Back to list of Stocks    See Also: Seasonal Analysis of USAUXGenetic Algorithms Stock Portfolio Generator, and Fourier Calculator

Fourier Analysis of USAUX (USAA Mutual Fds Tr Aggressive )


USAUX (USAA Mutual Fds Tr Aggressive ) appears to have interesting cyclic behaviour every 142 weeks (1.4677*sine), 168 weeks (1.3623*sine), and 185 weeks (.8526*cosine).

USAUX (USAA Mutual Fds Tr Aggressive ) has an average price of 14.78 (topmost row, frequency = 0).



Click on the checkboxes shown on the right to see how the various frequencies contribute to the graph. Look for large magnitude coefficients (sine or cosine), as these are associated with frequencies which contribute most to the associated stock plot. If you find a large magnitude coefficient which dramatically changes the graph, look at the associated "Period" in weeks, as you may have found a significant recurring cycle for the stock of interest.

Right click on the graph above to see the menu of operations (download, full screen, etc.)

Fourier Analysis

Using data from 7/29/1981 to 1/9/2017 for USAUX (USAA Mutual Fds Tr Aggressive ), this program was able to calculate the following Fourier Series:
Sequence #Cosine Coefficients Sine Coefficients FrequenciesPeriod
014.78056   0 
1-.03185 -9.23908 (1*2π)/18501,850 weeks
24.2278 -3.81886 (2*2π)/1850925 weeks
3-.41671 -4.22477 (3*2π)/1850617 weeks
42.21812 -3.07228 (4*2π)/1850463 weeks
5-1.61833 -3.79655 (5*2π)/1850370 weeks
6.39643 -.40908 (6*2π)/1850308 weeks
7.20328 -2.91242 (7*2π)/1850264 weeks
8-.38916 -.4693 (8*2π)/1850231 weeks
9-.23634 -2.5692 (9*2π)/1850206 weeks
10-.85257 .30345 (10*2π)/1850185 weeks
11.61846 -1.36232 (11*2π)/1850168 weeks
12-.19821 -.65574 (12*2π)/1850154 weeks
13.38168 -1.46766 (13*2π)/1850142 weeks
14-.60663 -.47367 (14*2π)/1850132 weeks
15.57935 -.59132 (15*2π)/1850123 weeks
16-.3496 -.78669 (16*2π)/1850116 weeks
17.54495 -.93391 (17*2π)/1850109 weeks
18-.58128 -.37869 (18*2π)/1850103 weeks
19.55514 -.29859 (19*2π)/185097 weeks
20-.11108 -.77594 (20*2π)/185093 weeks
21.25054 -.36439 (21*2π)/185088 weeks
22-.1144 -.66189 (22*2π)/185084 weeks
23-.03413 -.19832 (23*2π)/185080 weeks
24.31684 -.59121 (24*2π)/185077 weeks
25-.00206 -.47714 (25*2π)/185074 weeks
26.03994 -.69614 (26*2π)/185071 weeks
27-.37886 -.42994 (27*2π)/185069 weeks
28-.01033 -.37076 (28*2π)/185066 weeks
29-.00651 -.23634 (29*2π)/185064 weeks
30.16732 -.58967 (30*2π)/185062 weeks
31-.09074 -.35108 (31*2π)/185060 weeks
32-.03257 -.38211 (32*2π)/185058 weeks
33-.13803 -.30604 (33*2π)/185056 weeks
34-.06133 -.38754 (34*2π)/185054 weeks
35-.08455 -.23582 (35*2π)/185053 weeks
36.10026 -.40093 (36*2π)/185051 weeks
37-.00926 -.23678 (37*2π)/185050 weeks
38.08586 -.34675 (38*2π)/185049 weeks
39-.22459 -.36333 (39*2π)/185047 weeks
40-.04674 -.40719 (40*2π)/185046 weeks
41-.17405 .00235 (41*2π)/185045 weeks
