Back to list of Stocks    See Also: Seasonal Analysis of VGHCXGenetic Algorithms Stock Portfolio Generator, and Fourier Calculator

# Fourier Analysis of VGHCX (Vanguard Specialized Portfolios)

VGHCX (Vanguard Specialized Portfolios) appears to have interesting cyclic behaviour every 156 weeks (5.9575*sine), 171 weeks (4.5762*sine), and 95 weeks (1.0674*cosine).

VGHCX (Vanguard Specialized Portfolios) has an average price of 50.11 (topmost row, frequency = 0).

Click on the checkboxes shown on the right to see how the various frequencies contribute to the graph. Look for large magnitude coefficients (sine or cosine), as these are associated with frequencies which contribute most to the associated stock plot. If you find a large magnitude coefficient which dramatically changes the graph, look at the associated "Period" in weeks, as you may have found a significant recurring cycle for the stock of interest.

## Fourier Analysis

Using data from 5/23/1984 to 3/20/2017 for VGHCX (Vanguard Specialized Portfolios), this program was able to calculate the following Fourier Series:
Sequence #Cosine Coefficients Sine Coefficients FrequenciesPeriod
050.10955   0
125.20771 -45.71821 (1*2π)/17131,713 weeks
216.73473 -25.45687 (2*2π)/1713857 weeks
38.74242 -24.90063 (3*2π)/1713571 weeks
43.49623 -22.58037 (4*2π)/1713428 weeks
5-2.2007 -15.46956 (5*2π)/1713343 weeks
6-.02641 -11.94363 (6*2π)/1713286 weeks
7-2.54609 -11.46919 (7*2π)/1713245 weeks
8-2.51089 -7.79761 (8*2π)/1713214 weeks
9-2.18587 -5.59098 (9*2π)/1713190 weeks
10.28208 -4.5762 (10*2π)/1713171 weeks
11-.54521 -5.95751 (11*2π)/1713156 weeks
12-.59697 -4.01023 (12*2π)/1713143 weeks
13-.07631 -4.02618 (13*2π)/1713132 weeks
14.46223 -3.49865 (14*2π)/1713122 weeks
15.13735 -3.92965 (15*2π)/1713114 weeks
16-.06563 -3.29752 (16*2π)/1713107 weeks
17.75572 -2.84094 (17*2π)/1713101 weeks
181.06738 -3.75171 (18*2π)/171395 weeks
19.14314 -3.63849 (19*2π)/171390 weeks
20.38188 -3.62006 (20*2π)/171386 weeks
21-.36411 -3.05542 (21*2π)/171382 weeks
22.57168 -3.08865 (22*2π)/171378 weeks
23-.13792 -3.46229 (23*2π)/171374 weeks
24-.55149 -3.29409 (24*2π)/171371 weeks
25-1.00273 -2.37533 (25*2π)/171369 weeks
26-.31155 -2.06687 (26*2π)/171366 weeks
27-.24886 -2.22913 (27*2π)/171363 weeks
28-.28539 -2.35284 (28*2π)/171361 weeks
29-.73961 -1.93297 (29*2π)/171359 weeks
30-.36239 -1.61109 (30*2π)/171357 weeks
31-.14203 -1.51968 (31*2π)/171355 weeks
32-.07381 -1.44157 (32*2π)/171354 weeks
33.18765 -1.52416 (33*2π)/171352 weeks
34.12284 -1.55729 (34*2π)/171350 weeks
35.16291 -1.68827 (35*2π)/171349 weeks
36-.17057 -1.63367 (36*2π)/171348 weeks
37-.14945 -1.38686 (37*2π)/171346 weeks
38.20943 -1.34251 (38*2π)/171345 weeks
39.00225 -1.44632 (39*2π)/171344 weeks
40.11409 -1.28635 (40*2π)/171343 weeks
