 weeks
131-.00507 -.02275 (131*2π)/185114 weeks
132.00316 -.06147 (132*2π)/185114 weeks
133-.01205 -.05566 (133*2π)/185114 weeks
134-.04549 -.06511 (134*2π)/185114 weeks
135-.04071 -.02783 (135*2π)/185114 weeks
136.01378 -.01882 (136*2π)/185114 weeks
137.02771 -.05298 (137*2π)/185114 weeks
138.003 -.06185 (138*2π)/185113 weeks
139-.0161 -.08284 (139*2π)/185113 weeks
140-.05139 -.06151 (140*2π)/185113 weeks
141-.0275 -.02923 (141*2π)/185113 weeks
142-.0131 -.02272 (142*2π)/185113 weeks
143.00251 -.04425 (143*2π)/185113 weeks
144.00049 -.05284 (144*2π)/185113 weeks
145-.02388 -.04083 (145*2π)/185113 weeks
146-.01514 -.04747 (146*2π)/185113 weeks
147-.02443 -.03674 (147*2π)/185113 weeks
148-.00671 -.03791 (148*2π)/185113 weeks
149-.00609 -.02584 (149*2π)/185112 weeks
150.02981 -.03994 (150*2π)/185112 weeks
151-.02717 -.06713 (151*2π)/185112 weeks
152-.00365 -.02532 (152*2π)/185112 weeks
153.00662 -.05595 (153*2π)/185112 weeks
154.00607 -.07725 (154*2π)/185112 weeks
155-.03019 -.04868 (155*2π)/185112 weeks
156-.00065 -.03006 (156*2π)/185112 weeks
157-.01509 -.06679 (157*2π)/185112 weeks
158-.02182 -.05905 (158*2π)/185112 weeks
159-.0388 -.06488 (159*2π)/185112 weeks
160-.03719 -.01769 (160*2π)/185112 weeks
161-.0257 -.02694 (161*2π)/185111 weeks
162-.02302 -.0112 (162*2π)/185111 weeks
163-.00841 -.00731 (163*2π)/185111 weeks
164.01833 -.02839 (164*2π)/185111 weeks
165.01088 -.03888 (165*2π)/185111 weeks
166.00714 -.0418 (166*2π)/185111 weeks
167.00814 -.02761 (167*2π)/185111 weeks
168.01903 -.06673 (168*2π)/185111 weeks
169-.01777 -.05831 (169*2π)/185111 weeks
170-.01942 -.05189 (170*2π)/185111 weeks
171-.01632 -.02553 (171*2π)/185111 weeks
172.01155 -.03937 (172*2π)/185111 weeks
173.00654 -.05885 (173*2π)/185111 weeks
174-.02372 -.03804 (174*2π)/185111 weeks
175.00188 -.04077 (175*2π)/185111 weeks
176-.01552 -.06856 (176*2π)/185111 weeks
177-.01992 -.05307 (177*2π)/185110 weeks
178-.01717 -.03668 (178*2π)/185110 weeks
179-.01832 -.03685 (179*2π)/185110 weeks
180-.00433 -.04365 (180*2π)/185110 weeks
181-.02849 -.04231 (181*2π)/185110 weeks
182.00396 -.025 (182*2π)/185110 weeks
183-.01689 -.04637 (183*2π)/185110 weeks
184-.01338 -.04317 (184*2π)/185110 weeks
185-.02487 -.03767 (185*2π)/185110 weeks
186-.0014 -.0346 (186*2π)/185110 weeks
187-.021 -.05876 (187*2π)/185110 weeks
188-.02931 -.04931 (188*2π)/185110 weeks
189-.04087 -.02548 (189*2π)/185110 weeks
190-.02296 -.013 (190*2π)/185110 weeks
191-.0007 -.01007 (191*2π)/185110 weeks
192-.00301 -.03159 (192*2π)/185110 weeks
193-.00291 -.03083 (193*2π)/185110 weeks
194-.01081 -.02864 (194*2π)/185110 weeks
195.0134 -.03143 (195*2π)/18519 weeks
196-.01051 -.03912 (196*2π)/18519 weeks
197-.00635 -.04282 (197*2π)/18519 weeks