42.11617 -.37069 (42*2π)/185044 weeks
43-.12461 -.2227 (43*2π)/185043 weeks
44.06157 -.36831 (44*2π)/185042 weeks
45-.22141 -.04415 (45*2π)/185041 weeks
46.208 -.32469 (46*2π)/185040 weeks
47-.21148 -.23975 (47*2π)/185039 weeks
48.13413 -.27708 (48*2π)/185039 weeks
49-.2622 -.08037 (49*2π)/185038 weeks
50.18588 -.23183 (50*2π)/185037 weeks
51-.13682 -.34115 (51*2π)/185036 weeks
52-.00303 -.07433 (52*2π)/185036 weeks
53-.00035 -.3262 (53*2π)/185035 weeks
54-.13467 -.00457 (54*2π)/185034 weeks
55.08829 -.33504 (55*2π)/185034 weeks
56-.1387 .02082 (56*2π)/185033 weeks
57.15524 -.28062 (57*2π)/185032 weeks
58-.03549 -.03003 (58*2π)/185032 weeks
59.1891 -.38448 (59*2π)/185031 weeks
60-.17081 -.10003 (60*2π)/185031 weeks
61.04323 -.21357 (61*2π)/185030 weeks
62-.11457 -.10205 (62*2π)/185030 weeks
63.12288 -.23046 (63*2π)/185029 weeks
64-.13106 -.14533 (64*2π)/185029 weeks
65.15468 -.14988 (65*2π)/185028 weeks
66-.15376 -.17736 (66*2π)/185028 weeks
67.11595 -.18087 (67*2π)/185028 weeks
68-.1227 -.20496 (68*2π)/185027 weeks
69.0783 -.14605 (69*2π)/185027 weeks
70-.07671 -.23286 (70*2π)/185026 weeks
71.07332 -.13153 (71*2π)/185026 weeks
72-.14179 -.19089 (72*2π)/185026 weeks
73.1015 -.05822 (73*2π)/185025 weeks
74-.05913 -.32307 (74*2π)/185025 weeks
75.00952 -.08874 (75*2π)/185025 weeks
76-.08789 -.28643 (76*2π)/185024 weeks
77-.0609 -.00576 (77*2π)/185024 weeks
78-.02777 -.23515 (78*2π)/185024 weeks
79-.13396 -.00116 (79*2π)/185023 weeks
80.09927 -.14995 (80*2π)/185023 weeks
81-.09483 -.10179 (81*2π)/185023 weeks
82.11404 -.06415 (82*2π)/185023 weeks
83-.13842 -.17981 (83*2π)/185022 weeks
84.09404 -.01395 (84*2π)/185022 weeks
85-.0996 -.20666 (85*2π)/185022 weeks
86.02398 -.04621 (86*2π)/185022 weeks
87-.03139 -.1672 (87*2π)/185021 weeks
88.05412 .04283 (88*2π)/185021 weeks
89.1077 -.20215 (89*2π)/185021 weeks
90-.01356 -.11825 (90*2π)/185021 weeks
91-.01592 -.20021 (91*2π)/185020 weeks
92-.02478 -.009 (92*2π)/185020 weeks
93.01833 -.17665 (93*2π)/185020 weeks
94.01796 -.0556 (94*2π)/185020 weeks
95-.0304 -.13967 (95*2π)/185019 weeks
96.09175 -.07642 (96*2π)/185019 weeks
97.00146 -.17792 (97*2π)/185019 weeks
98.03397 -.18218 (98*2π)/185019 weeks
99-.00357 -.15743 (99*2π)/185019 weeks
100-.02907 -.15241 (100*2π)/185019 weeks
101.01789 -.10605 (101*2π)/185018 weeks
102-.03467 -.1967 (102*2π)/185018 weeks
103.00386 -.1473 (103*2π)/185018 weeks
104-.12355 -.15449 (104*2π)/185018 weeks
105.00858 -.09507 (105*2π)/185018 weeks
106-.0888 -.13375 (106*2π)/185017 weeks
107-.00865 -.13527 (107*2π)/185017 weeks
108-.12589 -.12006 (108*2π)/185017 weeks
109.01065 -.02706 (109*2π)/185017 weeks
110-.02019 -.13492 (110*2π)/185017 weeks
111-.00809 -.07271 (111*2π)/185017 weeks
112-.09627 -.19016 (112*2π)/185017 weeks
113-.06659 .0492 (113*2π)/185016 weeks
114.02398 -.1417 (114*2π)/185016 weeks