41.11593 -1.31691 (41*2π)/171342 weeks
42.26063 -1.43529 (42*2π)/171341 weeks
43.08177 -1.34603 (43*2π)/171340 weeks
44.08871 -1.33621 (44*2π)/171339 weeks
45.19037 -1.14689 (45*2π)/171338 weeks
46.24197 -1.47758 (46*2π)/171337 weeks
47-.07089 -1.47265 (47*2π)/171336 weeks
48-.01721 -1.06457 (48*2π)/171336 weeks
49.06307 -1.03539 (49*2π)/171335 weeks
50.5529 -.98349 (50*2π)/171334 weeks
51.27729 -1.49343 (51*2π)/171334 weeks
52.34759 -1.18684 (52*2π)/171333 weeks
53.28805 -1.59993 (53*2π)/171332 weeks
54-.08601 -1.46081 (54*2π)/171332 weeks
55-.03879 -1.11593 (55*2π)/171331 weeks
56.18948 -1.12682 (56*2π)/171331 weeks
57.30641 -1.49677 (57*2π)/171330 weeks
58-.17712 -1.49092 (58*2π)/171330 weeks
59-.05231 -1.12396 (59*2π)/171329 weeks
60.03935 -1.29742 (60*2π)/171329 weeks
61-.06159 -1.26478 (61*2π)/171328 weeks
62-.12647 -1.24452 (62*2π)/171328 weeks
63-.25243 -1.16709 (63*2π)/171327 weeks
64-.08953 -.98956 (64*2π)/171327 weeks
65-.12886 -1.23045 (65*2π)/171326 weeks
66-.29909 -.98675 (66*2π)/171326 weeks
67-.21589 -1.0143 (67*2π)/171326 weeks
68-.17967 -.83519 (68*2π)/171325 weeks
69-.1163 -.97752 (69*2π)/171325 weeks
70-.20191 -.76406 (70*2π)/171324 weeks
71-.05177 -.70015 (71*2π)/171324 weeks
72.11943 -.73832 (72*2π)/171324 weeks
73.18171 -.91233 (73*2π)/171323 weeks
74.01792 -.97993 (74*2π)/171323 weeks
75.00629 -.97451 (75*2π)/171323 weeks
76.02562 -.94486 (76*2π)/171323 weeks
77.04017 -1.07482 (77*2π)/171322 weeks
78-.23413 -.9883 (78*2π)/171322 weeks
79-.06215 -.84561 (79*2π)/171322 weeks
80.01642 -.94977 (80*2π)/171321 weeks
81-.06614 -1.07631 (81*2π)/171321 weeks
82-.34388 -.91672 (82*2π)/171321 weeks
83-.13052 -.71672 (83*2π)/171321 weeks
84-.05481 -.86276 (84*2π)/171320 weeks
85-.11007 -.98727 (85*2π)/171320 weeks
86-.27836 -.92714 (86*2π)/171320 weeks
87-.29021 -.78309 (87*2π)/171320 weeks
88-.20583 -.86149 (88*2π)/171319 weeks
89-.42785 -.71922 (89*2π)/171319 weeks
90-.31055 -.64062 (90*2π)/171319 weeks
91-.27596 -.51255 (91*2π)/171319 weeks
92-.18114 -.52993 (92*2π)/171319 weeks
93-.17197 -.54341 (93*2π)/171318 weeks
94-.24282 -.41912 (94*2π)/171318 weeks
95.04169 -.36706 (95*2π)/171318 weeks
96.18003 -.43611 (96*2π)/171318 weeks
97.1185 -.77134 (97*2π)/171318 weeks
98-.05033 -.61248 (98*2π)/171317 weeks
99.11491 -.54697 (99*2π)/171317 weeks
100.16264 -.81052 (100*2π)/171317 weeks
101-.12009 -.7963 (101*2π)/171317 weeks
102-.05495 -.63147 (102*2π)/171317 weeks
103.04576 -.687 (103*2π)/171317 weeks
104-.00699 -.80624 (104*2π)/171316 weeks
105-.15266 -.80179 (105*2π)/171316 weeks
106-.17635 -.62595 (106*2π)/171316 weeks
107-.01302 -.59638 (107*2π)/171316 weeks
108.00506 -.78731 (108*2π)/171316 weeks
109-.2136 -.76333 (109*2π)/171316 weeks
110-.18628 -.68612 (110*2π)/171316 weeks
111-.23873 -.65161 (111*2π)/171315 weeks
112-.1479 -.58684 (112*2π)/171315 weeks
