Back to list of Stocks    See Also: Seasonal Analysis of VNETGenetic Algorithms Stock Portfolio Generator, and Fourier Calculator

Fourier Analysis of VNET (21Vianet Group, Inc.)


VNET (21Vianet Group, Inc.) appears to have interesting cyclic behaviour every 18 weeks (.7731*sine), 24 weeks (.4971*cosine), and 22 weeks (.3944*sine).

VNET (21Vianet Group, Inc.) has an average price of 15.12 (topmost row, frequency = 0).



Click on the checkboxes shown on the right to see how the various frequencies contribute to the graph. Look for large magnitude coefficients (sine or cosine), as these are associated with frequencies which contribute most to the associated stock plot. If you find a large magnitude coefficient which dramatically changes the graph, look at the associated "Period" in weeks, as you may have found a significant recurring cycle for the stock of interest.

Right click on the graph above to see the menu of operations (download, full screen, etc.)

Fourier Analysis

Using data from 4/21/2011 to 3/20/2017 for VNET (21Vianet Group, Inc.), this program was able to calculate the following Fourier Series:
Sequence #Cosine Coefficients Sine Coefficients FrequenciesPeriod
015.12061   0 
1-5.53196 -3.88942 (1*2π)/310310 weeks
21.15245 1.45237 (2*2π)/310155 weeks
3-2.93073 1.41683 (3*2π)/310103 weeks
41.99038 .93579 (4*2π)/31078 weeks
5.15975 .35407 (5*2π)/31062 weeks
6.83959 .76925 (6*2π)/31052 weeks
7.49882 -.46584 (7*2π)/31044 weeks
8-.5077 .59199 (8*2π)/31039 weeks
9-.08687 .3873 (9*2π)/31034 weeks
10-.37303 .26909 (10*2π)/31031 weeks
11.14406 .35078 (11*2π)/31028 weeks
12-.00629 .03592 (12*2π)/31026 weeks
13.49714 .35517 (13*2π)/31024 weeks
14-.1346 -.39444 (14*2π)/31022 weeks
15-.2253 .16542 (15*2π)/31021 weeks
16-.04499 -.04892 (16*2π)/31019 weeks
17.01732 .77314 (17*2π)/31018 weeks
18.1814 -.06175 (18*2π)/31017 weeks
19.06845 .04026 (19*2π)/31016 weeks
20.30755 -.12973 (20*2π)/31016 weeks
21-.05554 .0152 (21*2π)/31015 weeks
22.09462 .12086 (22*2π)/31014 weeks
23.0781 -.00687 (23*2π)/31013 weeks
24.16472 .16208 (24*2π)/31013 weeks
25.33262 .29332 (25*2π)/31012 weeks
26-.16212 -.24893 (26*2π)/31012 weeks
27.12508 .47198 (27*2π)/31011 weeks
28.16954 -.17864 (28*2π)/31011 weeks
29.12673 .42772 (29*2π)/31011 weeks
30.23579 .13045 (30*2π)/31010 weeks
31-.05067 .22643 (31*2π)/31010 weeks
32.0136 .34019 (32*2π)/31010 weeks
33.0805 .02848 (33*2π)/3109 weeks
34.03407 .14302 (34*2π)/3109 weeks
35-.01127 .05073 (35*2π)/3109 weeks
36-.04059 .37555 (36*2π)/3109 weeks
37.22338 .03553 (37*2π)/3108 weeks
