Back to list of Stocks    See Also: Seasonal Analysis of UTXGenetic Algorithms Stock Portfolio Generator, and Fourier Calculator

Fourier Analysis of UTX (United Technologies Corporation)


UTX (United Technologies Corporation) appears to have interesting cyclic behaviour every 245 weeks (3.5091*sine), 223 weeks (2.9566*sine), and 164 weeks (1.5535*cosine).

UTX (United Technologies Corporation) has an average price of 23.37 (topmost row, frequency = 0).



Click on the checkboxes shown on the right to see how the various frequencies contribute to the graph. Look for large magnitude coefficients (sine or cosine), as these are associated with frequencies which contribute most to the associated stock plot. If you find a large magnitude coefficient which dramatically changes the graph, look at the associated "Period" in weeks, as you may have found a significant recurring cycle for the stock of interest.

Right click on the graph above to see the menu of operations (download, full screen, etc.)

Fourier Analysis

Using data from 1/2/1970 to 1/9/2017 for UTX (United Technologies Corporation), this program was able to calculate the following Fourier Series:
Sequence #Cosine Coefficients Sine Coefficients FrequenciesPeriod
023.36785   0 
120.42027 -25.83674 (1*2π)/24542,454 weeks
24.35062 -17.01691 (2*2π)/24541,227 weeks
33.3492 -11.75873 (3*2π)/2454818 weeks
41.33137 -9.46473 (4*2π)/2454614 weeks
51.49936 -8.44699 (5*2π)/2454491 weeks
6-.89172 -8.06977 (6*2π)/2454409 weeks
7-1.98551 -4.9159 (7*2π)/2454351 weeks
8-.68487 -3.48943 (8*2π)/2454307 weeks
9-.10342 -3.64237 (9*2π)/2454273 weeks
10-.65049 -3.50913 (10*2π)/2454245 weeks
11-.99681 -2.95662 (11*2π)/2454223 weeks
12-1.22965 -2.09144 (12*2π)/2454205 weeks
13-.90679 -.82644 (13*2π)/2454189 weeks
14.75093 -.35465 (14*2π)/2454175 weeks
151.55352 -1.36723 (15*2π)/2454164 weeks
161.16167 -2.54119 (16*2π)/2454153 weeks
17.18899 -2.366 (17*2π)/2454144 weeks
18.112 -1.74517 (18*2π)/2454136 weeks
19.1632 -1.78265 (19*2π)/2454129 weeks
20.07872 -1.34861 (20*2π)/2454123 weeks
21.70546 -1.56704 (21*2π)/2454117 weeks
22.18449 -1.95744 (22*2π)/2454112 weeks
23-.31124 -1.47438 (23*2π)/2454107 weeks
24.07004 -1.05394 (24*2π)/2454102 weeks
25.27647 -.98698 (25*2π)/245498 weeks
26.77913 -1.0227 (26*2π)/245494 weeks
27.68824 -1.82289 (27*2π)/245491 weeks
28.03925 -1.63468 (28*2π)/245488 weeks
29.16321 -1.44102 (29*2π)/245485 weeks
30-.07505 -1.37581 (30*2π)/245482 weeks
31.07537 -1.00458 (31*2π)/245479 weeks
32.61675 -1.28371 (32*2π)/245477 weeks
33.18831 -1.82002 (33*2π)/245474 weeks
34-.26703 -1.51753 (34*2π)/245472 weeks
35-.11892 -1.3865 (35*2π)/245470 weeks
36-.45959 -1.47022 (36*2π)/245468 weeks
37-.67056 -1.01829 (37*2π)/245466 weeks
38-.3121 -.65975 (38*2π)/245465 weeks
39-.0666 -.77375 (39*2π)/245463 weeks
40-.05292 -1.0455 (40*2π)/245461 weeks
41-.35476 -1.05276 (41*2π)/245460 weeks
42-.44405 -.82272 (42*2π)/245458 weeks
43-.45904 -.75452 (43*2π)/245457 weeks
44-.4745 -.37802 (44*2π)/245456 weeks
45-.15674 -.33718 (45*2π)/245455 weeks
46-.18553 -.4038 (46*2π)/245453 weeks
47.01549 -.10014 (47*2π)/245452 weeks
48.35497 -.48593 (48*2π)/245451 weeks
49.10438 -.51549 (49*2π)/245450 weeks
50.36952 -.48111 (50*2π)/245449 weeks
51.30298 -.91028 (51*2π)/245448 weeks
52-.1192 -.80067 (52*2π)/245447 weeks
53-.03643 -.54698 (53*2π)/245446 weeks
54.05498 -.55566 (54*2π)/245445 weeks
55.11118 -.59336 (55*2π)/245445 weeks
56.11404 -.6061 (56*2π)/245444 weeks
57.14885 -.67537 (57*2π)/245443 weeks
58.06482 -.82251 (58*2π)/245442 weeks
59-.15442 -.67424 (59*2π)/245442 weeks
60.05408 -.5867 (60*2π)/245441 weeks
61-.03419 -.82909 (61*2π)/245440 weeks
62-.30161 -.62878 (62*2π)/245440 weeks
63-.20308 -.47822 (63*2π)/245439 weeks
64-.19002 -.45924 (64*2π)/245438 weeks
65-.10474 -.26888 (65*2π)/245438 weeks
66.04484 -.40589 (66*2π)/245437 weeks
67.04373 -.41264 (67*2π)/245437 weeks