115.00496 .00201 (115*2π)/185016 weeks
116.00823 -.21465 (116*2π)/185016 weeks
117-.11197 .00956 (117*2π)/185016 weeks
118.05586 -.13505 (118*2π)/185016 weeks
119-.08061 -.04867 (119*2π)/185016 weeks
120.05668 -.09285 (120*2π)/185015 weeks
121-.10729 -.09852 (121*2π)/185015 weeks
122.11004 -.04154 (122*2π)/185015 weeks
123-.07779 -.13983 (123*2π)/185015 weeks
124.06063 -.03846 (124*2π)/185015 weeks
125-.08274 -.18571 (125*2π)/185015 weeks
126.00962 -.02427 (126*2π)/185015 weeks
127-.03742 -.19122 (127*2π)/185015 weeks
128-.03177 .01038 (128*2π)/185014 weeks
129.0108 -.14958 (129*2π)/185014 weeks
130-.05696 .00621 (130*2π)/185014 weeks
131.04462 -.15767 (131*2π)/185014 weeks
132-.04107 -.04328 (132*2π)/185014 weeks
133.00959 -.10267 (133*2π)/185014 weeks
134-.02378 -.02405 (134*2π)/185014 weeks
135.03045 -.09569 (135*2π)/185014 weeks
136-.00447 -.1072 (136*2π)/185014 weeks
137-.0202 -.11997 (137*2π)/185014 weeks
138-.0301 -.11086 (138*2π)/185013 weeks
139-.03126 -.08819 (139*2π)/185013 weeks
140-.05586 -.05362 (140*2π)/185013 weeks
141.02302 -.07104 (141*2π)/185013 weeks
142-.0517 -.0942 (142*2π)/185013 weeks
143.00362 -.07473 (143*2π)/185013 weeks
144-.04549 -.09754 (144*2π)/185013 weeks
145-.02088 -.0358 (145*2π)/185013 weeks
146-.02862 -.0792 (146*2π)/185013 weeks
147.0038 -.01762 (147*2π)/185013 weeks
148.01527 -.12348 (148*2π)/185013 weeks
149.01684 -.01457 (149*2π)/185012 weeks
150.0055 -.17901 (150*2π)/185012 weeks
151-.06368 -.02174 (151*2π)/185012 weeks
152.0245 -.1279 (152*2π)/185012 weeks
153-.05417 -.05947 (153*2π)/185012 weeks
154-.0075 -.12732 (154*2π)/185012 weeks
155-.07122 -.03465 (155*2π)/185012 weeks
156.04899 -.10677 (156*2π)/185012 weeks
157-.10793 -.08249 (157*2π)/185012 weeks
158-.00434 -.08048 (158*2π)/185012 weeks
159-.10188 -.05432 (159*2π)/185012 weeks
160.02417 -.01473 (160*2π)/185012 weeks
161-.0278 -.04914 (161*2π)/185011 weeks
162.00721 -.03869 (162*2π)/185011 weeks
163.0093 -.06734 (163*2π)/185011 weeks
164.00773 -.04681 (164*2π)/185011 weeks
165-.01382 -.10347 (165*2π)/185011 weeks
166-.01886 -.06035 (166*2π)/185011 weeks
167.00975 -.06472 (167*2π)/185011 weeks
168-.00583 -.0966 (168*2π)/185011 weeks
169-.03235 -.05843 (169*2π)/185011 weeks
170-.0196 -.0803 (170*2π)/185011 weeks
171-.03025 -.04136 (171*2π)/185011 weeks
172.02261 -.07336 (172*2π)/185011 weeks
173-.02651 -.10351 (173*2π)/185011 weeks
174-.00788 -.05033 (174*2π)/185011 weeks
175-.02295 -.11278 (175*2π)/185011 weeks
176-.04175 -.08607 (176*2π)/185011 weeks
177-.04122 -.07193 (177*2π)/185010 weeks
178-.02391 -.04961 (178*2π)/185010 weeks
179-.02839 -.07376 (179*2π)/185010 weeks
180-.00877 -.06758 (180*2π)/185010 weeks
181-.04229 -.06243 (181*2π)/185010 weeks
182.0051 -.06523 (182*2π)/185010 weeks
183-.03974 -.06624 (183*2π)/185010 weeks
184-.035 -.0444 (184*2π)/185010 weeks
185-.03259 -.05265 (185*2π)/185010 weeks