113-.23533 -.60089 (113*2π)/171315 weeks
114-.19352 -.51632 (114*2π)/171315 weeks
115-.16922 -.51451 (115*2π)/171315 weeks
116-.06551 -.45957 (116*2π)/171315 weeks
117-.01834 -.57894 (117*2π)/171315 weeks
118-.06809 -.65481 (118*2π)/171315 weeks
119-.12962 -.62906 (119*2π)/171314 weeks
120-.19163 -.65536 (120*2π)/171314 weeks
121-.25132 -.51757 (121*2π)/171314 weeks
122-.18259 -.50551 (122*2π)/171314 weeks
123-.22239 -.50331 (123*2π)/171314 weeks
124-.20989 -.38996 (124*2π)/171314 weeks
125-.08579 -.33258 (125*2π)/171314 weeks
126.06411 -.42736 (126*2π)/171314 weeks
127-.02552 -.57405 (127*2π)/171313 weeks
128-.01415 -.54811 (128*2π)/171313 weeks
129-.13788 -.58451 (129*2π)/171313 weeks
130-.12316 -.46496 (130*2π)/171313 weeks
131-.04403 -.51697 (131*2π)/171313 weeks
132-.06746 -.51343 (132*2π)/171313 weeks
133-.05556 -.60956 (133*2π)/171313 weeks
134-.19802 -.60097 (134*2π)/171313 weeks
135-.20613 -.50454 (135*2π)/171313 weeks
136-.18364 -.4418 (136*2π)/171313 weeks
137-.135 -.41701 (137*2π)/171313 weeks
138-.09905 -.40005 (138*2π)/171312 weeks
139-.02249 -.47458 (139*2π)/171312 weeks
140-.1294 -.50267 (140*2π)/171312 weeks
141-.0557 -.45619 (141*2π)/171312 weeks
142-.09606 -.55944 (142*2π)/171312 weeks
143-.17651 -.46634 (143*2π)/171312 weeks
144-.11146 -.47786 (144*2π)/171312 weeks
145-.09944 -.47044 (145*2π)/171312 weeks
146-.14041 -.55406 (146*2π)/171312 weeks
147-.2329 -.45545 (147*2π)/171312 weeks
148-.19569 -.35588 (148*2π)/171312 weeks
149-.09289 -.37464 (149*2π)/171311 weeks
150-.12805 -.40577 (150*2π)/171311 weeks
151-.03802 -.36928 (151*2π)/171311 weeks
152-.06576 -.43708 (152*2π)/171311 weeks
153-.03898 -.50191 (153*2π)/171311 weeks
154-.18658 -.45822 (154*2π)/171311 weeks
155-.00787 -.4416 (155*2π)/171311 weeks
156-.19152 -.51802 (156*2π)/171311 weeks
157-.08318 -.43975 (157*2π)/171311 weeks
158-.21007 -.47436 (158*2π)/171311 weeks
159-.11164 -.36573 (159*2π)/171311 weeks
160-.07495 -.47952 (160*2π)/171311 weeks
161-.15234 -.44 (161*2π)/171311 weeks
162-.11834 -.47834 (162*2π)/171311 weeks
163-.19716 -.49407 (163*2π)/171311 weeks
164-.21965 -.41673 (164*2π)/171310 weeks
165-.18843 -.39343 (165*2π)/171310 weeks
166-.17174 -.38091 (166*2π)/171310 weeks
167-.18813 -.4052 (167*2π)/171310 weeks
168-.13675 -.33642 (168*2π)/171310 weeks
169-.15373 -.44825 (169*2π)/171310 weeks
170-.18707 -.40436 (170*2π)/171310 weeks
171-.23509 -.37189 (171*2π)/171310 weeks
172-.15478 -.32575 (172*2π)/171310 weeks
173-.14965 -.39264 (173*2π)/171310 weeks
174-.25766 -.4021 (174*2π)/171310 weeks
175-.22733 -.2614 (175*2π)/171310 weeks
176-.20112 -.30118 (176*2π)/171310 weeks
177-.13835 -.20904 (177*2π)/171310 weeks
178-.1072 -.29563 (178*2π)/171310 weeks
179-.12123 -.27021 (179*2π)/171310 weeks
180-.0817 -.32132 (180*2π)/171310 weeks