198-.01876 -.03752 (198*2π)/18519 weeks
199-.01883 -.03624 (199*2π)/18519 weeks
200-.00481 -.04162 (200*2π)/18519 weeks
201-.02472 -.038 (201*2π)/18519 weeks
202-.0126 -.01733 (202*2π)/18519 weeks
203.00316 -.02942 (203*2π)/18519 weeks
204-.00172 -.03462 (204*2π)/18519 weeks
205-.01509 -.04629 (205*2π)/18519 weeks
206-.02487 -.03731 (206*2π)/18519 weeks
207-.01586 -.01789 (207*2π)/18519 weeks
208-.00491 -.02772 (208*2π)/18519 weeks
209-.00009 -.02602 (209*2π)/18519 weeks
210-.00564 -.03754 (210*2π)/18519 weeks
211-.00987 -.03567 (211*2π)/18519 weeks
212-.00502 -.0384 (212*2π)/18519 weeks
213-.02645 -.03297 (213*2π)/18519 weeks
214-.00842 -.02367 (214*2π)/18519 weeks
215-.01763 -.04206 (215*2π)/18519 weeks
216-.01161 -.01475 (216*2π)/18519 weeks
217-.00273 -.04068 (217*2π)/18519 weeks
218-.00385 -.01661 (218*2π)/18518 weeks
219-.01589 -.03676 (219*2π)/18518 weeks
220-.01217 -.01223 (220*2π)/18518 weeks
221.00292 -.02604 (221*2π)/18518 weeks
222.00923 -.03261 (222*2π)/18518 weeks
223-.00628 -.04725 (223*2π)/18518 weeks
224.00324 -.03892 (224*2π)/18518 weeks
225-.01713 -.04788 (225*2π)/18518 weeks
226-.02068 -.04129 (226*2π)/18518 weeks
227-.02419 -.0255 (227*2π)/18518 weeks
228-.00831 -.02225 (228*2π)/18518 weeks
229-.01467 -.02394 (229*2π)/18518 weeks
230.00757 -.03508 (230*2π)/18518 weeks
231-.00508 -.03448 (231*2π)/18518 weeks
232-.00869 -.04657 (232*2π)/18518 weeks
233-.02907 -.029 (233*2π)/18518 weeks
234-.00994 -.0282 (234*2π)/18518 weeks
235-.01729 -.01902 (235*2π)/18518 weeks
236-.00761 -.02415 (236*2π)/18518 weeks
237-.00502 -.03009 (237*2π)/18518 weeks
238-.00435 -.05147 (238*2π)/18518 weeks
239-.02422 -.03274 (239*2π)/18518 weeks
240-.01792 -.00562 (240*2π)/18518 weeks
241.02069 -.04066 (241*2π)/18518 weeks
242-.01789 -.05194 (242*2π)/18518 weeks
243-.02492 -.03172 (243*2π)/18518 weeks
244-.01701 -.01552 (244*2π)/18518 weeks
245-.00876 -.03205 (245*2π)/18518 weeks
246-.01524 -.04628 (246*2π)/18518 weeks
247-.03056 -.02504 (247*2π)/18517 weeks
248-.02623 -.00805 (248*2π)/18517 weeks
249.00005 -.01343 (249*2π)/18517 weeks
250.00641 -.0316 (250*2π)/18517 weeks
251-.02303 -.038 (251*2π)/18517 weeks
252-.02122 -.02066 (252*2π)/18517 weeks
253-.00297 -.02221 (253*2π)/18517 weeks
254.0019 -.01813 (254*2π)/18517 weeks
255.01072 -.03942 (255*2π)/18517 weeks
256-.02079 -.04392 (256*2π)/18517 weeks
257-.02283 -.03571 (257*2π)/18517 weeks
258-.03249 -.0308 (258*2π)/18517 weeks
259-.0296 -.01581 (259*2π)/18517 weeks
260-.01272 -.00336 (260*2π)/18517 weeks
261.00173 -.01109 (261*2π)/18517 weeks
262.01395 -.03177 (262*2π)/18517 weeks
263-.01214 -.04568 (263*2π)/18517 weeks
264-.03071 -.02941 (264*2π)/18517 weeks
265-.01972 -.00801 (265*2π)/18517 weeks
266.01015 -.01735 (266*2π)/18517 weeks