38-.13473 .08342 (38*2π)/3108 weeks
39.19672 .06612 (39*2π)/3108 weeks
40.00809 .01907 (40*2π)/3108 weeks
41.00162 .05591 (41*2π)/3108 weeks
42-.12533 .20188 (42*2π)/3107 weeks
43.06982 .15683 (43*2π)/3107 weeks
44.06636 -.06978 (44*2π)/3107 weeks
45.04047 .17042 (45*2π)/3107 weeks
46.15299 -.07863 (46*2π)/3107 weeks
47-.0785 .03649 (47*2π)/3107 weeks
48.02251 .03659 (48*2π)/3106 weeks
49-.0525 .11897 (49*2π)/3106 weeks
50.16575 .08174 (50*2π)/3106 weeks
51.0891 -.01575 (51*2π)/3106 weeks
52.08608 .06036 (52*2π)/3106 weeks
53.0565 .01671 (53*2π)/3106 weeks
54-.04287 .01242 (54*2π)/3106 weeks
55.11553 .02479 (55*2π)/3106 weeks
56.10679 .1612 (56*2π)/3106 weeks
57.11459 -.06439 (57*2π)/3105 weeks
58.13976 .02764 (58*2π)/3105 weeks
59.07479 -.0547 (59*2π)/3105 weeks
60.10272 .06175 (60*2π)/3105 weeks
61.09098 .08535 (61*2π)/3105 weeks
62.12144 .04444 (62*2π)/3105 weeks
63.09527 .01892 (63*2π)/3105 weeks
64.03943 .10414 (64*2π)/3105 weeks
65.18209 .07883 (65*2π)/3105 weeks
66-.08072 .10587 (66*2π)/3105 weeks
67.2251 -.07656 (67*2π)/3105 weeks
68-.18141 .10135 (68*2π)/3105 weeks
69.19351 .01441 (69*2π)/3104 weeks
70.05572 .13966 (70*2π)/3104 weeks
71.07964 .03184 (71*2π)/3104 weeks
72.10556 .1183 (72*2π)/3104 weeks
73.08265 -.02087 (73*2π)/3104 weeks
74.03503 .0167 (74*2π)/3104 weeks
75.04692 .13242 (75*2π)/3104 weeks
76.0981 .07348 (76*2π)/3104 weeks
77.01928 .03524 (77*2π)/3104 weeks
78.07377 .11364 (78*2π)/3104 weeks
79.02321 -.02142 (79*2π)/3104 weeks
80-.00634 .04472 (80*2π)/3104 weeks
81.1051 -.03823 (81*2π)/3104 weeks
82.04102 .0334 (82*2π)/3104 weeks
83.06549 .04401 (83*2π)/3104 weeks
84.06765 .10432 (84*2π)/3104 weeks
85.07709 -.04016 (85*2π)/3104 weeks
86.10063 .01148 (86*2π)/3104 weeks
87-.03131 -.04033 (87*2π)/3104 weeks
88.00391 .02818 (88*2π)/3104 weeks
89-.00512 .02466 (89*2π)/3103 weeks
90.01038 .07124 (90*2π)/3103 weeks
91.085 .02608 (91*2π)/3103 weeks
92.1015 .05534 (92*2π)/3103 weeks
93.02189 .02295 (93*2π)/3103 weeks
94-.05582 .08148 (94*2π)/3103 weeks
95.04028 -.0728 (95*2π)/3103 weeks
96.05995 -.03482 (96*2π)/3103 weeks
97.09226 -.03147 (97*2π)/3103 weeks
98.08709 .04182 (98*2π)/3103 weeks
99.05253 .00639 (99*2π)/3103 weeks
100.0712 -.00741 (100*2π)/3103 weeks
101.0164 .05051 (101*2π)/3103 weeks
102.12111 -.00256 (102*2π)/3103 weeks
103.04707 .01277 (103*2π)/3103 weeks
104.08536 .01515 (104*2π)/3103 weeks
105.0802 .11428 (105*2π)/3103 weeks
106.0448 -.03571 (106*2π)/3103 weeks
107.01879 .04119 (107*2π)/3103 weeks
108.01833 .04305 (108*2π)/3103 weeks
109.04305 .02177 (109*2π)/3103 weeks
110-.01675 .04995 (110*2π)/3103 weeks