181-.11244 -.29545 (181*2π)/17139 weeks
182-.04946 -.32023 (182*2π)/17139 weeks
183-.11394 -.37323 (183*2π)/17139 weeks
184-.14147 -.34653 (184*2π)/17139 weeks
185-.09987 -.35361 (185*2π)/17139 weeks
186-.21526 -.34886 (186*2π)/17139 weeks
187-.15104 -.22177 (187*2π)/17139 weeks
188-.10074 -.27146 (188*2π)/17139 weeks
189-.07568 -.27238 (189*2π)/17139 weeks
190-.0984 -.32054 (190*2π)/17139 weeks
191-.08804 -.2718 (191*2π)/17139 weeks
192-.12264 -.26853 (192*2π)/17139 weeks
193.01299 -.23881 (193*2π)/17139 weeks
194.00456 -.35929 (194*2π)/17139 weeks
195-.02978 -.37914 (195*2π)/17139 weeks
196-.05003 -.39877 (196*2π)/17139 weeks
197-.09913 -.43704 (197*2π)/17139 weeks
198-.13887 -.39171 (198*2π)/17139 weeks
199-.21214 -.38692 (199*2π)/17139 weeks
200-.14871 -.27763 (200*2π)/17139 weeks
201-.16368 -.3404 (201*2π)/17139 weeks
202-.10603 -.29179 (202*2π)/17138 weeks
203-.19332 -.27745 (203*2π)/17138 weeks
204-.04045 -.23959 (204*2π)/17138 weeks
205-.05971 -.29571 (205*2π)/17138 weeks
206-.00183 -.35932 (206*2π)/17138 weeks
207-.10814 -.4111 (207*2π)/17138 weeks
208-.10789 -.40559 (208*2π)/17138 weeks
209-.21767 -.37657 (209*2π)/17138 weeks
210-.18525 -.29338 (210*2π)/17138 weeks
211-.15457 -.26628 (211*2π)/17138 weeks
212-.10494 -.27342 (212*2π)/17138 weeks
213-.07455 -.31281 (213*2π)/17138 weeks
214-.05368 -.36813 (214*2π)/17138 weeks
215-.1451 -.42166 (215*2π)/17138 weeks
216-.16276 -.36865 (216*2π)/17138 weeks
217-.20096 -.34731 (217*2π)/17138 weeks
218-.15393 -.34298 (218*2π)/17138 weeks
219-.2095 -.35633 (219*2π)/17138 weeks
220-.18965 -.35021 (220*2π)/17138 weeks
221-.27686 -.32121 (221*2π)/17138 weeks
222-.21966 -.2176 (222*2π)/17138 weeks
223-.15637 -.3157 (223*2π)/17138 weeks
224-.23133 -.29542 (224*2π)/17138 weeks
225-.2238 -.2712 (225*2π)/17138 weeks
226-.23283 -.24215 (226*2π)/17138 weeks
227-.22068 -.23773 (227*2π)/17138 weeks
228-.25189 -.2149 (228*2π)/17138 weeks
229-.2206 -.16434 (229*2π)/17137 weeks
230-.15803 -.139 (230*2π)/17137 weeks
231-.11654 -.20405 (231*2π)/17137 weeks
232-.21089 -.22338 (232*2π)/17137 weeks
233-.15672 -.1272 (233*2π)/17137 weeks
234-.10489 -.17086 (234*2π)/17137 weeks
235-.07603 -.14592 (235*2π)/17137 weeks
236-.06146 -.23464 (236*2π)/17137 weeks
237-.11863 -.23923 (237*2π)/17137 weeks
238-.10329 -.22316 (238*2π)/17137 weeks
239-.14123 -.25625 (239*2π)/17137 weeks
240-.19245 -.18138 (240*2π)/17137 weeks
241-.08848 -.14161 (241*2π)/17137 weeks
242-.02156 -.18109 (242*2π)/17137 weeks
243-.05075 -.32329 (243*2π)/17137 weeks
244-.17728 -.26574 (244*2π)/17137 weeks
245-.13394 -.19413 (245*2π)/17137 weeks
246-.05921 -.18186 (246*2π)/17137 weeks
247-.06697 -.30676 (247*2π)/17137 weeks
248-.18065 -.25535 (248*2π)/17137 weeks
249-.13331 -.21545 (249*2π)/17137 weeks
250-.11693 -.2239 (250*2π)/17137 weeks