267.00806 -.03523 (267*2π)/18517 weeks
268-.01311 -.04501 (268*2π)/18517 weeks
269-.0284 -.02883 (269*2π)/18517 weeks
270-.00693 -.02744 (270*2π)/18517 weeks
271-.01612 -.02781 (271*2π)/18517 weeks
272-.02684 -.02418 (272*2π)/18517 weeks
273-.01287 -.00835 (273*2π)/18517 weeks
274.00928 -.02567 (274*2π)/18517 weeks
275-.002 -.03519 (275*2π)/18517 weeks
276-.01742 -.04293 (276*2π)/18517 weeks
277-.02309 -.03326 (277*2π)/18517 weeks
278-.03022 -.02909 (278*2π)/18517 weeks
279-.01473 -.00994 (279*2π)/18517 weeks
280-.00723 -.01851 (280*2π)/18517 weeks
281-.00758 -.03121 (281*2π)/18517 weeks
282-.00981 -.03116 (282*2π)/18517 weeks
283-.02212 -.03376 (283*2π)/18517 weeks
284-.0188 -.01879 (284*2π)/18517 weeks
285-.02814 -.03092 (285*2π)/18516 weeks
286-.02277 -.00334 (286*2π)/18516 weeks
287.00209 -.01196 (287*2π)/18516 weeks
288-.00631 -.03262 (288*2π)/18516 weeks
289-.01244 -.02963 (289*2π)/18516 weeks
290-.0274 -.02655 (290*2π)/18516 weeks
291-.01266 -.00799 (291*2π)/18516 weeks
292-.00979 -.02249 (292*2π)/18516 weeks
293-.01665 -.0288 (293*2π)/18516 weeks
294-.02645 -.01567 (294*2π)/18516 weeks
295-.01223 -.00286 (295*2π)/18516 weeks
296.00936 -.0133 (296*2π)/18516 weeks
297-.00776 -.03058 (297*2π)/18516 weeks
298-.01144 -.00975 (298*2π)/18516 weeks
299-.00733 -.01661 (299*2π)/18516 weeks
300.00224 -.01827 (300*2π)/18516 weeks
301.00189 -.0418 (301*2π)/18516 weeks
302-.01784 -.02905 (302*2π)/18516 weeks
303-.01491 -.01182 (303*2π)/18516 weeks
304-.0034 -.01663 (304*2π)/18516 weeks
305-.00155 -.03027 (305*2π)/18516 weeks
306-.00948 -.02845 (306*2π)/18516 weeks
307-.0142 -.02679 (307*2π)/18516 weeks
308-.01228 -.0213 (308*2π)/18516 weeks
309-.00591 -.02499 (309*2π)/18516 weeks
310-.00852 -.03063 (310*2π)/18516 weeks
311-.01802 -.02763 (311*2π)/18516 weeks
312-.01666 -.02166 (312*2π)/18516 weeks
313-.01114 -.02568 (313*2π)/18516 weeks
314-.01199 -.02157 (314*2π)/18516 weeks
315-.02335 -.03059 (315*2π)/18516 weeks
316-.02231 -.0195 (316*2π)/18516 weeks
317-.01693 -.01684 (317*2π)/18516 weeks
318-.0172 -.0102 (318*2π)/18516 weeks
319-.00079 -.01036 (319*2π)/18516 weeks
320-.01397 -.02039 (320*2π)/18516 weeks
321-.0024 -.02723 (321*2π)/18516 weeks
322-.02101 -.03456 (322*2π)/18516 weeks
323-.01486 -.0182 (323*2π)/18516 weeks
324-.01969 -.02531 (324*2π)/18516 weeks
325-.00821 -.01866 (325*2π)/18516 weeks
326-.02682 -.02528 (326*2π)/18516 weeks
327-.01914 -.00697 (327*2π)/18516 weeks
328-.01786 -.01514 (328*2π)/18516 weeks
329-.00697 -.00642 (329*2π)/18516 weeks
330-.01167 -.02676 (330*2π)/18516 weeks
331-.02331 -.00714 (331*2π)/18516 weeks
332-.0089 -.01069 (332*2π)/18516 weeks
333-.0064 -.01231 (333*2π)/18516 weeks
334-.00908 -.01825 (334*2π)/18516 weeks
335-.01294 -.01248 (335*2π)/18516 weeks