111.1093 -.01505 (111*2π)/3103 weeks
112.07594 .00132 (112*2π)/3103 weeks
113.10038 -.01251 (113*2π)/3103 weeks
114.02999 -.00352 (114*2π)/3103 weeks
115.12404 .08621 (115*2π)/3103 weeks
116.02291 -.00793 (116*2π)/3103 weeks
117.03982 .08656 (117*2π)/3103 weeks
118.18047 -.01711 (118*2π)/3103 weeks
119-.04803 -.02458 (119*2π)/3103 weeks
120.12957 .10617 (120*2π)/3103 weeks
121-.06453 .00067 (121*2π)/3103 weeks
122.10717 .10643 (122*2π)/3103 weeks
123.07095 .02374 (123*2π)/3103 weeks
124.0594 .03908 (124*2π)/3103 weeks
125.03625 .0146 (125*2π)/3102 weeks
126-.00912 -.0601 (126*2π)/3102 weeks
127.05531 .07315 (127*2π)/3102 weeks
128.05794 -.04423 (128*2π)/3102 weeks
129-.05128 .10266 (129*2π)/3102 weeks
130.05328 .0349 (130*2π)/3102 weeks
131.04463 -.00913 (131*2π)/3102 weeks
132.08192 .0273 (132*2π)/3102 weeks
133.07665 -.02737 (133*2π)/3102 weeks
134.08372 .04722 (134*2π)/3102 weeks
135.04144 -.0515 (135*2π)/3102 weeks
136.07355 .10852 (136*2π)/3102 weeks
137.08432 .06791 (137*2π)/3102 weeks
138.00959 .0562 (138*2π)/3102 weeks
139.15022 .00131 (139*2π)/3102 weeks
140-.05594 -.04487 (140*2π)/3102 weeks
141.14398 -.00627 (141*2π)/3102 weeks
142-.12106 -.01822 (142*2π)/3102 weeks
143.14897 .11459 (143*2π)/3102 weeks
144-.05339 -.01775 (144*2π)/3102 weeks
145.11554 -.01913 (145*2π)/3102 weeks
146.02347 -.00205 (146*2π)/3102 weeks
147.06077 .02948 (147*2π)/3102 weeks
148.03927 .00645 (148*2π)/3102 weeks
149.00956 .0598 (149*2π)/3102 weeks
150.1094 .02167 (150*2π)/3102 weeks
151.05566 -.02033 (151*2π)/3102 weeks
152-.00385 .01352 (152*2π)/3102 weeks
153.10457 -.05364 (153*2π)/3102 weeks
154.01173 -.00007 (154*2π)/3102 weeks
155.13271   (155*2π)/3102 weeks
156.01173 .00007 (156*2π)/3102 weeks
157.10457 .05364 (157*2π)/3102 weeks
158-.00385 -.01352 (158*2π)/3102 weeks
159.05566 .02033 (159*2π)/3102 weeks
160.1094 -.02167 (160*2π)/3102 weeks
161.00956 -.0598 (161*2π)/3102 weeks
162.03927 -.00645 (162*2π)/3102 weeks
163.06077 -.02948 (163*2π)/3102 weeks
164.02347 .00205 (164*2π)/3102 weeks
165.11554 .01913 (165*2π)/3102 weeks
166-.05339 .01775 (166*2π)/3102 weeks
167.14897 -.11459 (167*2π)/3102 weeks
168-.12106 .01822 (168*2π)/3102 weeks
169.14398 .00627 (169*2π)/3102 weeks
170-.05594 .04487 (170*2π)/3102 weeks
171.15022 -.00131 (171*2π)/3102 weeks
172.00959 -.0562 (172*2π)/3102 weeks
173.08432 -.06791 (173*2π)/3102 weeks
174.07355 -.10852 (174*2π)/3102 weeks
175.04144 .0515 (175*2π)/3102 weeks
176.08372 -.04722 (176*2π)/3102 weeks
177.07665 .02737 (177*2π)/3102 weeks
178.08192 -.0273 (178*2π)/3102 weeks