251-.13088 -.25388 (251*2π)/17137 weeks
252-.17658 -.20678 (252*2π)/17137 weeks
253-.11049 -.16464 (253*2π)/17137 weeks
254-.08312 -.2138 (254*2π)/17137 weeks
255-.09893 -.25971 (255*2π)/17137 weeks
256-.15515 -.22365 (256*2π)/17137 weeks
257-.12272 -.21337 (257*2π)/17137 weeks
258-.12825 -.21214 (258*2π)/17137 weeks
259-.11537 -.21572 (259*2π)/17137 weeks
260-.15331 -.2369 (260*2π)/17137 weeks
261-.13365 -.20266 (261*2π)/17137 weeks
262-.17133 -.19829 (262*2π)/17137 weeks
263-.12601 -.17829 (263*2π)/17137 weeks
264-.16818 -.16661 (264*2π)/17136 weeks
265-.11305 -.12251 (265*2π)/17136 weeks
266-.07196 -.13149 (266*2π)/17136 weeks
267-.02246 -.20795 (267*2π)/17136 weeks
268-.14598 -.24406 (268*2π)/17136 weeks
269-.12719 -.13366 (269*2π)/17136 weeks
270-.06951 -.15352 (270*2π)/17136 weeks
271-.05992 -.22184 (271*2π)/17136 weeks
272-.15008 -.18373 (272*2π)/17136 weeks
273-.06306 -.09792 (273*2π)/17136 weeks
274.02194 -.17709 (274*2π)/17136 weeks
275-.0415 -.26884 (275*2π)/17136 weeks
276-.07703 -.1953 (276*2π)/17136 weeks
277-.03778 -.22114 (277*2π)/17136 weeks
278-.03818 -.22896 (278*2π)/17136 weeks
279-.08039 -.31858 (279*2π)/17136 weeks
280-.13755 -.20323 (280*2π)/17136 weeks
281-.06779 -.22312 (281*2π)/17136 weeks
282-.05878 -.23066 (282*2π)/17136 weeks
283-.09157 -.28099 (283*2π)/17136 weeks
284-.11498 -.2366 (284*2π)/17136 weeks
285-.09729 -.22704 (285*2π)/17136 weeks
286-.06623 -.24654 (286*2π)/17136 weeks
287-.10103 -.31037 (287*2π)/17136 weeks
288-.15216 -.2514 (288*2π)/17136 weeks
289-.12228 -.27897 (289*2π)/17136 weeks
290-.17948 -.26435 (290*2π)/17136 weeks
291-.16461 -.25959 (291*2π)/17136 weeks
292-.21252 -.22281 (292*2π)/17136 weeks
293-.19388 -.18984 (293*2π)/17136 weeks
294-.19136 -.15934 (294*2π)/17136 weeks
295-.13197 -.13348 (295*2π)/17136 weeks
296-.13346 -.16126 (296*2π)/17136 weeks
297-.09591 -.18068 (297*2π)/17136 weeks
298-.13875 -.20491 (298*2π)/17136 weeks
299-.13971 -.17078 (299*2π)/17136 weeks
300-.11444 -.17744 (300*2π)/17136 weeks
301-.12722 -.20484 (301*2π)/17136 weeks
302-.15087 -.16913 (302*2π)/17136 weeks
303-.12545 -.1778 (303*2π)/17136 weeks
304-.12762 -.15114 (304*2π)/17136 weeks
305-.09584 -.1895 (305*2π)/17136 weeks
306-.16727 -.17338 (306*2π)/17136 weeks
307-.09418 -.13928 (307*2π)/17136 weeks
308-.12601 -.19831 (308*2π)/17136 weeks
309-.12786 -.15053 (309*2π)/17136 weeks
310-.13091 -.16679 (310*2π)/17136 weeks
311-.12478 -.11757 (311*2π)/17136 weeks
312-.05737 -.13411 (312*2π)/17135 weeks
313-.0893 -.16322 (313*2π)/17135 weeks
314-.05975 -.15326 (314*2π)/17135 weeks
315-.07343 -.17591 (315*2π)/17135 weeks
316-.04008 -.18214 (316*2π)/17135 weeks
317-.07211 -.24942 (317*2π)/17135 weeks
318-.11217 -.21628 (318*2π)/17135 weeks
319-.11165 -.23346 (319*2π)/17135 weeks
320-.12658 -.1692 (320*2π)/17135 weeks