186-.01412 -.05777 (186*2π)/185010 weeks
187-.01045 -.0747 (187*2π)/185010 weeks
188-.05558 -.09438 (188*2π)/185010 weeks
189-.04204 -.03668 (189*2π)/185010 weeks
190-.05289 -.04418 (190*2π)/185010 weeks
191.00376 -.0013 (191*2π)/185010 weeks
192-.03214 -.08282 (192*2π)/185010 weeks
193-.01031 -.03351 (193*2π)/185010 weeks
194-.00958 -.06256 (194*2π)/185010 weeks
195-.00409 -.02918 (195*2π)/18509 weeks
196-.02207 -.08272 (196*2π)/18509 weeks
197-.02657 -.03432 (197*2π)/18509 weeks
198-.01168 -.06236 (198*2π)/18509 weeks
199-.04263 -.04619 (199*2π)/18509 weeks
200.00044 -.07473 (200*2π)/18509 weeks
201-.05322 -.06558 (201*2π)/18509 weeks
202-.02261 -.02254 (202*2π)/18509 weeks
203-.0345 -.05452 (203*2π)/18509 weeks
204.00574 -.02642 (204*2π)/18509 weeks
205-.0396 -.07151 (205*2π)/18509 weeks
206-.00221 -.01922 (206*2π)/18509 weeks
207-.03374 -.07838 (207*2π)/18509 weeks
208-.03062 -.01597 (208*2π)/18509 weeks
209-.02329 -.04878 (209*2π)/18509 weeks
210.00159 -.01201 (210*2π)/18509 weeks
211.00379 -.07897 (211*2π)/18509 weeks
212-.02461 -.01834 (212*2π)/18509 weeks
213.00731 -.10384 (213*2π)/18509 weeks
214-.03643 -.00511 (214*2π)/18509 weeks
215.00255 -.11901 (215*2π)/18509 weeks
216-.07109 -.01653 (216*2π)/18509 weeks
217.01514 -.07644 (217*2π)/18509 weeks
218-.06649 .00434 (218*2π)/18508 weeks
219.02975 -.07812 (219*2π)/18508 weeks
220-.0714 -.01565 (220*2π)/18508 weeks
221.01464 -.04424 (221*2π)/18508 weeks
222-.03297 -.02059 (222*2π)/18508 weeks
223.039 -.03841 (223*2π)/18508 weeks
224-.02459 -.06395 (224*2π)/18508 weeks
225.03117 -.04991 (225*2π)/18508 weeks
226-.03112 -.08887 (226*2π)/18508 weeks
227-.01669 -.03526 (227*2π)/18508 weeks
228-.04733 -.06811 (228*2π)/18508 weeks
229-.02132 -.02109 (229*2π)/18508 weeks
230-.02161 -.04409 (230*2π)/18508 weeks
231.00609 -.01226 (231*2π)/18508 weeks
232.00062 -.06636 (232*2π)/18508 weeks
233-.0309 -.04768 (233*2π)/18508 weeks
234-.00544 -.06103 (234*2π)/18508 weeks
235-.04741 -.04936 (235*2π)/18508 weeks
236-.01847 -.03316 (236*2π)/18508 weeks
237-.02891 -.02897 (237*2π)/18508 weeks
238.03234 -.04164 (238*2π)/18508 weeks
239-.02779 -.07399 (239*2π)/18508 weeks
240-.03375 -.03561 (240*2π)/18508 weeks
241-.00171 -.02815 (241*2π)/18508 weeks
242.01448 -.03954 (242*2π)/18508 weeks
243-.01944 -.06929 (243*2π)/18508 weeks
244-.02236 -.03698 (244*2π)/18508 weeks
245-.01482 -.06447 (245*2π)/18508 weeks
246-.01039 -.03354 (246*2π)/18508 weeks
247-.00995 -.08719 (247*2π)/18507 weeks
248-.06603 -.06147 (248*2π)/18507 weeks
249-.02901 -.03946 (249*2π)/18507 weeks
250-.04032 -.01787 (250*2π)/18507 weeks
251.00575 -.05462 (251*2π)/18507 weeks
252-.03334 -.06145 (252*2π)/18507 weeks
253-.01497 -.03227 (253*2π)/18507 weeks
254-.04638 -.0445 (254*2π)/18507 weeks
255-.0267 .00348 (255*2π)/18507 weeks
256-.00198 -.04109 (256*2π)/18507 weeks