179.04463 .00913 (179*2π)/3102 weeks
180.05328 -.0349 (180*2π)/3102 weeks
181-.05128 -.10266 (181*2π)/3102 weeks
182.05794 .04423 (182*2π)/3102 weeks
183.05531 -.07315 (183*2π)/3102 weeks
184-.00912 .0601 (184*2π)/3102 weeks
185.03625 -.0146 (185*2π)/3102 weeks
186.0594 -.03908 (186*2π)/3102 weeks
187.07095 -.02374 (187*2π)/3102 weeks
188.10717 -.10643 (188*2π)/3102 weeks
189-.06453 -.00067 (189*2π)/3102 weeks
190.12957 -.10617 (190*2π)/3102 weeks
191-.04803 .02458 (191*2π)/3102 weeks
192.18047 .01711 (192*2π)/3102 weeks
193.03982 -.08656 (193*2π)/3102 weeks
194.02291 .00793 (194*2π)/3102 weeks
195.12404 -.08621 (195*2π)/3102 weeks
196.02999 .00352 (196*2π)/3102 weeks
197.10038 .01251 (197*2π)/3102 weeks
198.07594 -.00132 (198*2π)/3102 weeks
199.1093 .01505 (199*2π)/3102 weeks
200-.01675 -.04995 (200*2π)/3102 weeks
201.04305 -.02177 (201*2π)/3102 weeks
202.01833 -.04305 (202*2π)/3102 weeks
203.01879 -.04119 (203*2π)/3102 weeks
204.0448 .03571 (204*2π)/3102 weeks
205.0802 -.11428 (205*2π)/3102 weeks
206.08536 -.01515 (206*2π)/3102 weeks
207.04707 -.01277 (207*2π)/3101 weeks
208.12111 .00256 (208*2π)/3101 weeks
209.0164 -.05051 (209*2π)/3101 weeks
210.0712 .00741 (210*2π)/3101 weeks
211.05253 -.00639 (211*2π)/3101 weeks
212.08709 -.04182 (212*2π)/3101 weeks
213.09226 .03147 (213*2π)/3101 weeks
214.05995 .03482 (214*2π)/3101 weeks
215.04028 .0728 (215*2π)/3101 weeks
216-.05582 -.08148 (216*2π)/3101 weeks
217.02189 -.02295 (217*2π)/3101 weeks
218.1015 -.05534 (218*2π)/3101 weeks
219.085 -.02608 (219*2π)/3101 weeks
220.01038 -.07124 (220*2π)/3101 weeks
221-.00512 -.02466 (221*2π)/3101 weeks
222.00391 -.02818 (222*2π)/3101 weeks
223-.03131 .04033 (223*2π)/3101 weeks
224.10063 -.01148 (224*2π)/3101 weeks
225.07709 .04016 (225*2π)/3101 weeks
226.06765 -.10432 (226*2π)/3101 weeks
227.06549 -.04401 (227*2π)/3101 weeks
228.04102 -.0334 (228*2π)/3101 weeks
229.1051 .03823 (229*2π)/3101 weeks
230-.00634 -.04472 (230*2π)/3101 weeks
231.02321 .02142 (231*2π)/3101 weeks
232.07377 -.11364 (232*2π)/3101 weeks
233.01928 -.03524 (233*2π)/3101 weeks
234.0981 -.07348 (234*2π)/3101 weeks
235.04692 -.13242 (235*2π)/3101 weeks
236.03503 -.0167 (236*2π)/3101 weeks
237.08265 .02087 (237*2π)/3101 weeks
238.10556 -.1183 (238*2π)/3101 weeks
239.07964 -.03184 (239*2π)/3101 weeks
240.05572 -.13966 (240*2π)/3101 weeks
241.19351 -.01441 (241*2π)/3101 weeks
242-.18141 -.10135 (242*2π)/3101 weeks
243.2251 .07656 (243*2π)/3101 weeks
244-.08072 -.10587 (244*2π)/3101 weeks
245.18209 -.07883 (245*2π)/3101 weeks
246.03943 -.10414 (246*2π)/3101 weeks