321-.06441 -.25109 (321*2π)/17135 weeks
322-.19778 -.21338 (322*2π)/17135 weeks
323-.10933 -.16009 (323*2π)/17135 weeks
324-.10141 -.18429 (324*2π)/17135 weeks
325-.11427 -.23531 (325*2π)/17135 weeks
326-.17538 -.18197 (326*2π)/17135 weeks
327-.10433 -.15738 (327*2π)/17135 weeks
328-.09347 -.2317 (328*2π)/17135 weeks
329-.15939 -.24048 (329*2π)/17135 weeks
330-.20652 -.20032 (330*2π)/17135 weeks
331-.16008 -.15282 (331*2π)/17135 weeks
332-.18173 -.20111 (332*2π)/17135 weeks
333-.21949 -.11451 (333*2π)/17135 weeks
334-.1495 -.08529 (334*2π)/17135 weeks
335-.11295 -.10296 (335*2π)/17135 weeks
336-.11748 -.13704 (336*2π)/17135 weeks
337-.13637 -.10767 (337*2π)/17135 weeks
338-.10007 -.08029 (338*2π)/17135 weeks
339-.03308 -.11905 (339*2π)/17135 weeks
340-.0534 -.17966 (340*2π)/17135 weeks
341-.08291 -.16592 (341*2π)/17135 weeks
342-.0677 -.17476 (342*2π)/17135 weeks
343-.07608 -.21062 (343*2π)/17135 weeks
344-.10474 -.22964 (344*2π)/17135 weeks
345-.15991 -.19935 (345*2π)/17135 weeks
346-.14952 -.17245 (346*2π)/17135 weeks
347-.12497 -.16539 (347*2π)/17135 weeks
348-.1542 -.2137 (348*2π)/17135 weeks
349-.18501 -.12469 (349*2π)/17135 weeks
350-.14898 -.13838 (350*2π)/17135 weeks
351-.11987 -.08137 (351*2π)/17135 weeks
352-.09729 -.18075 (352*2π)/17135 weeks
353-.16769 -.1203 (353*2π)/17135 weeks
354-.09987 -.09998 (354*2π)/17135 weeks
355-.09026 -.14129 (355*2π)/17135 weeks
356-.10028 -.14112 (356*2π)/17135 weeks
357-.1138 -.16135 (357*2π)/17135 weeks
358-.11 -.11813 (358*2π)/17135 weeks
359-.10185 -.14489 (359*2π)/17135 weeks
360-.07579 -.1308 (360*2π)/17135 weeks
361-.11353 -.17339 (361*2π)/17135 weeks
362-.10759 -.11482 (362*2π)/17135 weeks
363-.06874 -.12705 (363*2π)/17135 weeks
364-.06154 -.17583 (364*2π)/17135 weeks
365-.11877 -.16111 (365*2π)/17135 weeks
366-.0752 -.15157 (366*2π)/17135 weeks
367-.08192 -.17276 (367*2π)/17135 weeks
368-.09555 -.18383 (368*2π)/17135 weeks
369-.10514 -.16093 (369*2π)/17135 weeks
370-.07102 -.16111 (370*2π)/17135 weeks
371-.07405 -.21329 (371*2π)/17135 weeks
372-.09659 -.21364 (372*2π)/17135 weeks
373-.12893 -.25485 (373*2π)/17135 weeks
374-.17299 -.21163 (374*2π)/17135 weeks
375-.1733 -.2003 (375*2π)/17135 weeks
376-.17609 -.20141 (376*2π)/17135 weeks
377-.24472 -.1605 (377*2π)/17135 weeks
378-.17677 -.09085 (378*2π)/17135 weeks
379-.15765 -.11661 (379*2π)/17135 weeks
380-.13334 -.10987 (380*2π)/17135 weeks
381-.14168 -.12502 (381*2π)/17134 weeks
382-.13455 -.12313 (382*2π)/17134 weeks
383-.13909 -.13136 (383*2π)/17134 weeks
384-.14469 -.14215 (384*2π)/17134 weeks
385-.17782 -.11901 (385*2π)/17134 weeks
386-.15496 -.06505 (386*2π)/17134 weeks
387-.10381 -.08739 (387*2π)/17134 weeks
388-.11021 -.09134 (388*2π)/17134 weeks
389-.08229 -.0972 (389*2π)/17134 weeks
390-.07918 -.10672 (390*2π)/17134 weeks