336-.0059 -.01125 (336*2π)/18516 weeks
337-.0026 -.01134 (337*2π)/18515 weeks
338-.00801 -.01683 (338*2π)/18515 weeks
339-.00451 -.01142 (339*2π)/18515 weeks
340.00143 -.02264 (340*2π)/18515 weeks
341-.00137 -.01911 (341*2π)/18515 weeks
342.00272 -.02222 (342*2π)/18515 weeks
343-.00733 -.02551 (343*2π)/18515 weeks
344-.00505 -.02042 (344*2π)/18515 weeks
345-.01081 -.03907 (345*2π)/18515 weeks
346-.01246 -.0159 (346*2π)/18515 weeks
347-.0032 -.04115 (347*2π)/18515 weeks
348-.02541 -.02308 (348*2π)/18515 weeks
349-.01397 -.01974 (349*2π)/18515 weeks
350-.01548 -.01468 (350*2π)/18515 weeks
351-.00458 -.02448 (351*2π)/18515 weeks
352-.01982 -.02585 (352*2π)/18515 weeks
353-.00967 -.01726 (353*2π)/18515 weeks
354-.00343 -.02042 (354*2π)/18515 weeks
355-.01728 -.03175 (355*2π)/18515 weeks
356-.02628 -.02838 (356*2π)/18515 weeks
357-.02629 -.01189 (357*2π)/18515 weeks
358-.01254 -.01248 (358*2π)/18515 weeks
359-.01449 -.01393 (359*2π)/18515 weeks
360-.01472 -.01811 (360*2π)/18515 weeks
361-.01156 -.00293 (361*2π)/18515 weeks
362-.00033 -.01451 (362*2π)/18515 weeks
363-.00998 -.0185 (363*2π)/18515 weeks
364-.01401 -.02468 (364*2π)/18515 weeks
365-.01294 -.00997 (365*2π)/18515 weeks
366-.00127 -.01214 (366*2π)/18515 weeks
367-.0043 -.01548 (367*2π)/18515 weeks
368-.00281 -.02905 (368*2π)/18515 weeks
369-.01902 -.01945 (369*2π)/18515 weeks
370-.00743 -.01822 (370*2π)/18515 weeks
371-.00891 -.01862 (371*2π)/18515 weeks
372-.00743 -.02904 (372*2π)/18515 weeks
373-.0183 -.0235 (373*2π)/18515 weeks
374-.01561 -.02472 (374*2π)/18515 weeks
375-.01837 -.01301 (375*2π)/18515 weeks
376.00019 -.02156 (376*2π)/18515 weeks
377-.01914 -.03009 (377*2π)/18515 weeks
378-.02304 -.01524 (378*2π)/18515 weeks
379-.0198 -.01322 (379*2π)/18515 weeks
380-.00886 -.01767 (380*2π)/18515 weeks
381-.01902 -.01791 (381*2π)/18515 weeks
382-.01345 -.00612 (382*2π)/18515 weeks
383.00115 -.01186 (383*2π)/18515 weeks
384-.012 -.02993 (384*2π)/18515 weeks
385-.02125 -.03017 (385*2π)/18515 weeks
386-.03465 -.0185 (386*2π)/18515 weeks
387-.0127 .00028 (387*2π)/18515 weeks
388-.01474 -.00996 (388*2π)/18515 weeks
389-.00277 -.00926 (389*2π)/18515 weeks
390-.01898 -.01803 (390*2π)/18515 weeks
391-.01202 -.00627 (391*2π)/18515 weeks
392-.00285 -.00976 (392*2π)/18515 weeks
393-.00034 -.022 (393*2π)/18515 weeks
394-.01311 -.02229 (394*2π)/18515 weeks
395-.00805 -.01403 (395*2π)/18515 weeks
396-.00841 -.02118 (396*2π)/18515 weeks
397-.01572 -.02912 (397*2π)/18515 weeks
398-.02686 -.01334 (398*2π)/18515 weeks
399-.00997 -.0067 (399*2π)/18515 weeks
400-.0062 -.01275 (400*2π)/18515 weeks
401-.01052 -.02331 (401*2π)/18515 weeks
402-.01698 -.01682 (402*2π)/18515 weeks
403-.00752 -.0199 (403*2π)/18515 weeks
404-.02077