247.09527 -.01892 (247*2π)/3101 weeks
248.12144 -.04444 (248*2π)/3101 weeks
249.09098 -.08535 (249*2π)/3101 weeks
250.10272 -.06175 (250*2π)/3101 weeks
251.07479 .0547 (251*2π)/3101 weeks
252.13976 -.02764 (252*2π)/3101 weeks
253.11459 .06439 (253*2π)/3101 weeks
254.10679 -.1612 (254*2π)/3101 weeks
255.11553 -.02479 (255*2π)/3101 weeks
256-.04287 -.01242 (256*2π)/3101 weeks
257.0565 -.01671 (257*2π)/3101 weeks
258.08608 -.06036 (258*2π)/3101 weeks
259.0891 .01575 (259*2π)/3101 weeks
260.16575 -.08174 (260*2π)/3101 weeks
261-.0525 -.11897 (261*2π)/3101 weeks
262.02251 -.03659 (262*2π)/3101 weeks
263-.0785 -.03649 (263*2π)/3101 weeks
264.15299 .07863 (264*2π)/3101 weeks
265.04047 -.17042 (265*2π)/3101 weeks
266.06636 .06978 (266*2π)/3101 weeks
267.06982 -.15683 (267*2π)/3101 weeks
268-.12533 -.20188 (268*2π)/3101 weeks
269.00162 -.05591 (269*2π)/3101 weeks
270.00809 -.01907 (270*2π)/3101 weeks
271.19672 -.06612 (271*2π)/3101 weeks
272-.13473 -.08342 (272*2π)/3101 weeks
273.22338 -.03553 (273*2π)/3101 weeks
274-.04059 -.37555 (274*2π)/3101 weeks
275-.01127 -.05073 (275*2π)/3101 weeks
276.03407 -.14302 (276*2π)/3101 weeks
277.0805 -.02848 (277*2π)/3101 weeks
278.0136 -.34019 (278*2π)/3101 weeks
279-.05067 -.22643 (279*2π)/3101 weeks
280.23579 -.13045 (280*2π)/3101 weeks
281.12673 -.42772 (281*2π)/3101 weeks
282.16954 .17864 (282*2π)/3101 weeks
283.12508 -.47198 (283*2π)/3101 weeks
284-.16212 .24893 (284*2π)/3101 weeks
285.33262 -.29332 (285*2π)/3101 weeks
286.16472 -.16208 (286*2π)/3101 weeks
287.0781 .00687 (287*2π)/3101 weeks
288.09462 -.12086 (288*2π)/3101 weeks
289-.05554 -.0152 (289*2π)/3101 weeks
290.30755 .12973 (290*2π)/3101 weeks
291.06845 -.04026 (291*2π)/3101 weeks
292.1814 .06175 (292*2π)/3101 weeks
293.01732 -.77314 (293*2π)/3101 weeks
294-.04499 .04892 (294*2π)/3101 weeks
295-.2253 -.16542 (295*2π)/3101 weeks
296-.1346 .39444 (296*2π)/3101 weeks
297.49714 -.35517 (297*2π)/3101 weeks
298-.00629 -.03592 (298*2π)/3101 weeks
299.14406 -.35078 (299*2π)/3101 weeks
300-.37303 -.26909 (300*2π)/3101 weeks
301-.08687 -.3873 (301*2π)/3101 weeks
302-.5077 -.59199 (302*2π)/3101 weeks
303.49882 .46584 (303*2π)/3101 weeks
304.83959 -.76925 (304*2π)/3101 weeks
305.15975 -.35407 (305*2π)/3101 weeks
3061.99038 -.93579 (306*2π)/3101 weeks
307-2.93073 -1.41683 (307*2π)/3101 weeks
3081.15245 -1.45237 (308*2π)/3101 weeks

Problems, Comments, Suggestions? Click here to contact Greg Thatcher

Please read my Disclaimer





Copyright (c) 2013 Thatcher Development Software, LLC. All rights reserved. No claim to original U.S. Gov't works.