257-.00308 -.02034 (257*2π)/18507 weeks
258.00886 -.06011 (258*2π)/18507 weeks
259-.00743 -.0549 (259*2π)/18507 weeks
260-.03878 -.04948 (260*2π)/18507 weeks
261-.03262 -.03125 (261*2π)/18507 weeks
262-.02263 -.01428 (262*2π)/18507 weeks
263.00243 -.03459 (263*2π)/18507 weeks
264-.00612 -.05502 (264*2π)/18507 weeks
265-.00873 -.05597 (265*2π)/18507 weeks
266-.04479 -.05025 (266*2π)/18507 weeks
267-.03122 -.01646 (267*2π)/18507 weeks
268-.01185 -.04096 (268*2π)/18507 weeks
269-.00231 -.03063 (269*2π)/18507 weeks
270-.0272 -.05739 (270*2π)/18507 weeks
271-.00688 -.01942 (271*2π)/18507 weeks
272-.01342 -.04969 (272*2π)/18507 weeks
273-.00043 -.04774 (273*2π)/18507 weeks
274-.03783 -.05378 (274*2π)/18507 weeks
275-.02881 -.02043 (275*2π)/18507 weeks
276.00164 -.03624 (276*2π)/18507 weeks
277-.01699 -.02697 (277*2π)/18507 weeks
278.00328 -.05362 (278*2π)/18507 weeks
279-.03309 -.03381 (279*2π)/18507 weeks
280-.00812 -.05199 (280*2π)/18507 weeks
281-.02366 -.03234 (281*2π)/18507 weeks
282-.01807 -.03503 (282*2π)/18507 weeks
283-.02161 -.03057 (283*2π)/18507 weeks
284.00073 -.02985 (284*2π)/18507 weeks
285-.01455 -.05307 (285*2π)/18506 weeks
286.00453 -.0376 (286*2π)/18506 weeks
287-.03541 -.07207 (287*2π)/18506 weeks
288-.02147 -.00085 (288*2π)/18506 weeks
289-.00425 -.04559 (289*2π)/18506 weeks
290-.01674 -.02001 (290*2π)/18506 weeks
291-.00081 -.0619 (291*2π)/18506 weeks
292-.04427 -.0337 (292*2π)/18506 weeks
293.01701 -.04284 (293*2π)/18506 weeks
294-.02536 -.04543 (294*2π)/18506 weeks
295-.00354 -.05492 (295*2π)/18506 weeks
296-.05179 -.0523 (296*2π)/18506 weeks
297-.01823 -.02185 (297*2π)/18506 weeks
298-.01924 -.07394 (298*2π)/18506 weeks
299-.03134 -.02243 (299*2π)/18506 weeks
300-.01501 -.06558 (300*2π)/18506 weeks
301-.06635 -.0149 (301*2π)/18506 weeks
302.00166 -.04347 (302*2π)/18506 weeks
303-.04766 -.03766 (303*2π)/18506 weeks
304-.00756 -.03354 (304*2π)/18506 weeks
305-.05354 -.0255 (305*2π)/18506 weeks
306.00402 -.02877 (306*2π)/18506 weeks
307-.03927 -.02899 (307*2π)/18506 weeks
308-.00849 -.03278 (308*2π)/18506 weeks
309-.02812 -.03307 (309*2π)/18506 weeks
310-.02185 -.03031 (310*2π)/18506 weeks
311-.0201 -.01862 (311*2π)/18506 weeks
312-.01008 -.04382 (312*2π)/18506 weeks
313-.03414 -.02267 (313*2π)/18506 weeks
314-.0113 -.04891 (314*2π)/18506 weeks
315-.04499 -.01394 (315*2π)/18506 weeks
316.00115 -.02196 (316*2π)/18506 weeks
317-.02525 -.0178 (317*2π)/18506 weeks
318.01349 -.02975 (318*2π)/18506 weeks
319-.04117 -.05161 (319*2π)/18506 weeks
320-.0017 -.02602 (320*2π)/18506 weeks
321-.03631 -.04687 (321*2π)/18506 weeks
322-.01846 -.00293 (322*2π)/18506 weeks
323-.01309 -.0431 (323*2π)/18506 weeks
324-.02148 -.01085 (324*2π)/18506 weeks
325-.00923 -.05427 (325*2π)/18506 weeks
326-.02983 -.00906 (326*2π)/18506 weeks
327-.00096 -.04586 (327*2π)/18506 weeks
328-.0301 -.02347 (328*2π)/18506 weeks