68-.01132 -.44105 (68*2π)/245436 weeks
69.03715 -.41401 (69*2π)/245436 weeks
70.08639 -.48328 (70*2π)/245435 weeks
71-.09641 -.5092 (71*2π)/245435 weeks
72-.01468 -.2953 (72*2π)/245434 weeks
73.1053 -.42267 (73*2π)/245434 weeks
74.00209 -.42731 (74*2π)/245433 weeks
75.14522 -.32044 (75*2π)/245433 weeks
76.19112 -.54071 (76*2π)/245432 weeks
77.028 -.61611 (77*2π)/245432 weeks
78-.04457 -.51341 (78*2π)/245431 weeks
79-.07747 -.49567 (79*2π)/245431 weeks
80-.10433 -.43808 (80*2π)/245431 weeks
81-.08792 -.3134 (81*2π)/245430 weeks
82.01212 -.31262 (82*2π)/245430 weeks
83.07954 -.30867 (83*2π)/245430 weeks
84.11777 -.35611 (84*2π)/245429 weeks
85.14328 -.44765 (85*2π)/245429 weeks
86.06906 -.44787 (86*2π)/245429 weeks
87.10375 -.48956 (87*2π)/245428 weeks
88.05305 -.54946 (88*2π)/245428 weeks
89-.10062 -.48047 (89*2π)/245428 weeks
90.01321 -.38734 (90*2π)/245427 weeks
91.0297 -.49331 (91*2π)/245427 weeks
92-.10316 -.45028 (92*2π)/245427 weeks
93.00612 -.37651 (93*2π)/245426 weeks
94.03332 -.47845 (94*2π)/245426 weeks
95-.14033 -.4802 (95*2π)/245426 weeks
96-.06177 -.3064 (96*2π)/245426 weeks
97.05826 -.38173 (97*2π)/245425 weeks
98.00228 -.5217 (98*2π)/245425 weeks
99-.09406 -.47988 (99*2π)/245425 weeks
100-.13736 -.44958 (100*2π)/245425 weeks
101-.16678 -.43401 (101*2π)/245424 weeks
102-.22178 -.39316 (102*2π)/245424 weeks
103-.27487 -.26901 (103*2π)/245424 weeks
104-.1758 -.13819 (104*2π)/245424 weeks
105-.0811 -.14346 (105*2π)/245423 weeks
106-.01067 -.18598 (106*2π)/245423 weeks
107.00424 -.2108 (107*2π)/245423 weeks
108-.02058 -.19569 (108*2π)/245423 weeks
109.06817 -.1603 (109*2π)/245423 weeks
110.1302 -.26602 (110*2π)/245422 weeks
111.0441 -.35152 (111*2π)/245422 weeks
112.00951 -.29788 (112*2π)/245422 weeks
113-.00341 -.28401 (113*2π)/245422 weeks
114-.05396 -.26705 (114*2π)/245422 weeks
115.00174 -.12626 (115*2π)/245421 weeks
116.12983 -.13513 (116*2π)/245421 weeks
117.22099 -.20666 (117*2π)/245421 weeks
118.28485 -.33673 (118*2π)/245421 weeks
119.18199 -.50843 (119*2π)/245421 weeks
120-.00685 -.49418 (120*2π)/245420 weeks
121-.03285 -.35339 (121*2π)/245420 weeks
122.01641 -.31881 (122*2π)/245420 weeks
123.05908 -.26986 (123*2π)/245420 weeks
124.17822 -.38233 (124*2π)/245420 weeks
125.052 -.50567 (125*2π)/245420 weeks
126-.04892 -.36661 (126*2π)/245419 weeks
127.09646 -.37002 (127*2π)/245419 weeks
128.03423 -.48981 (128*2π)/245419 weeks
129.00158 -.45185 (129*2π)/245419 weeks
130-.05006 -.57353 (130*2π)/245419 weeks
131-.24544 -.45352 (131*2π)/245419 weeks
132-.17524 -.27924 (132*2π)/245419 weeks
133-.09915 -.32474 (133*2π)/245418 weeks
134-.10585 -.25881 (134*2π)/245418 weeks
135.02644 -.33359 (135*2π)/245418 weeks
136-.10842 -.42367 (136*2π)/245418 weeks
137-.11942 -.33906 (137*2π)/245418 weeks
138-.16616 -.36056 (138*2π)/245418 weeks
139-.20396 -.22269 (139*2π)/245418 weeks
140-.02409 -.21078 (140*2π)/245418 weeks
141-.05029 -.35827 (141*2π)/245417 weeks
142-.16551 -.32253 (142*2π)/245417 weeks
143-.18713 -.25119 (143*2π)/245417 weeks
144-.15903 -.15659 (144*2π)/245417 weeks
145-.02486 -.13078 (145*2π)/245417 weeks
146.0868 -.25217 (146*2π)/245417 weeks
147-.0381 -.42121 (147*2π)/245417 weeks
148-.20778 -.35045 (148*2π)/245417 weeks
149-.21982 -.21067 (149*2π)/245416 weeks
150-.18011 -.11929 (150*2π)/245416 weeks
151-.01815 -.0507 (151*2π)/245416 weeks
152.11929 -.20141 (152*2π)/245416 weeks
153.01651 -.37696 (153*2π)/245416 weeks
154-.11837 -.3352 (154*2π)/245416 weeks
155-.13911 -.26524 (155*2π)/245416 weeks
156-.12956 -.2405 (156*2π)/245416 weeks
157-.16109 -.1966 (157*2π)/245416 weeks
158-.06965 -.148 (158*2π)/245416 weeks
159-.08286 -.20567 (159*2π)/245415 weeks
160-.08059 -.16313 (160*2π)/245415 weeks
161-.03452 -.16079 (161*2π)/245415 weeks
162.00871 -.20243 (162*2π)/245415 weeks
163-.03324 -.27648 (163*2π)/245415 weeks
164-.11211 -.23227 (164*2π)/245415 weeks
165-.04903 -.18367