391-.05591 -.13521 (391*2π)/17134 weeks
392-.05879 -.15214 (392*2π)/17134 weeks
393-.09063 -.19559 (393*2π)/17134 weeks
394-.11423 -.16824 (394*2π)/17134 weeks
395-.132 -.20694 (395*2π)/17134 weeks
396-.14978 -.15675 (396*2π)/17134 weeks
397-.14299 -.18561 (397*2π)/17134 weeks
398-.18554 -.14846 (398*2π)/17134 weeks
399-.18692 -.12929 (399*2π)/17134 weeks
400-.15127 -.08185 (400*2π)/17134 weeks
401-.13682 -.12411 (401*2π)/17134 weeks
402-.133 -.08569 (402*2π)/17134 weeks
403-.12841 -.1397 (403*2π)/17134 weeks
404-.14009 -.06436 (404*2π)/17134 weeks
405-.05987 -.12414 (405*2π)/17134 weeks
406-.09077 -.14987 (406*2π)/17134 weeks
407-.12338 -.21036 (407*2π)/17134 weeks
408-.18333 -.14056 (408*2π)/17134 weeks
409-.14024 -.14994 (409*2π)/17134 weeks
410-.19488 -.15991 (410*2π)/17134 weeks
411-.1997 -.11029 (411*2π)/17134 weeks
412-.19109 -.08962 (412*2π)/17134 weeks
413-.1806 -.09083 (413*2π)/17134 weeks
414-.20311 -.03334 (414*2π)/17134 weeks
415-.1141 -.02957 (415*2π)/17134 weeks
416-.12805 -.05427 (416*2π)/17134 weeks
417-.10218 -.05196 (417*2π)/17134 weeks
418-.09938 -.05748 (418*2π)/17134 weeks
419-.07288 -.05903 (419*2π)/17134 weeks
420-.07541 -.08327 (420*2π)/17134 weeks
421-.05175 -.09028 (421*2π)/17134 weeks
422-.05639 -.14206 (422*2π)/17134 weeks
423-.10335 -.14475 (423*2π)/17134 weeks
424-.09871 -.13792 (424*2π)/17134 weeks
425-.12662 -.14984 (425*2π)/17134 weeks
426-.13323 -.12914 (426*2π)/17134 weeks
427-.13478 -.12942 (427*2π)/17134 weeks
428-.15115 -.12922 (428*2π)/17134 weeks
429-.16553 -.11738 (429*2π)/17134 weeks
430-.17213 -.08888 (430*2π)/17134 weeks
431-.16146 -.04792 (431*2π)/17134 weeks
432-.11399 -.05853 (432*2π)/17134 weeks
433-.12833 -.07379 (433*2π)/17134 weeks
434-.11043 -.06115 (434*2π)/17134 weeks
435-.13124 -.08082 (435*2π)/17134 weeks
436-.11607 -.03778 (436*2π)/17134 weeks
437-.10182 -.05476 (437*2π)/17134 weeks
438-.08364 -.04577 (438*2π)/17134 weeks
439-.07434 -.04207 (439*2π)/17134 weeks
440-.03573 -.07538 (440*2π)/17134 weeks
441-.06106 -.1152 (441*2π)/17134 weeks
442-.11103 -.09081 (442*2π)/17134 weeks
443-.07471 -.06412 (443*2π)/17134 weeks
444-.07157 -.07326 (444*2π)/17134 weeks
445-.02058 -.06997 (445*2π)/17134 weeks
446-.05332 -.14533 (446*2π)/17134 weeks
447-.07894 -.10159 (447*2π)/17134 weeks
448-.05075 -.09972 (448*2π)/17134 weeks
449-.02186 -.11404 (449*2π)/17134 weeks
450-.03564 -.17356 (450*2π)/17134 weeks
451-.09882 -.16508 (451*2π)/17134 weeks
452-.07175 -.14747 (452*2π)/17134 weeks
453-.09781 -.17406 (453*2π)/17134 weeks
454-.11229 -.16927 (454*2π)/17134 weeks
455-.14478 -.14958 (455*2π)/17134 weeks
456-.12839 -.13148 (456*2π)/17134 weeks
457-.14401 -.12437 (457*2π)/17134 weeks
458-.12595 -.11256 (458*2π)/17134 weeks
459-.13793 -.10277 (459*2π)/17134 weeks
460-.11959 -.08675 (460*2π)/17134 weeks
461-.10568 -.09053