329-.0024 -.03804 (329*2π)/18506 weeks
330-.05179 -.0283 (330*2π)/18506 weeks
331.01617 -.00624 (331*2π)/18506 weeks
332-.0278 -.05232 (332*2π)/18506 weeks
333-.00016 -.00829 (333*2π)/18506 weeks
334-.04146 -.04145 (334*2π)/18506 weeks
335-.00174 .00692 (335*2π)/18506 weeks
336-.00859 -.05056 (336*2π)/18506 weeks
337-.00297 -.02306 (337*2π)/18505 weeks
338-.01706 -.04427 (338*2π)/18505 weeks
339-.00454 -.02019 (339*2π)/18505 weeks
340-.01231 -.04941 (340*2π)/18505 weeks
341-.02608 -.02946 (341*2π)/18505 weeks
342-.00549 -.06361 (342*2π)/18505 weeks
343-.05083 -.02564 (343*2π)/18505 weeks
344.013 -.03684 (344*2π)/18505 weeks
345-.05709 -.03126 (345*2π)/18505 weeks
346.0197 -.00571 (346*2π)/18505 weeks
347-.05635 -.06769 (347*2π)/18505 weeks
348-.01141 .01881 (348*2π)/18505 weeks
349-.02267 -.06805 (349*2π)/18505 weeks
350-.0133 .00829 (350*2π)/18505 weeks
351-.0129 -.06897 (351*2π)/18505 weeks
352-.0387 .01075 (352*2π)/18505 weeks
353.00651 -.05971 (353*2π)/18505 weeks
354-.03114 -.02595 (354*2π)/18505 weeks
355-.02099 -.06107 (355*2π)/18505 weeks
356-.06177 -.02039 (356*2π)/18505 weeks
357-.00226 -.01112 (357*2π)/18505 weeks
358-.03746 -.02765 (358*2π)/18505 weeks
359-.00907 -.02469 (359*2π)/18505 weeks
360-.03994 -.02513 (360*2π)/18505 weeks
361.00188 -.00766 (361*2π)/18505 weeks
362-.0267 -.04382 (362*2π)/18505 weeks
363-.00019 -.01096 (363*2π)/18505 weeks
364-.02865 -.04606 (364*2π)/18505 weeks
365-.01842 .01017 (365*2π)/18505 weeks
366.00601 -.05617 (366*2π)/18505 weeks
367-.01429 -.00068 (367*2π)/18505 weeks
368-.01091 -.06651 (368*2π)/18505 weeks
369-.03922 .00149 (369*2π)/18505 weeks
370.01375 -.05772 (370*2π)/18505 weeks
371-.04234 -.00439 (371*2π)/18505 weeks
372.00828 -.06565 (372*2π)/18505 weeks
373-.05183 -.02579 (373*2π)/18505 weeks
374-.00822 -.03375 (374*2π)/18505 weeks
375-.05086 -.02097 (375*2π)/18505 weeks
376.01049 -.03206 (376*2π)/18505 weeks
377-.04737 -.04206 (377*2π)/18505 weeks
378-.00908 -.02011 (378*2π)/18505 weeks
379-.04594 -.02688 (379*2π)/18505 weeks
380-.01221 -.02001 (380*2π)/18505 weeks
381-.03649 -.03593 (381*2π)/18505 weeks
382-.02577 -.00333 (382*2π)/18505 weeks
383-.00341 -.02633 (383*2π)/18505 weeks
384-.01679 -.02506 (384*2π)/18505 weeks
385-.02221 -.04311 (385*2π)/18505 weeks
386-.04367 -.0127 (386*2π)/18505 weeks
387-.01398 -.02611 (387*2π)/18505 weeks
388-.03154 -.01118 (388*2π)/18505 weeks
389-.00537 -.02905 (389*2π)/18505 weeks
390-.03618 -.01239 (390*2π)/18505 weeks
391-.00665 -.02289 (391*2π)/18505 weeks
392-.03736 .00263 (392*2π)/18505 weeks
393.01117 -.02575 (393*2π)/18505 weeks
394-.04225 -.01785 (394*2π)/18505 weeks
395.01586 -.01488 (395*2π)/18505 weeks
396-.03293 -.02207 (396*2π)/18505 weeks
397.02289 -.02521 (397*2π)/18505 weeks
398-.05155 -.03882 (398*2π)/18505 weeks
399.01408 -.00007 (399*2π)/18505 weeks
400-.02593