Back to list of Stocks    See Also: Seasonal Analysis of USAUXGenetic Algorithms Stock Portfolio Generator, and Fourier Calculator

# Fourier Analysis of USAUX (USAA Mutual Fds Tr Aggressive )

USAUX (USAA Mutual Fds Tr Aggressive ) appears to have interesting cyclic behaviour every 143 weeks (1.5393*sine), 169 weeks (1.5387*sine), and 155 weeks (.6643*sine).

USAUX (USAA Mutual Fds Tr Aggressive ) has an average price of 14.91 (topmost row, frequency = 0).

Click on the checkboxes shown on the right to see how the various frequencies contribute to the graph. Look for large magnitude coefficients (sine or cosine), as these are associated with frequencies which contribute most to the associated stock plot. If you find a large magnitude coefficient which dramatically changes the graph, look at the associated "Period" in weeks, as you may have found a significant recurring cycle for the stock of interest.

Right click on the graph above to see the menu of operations (download, full screen, etc.)

## Fourier Analysis

Using data from 7/29/1981 to 3/20/2017 for USAUX (USAA Mutual Fds Tr Aggressive ), this program was able to calculate the following Fourier Series:
Sequence #Cosine Coefficients Sine Coefficients FrequenciesPeriod
014.91374   0
1.09299 -9.29861 (1*2π)/18601,860 weeks
24.32737 -4.02699 (2*2π)/1860930 weeks
3-.42501 -4.26903 (3*2π)/1860620 weeks
42.17057 -3.26944 (4*2π)/1860465 weeks
5-1.75791 -3.63436 (5*2π)/1860372 weeks
6.58062 -.46797 (6*2π)/1860310 weeks
7.03999 -2.93628 (7*2π)/1860266 weeks
8-.2626 -.42838 (8*2π)/1860233 weeks
9-.41298 -2.48549 (9*2π)/1860207 weeks
10-.51416 .43725 (10*2π)/1860186 weeks
11.61201 -1.53871 (11*2π)/1860169 weeks
12-.10833 -.66428 (12*2π)/1860155 weeks
13.25953 -1.53926 (13*2π)/1860143 weeks
14-.45255 -.32427 (14*2π)/1860133 weeks
15.64525 -.78527 (15*2π)/1860124 weeks
16-.33246 -.73191 (16*2π)/1860116 weeks
17.46789 -1.05993 (17*2π)/1860109 weeks
18-.43248 -.19971 (18*2π)/1860103 weeks
19.65906 -.55032 (19*2π)/186098 weeks
20-.18461 -.75926 (20*2π)/186093 weeks
21.29253 -.48024 (21*2π)/186089 weeks
22-.17026 -.62063 (22*2π)/186085 weeks
23.1062 -.25598 (23*2π)/186081 weeks
24.21526 -.76481 (24*2π)/186078 weeks
25-.07321 -.4919 (25*2π)/186074 weeks
26-.12292 -.66745 (26*2π)/186072 weeks
27-.32204 -.23508 (27*2π)/186069 weeks
28.07149 -.38932 (28*2π)/186066 weeks
29.08799 -.30667 (29*2π)/186064 weeks
30.03012 -.66249 (30*2π)/186062 weeks
31-.08138 -.28106 (31*2π)/186060 weeks
32-.03965 -.35679 (32*2π)/186058 weeks
33-.0826 -.25173 (33*2π)/186056 weeks
34-.04401 -.36782 (34*2π)/186055 weeks
35.02046 -.245 (35*2π)/186053 weeks
36.05494 -.47039 (36*2π)/186052 weeks
37.02977 -.2514 (37*2π)/186050 weeks
38.00203 -.3881 (38*2π)/186049 weeks
39-.21932 -.20317 (39*2π)/186048 weeks
40-.03753 -.32997 (40*2π)/186047 weeks
41.10042 .00247 (41*2π)/186045 weeks
42.03188 -.48817 (42*2π)/186044 weeks
43-.04779 -.17241 (43*2π)/186043 weeks
44.00771 -.38149 (44*2π)/186042 weeks
45.0234 -.00143 (45*2π)/186041 weeks
46.08967 -.5061 (46*2π)/186040 weeks
47-.12929 -.10361 (47*2π)/186040 weeks
48.09988 -.37054 (48*2π)/186039 weeks
49-.03876 .00849 (49*2π)/186038 weeks
50.11503 -.45301 (50*2π)/186037 weeks
51-.15724 -.19553 (51*2π)/186036 weeks
52.14882 -.17242 (52*2π)/186036 weeks
53-.06743 -.30664 (53*2π)/186035 weeks
54.10781 -.04866 (54*2π)/186034 weeks
55-.03117 -.41786 (55*2π)/186034 weeks
56.11444 -.03893 (56*2π)/186033 weeks
57.00226 -.45933 (57*2π)/186033 weeks
58.06645 -.12804 (58*2π)/186032 weeks
59-.1102 -.4492 (59*2π)/186032 weeks
60-.01492 .02392 (60*2π)/186031 weeks
61-.00401 -.28739 (61*2π)/186030 weeks
62.00368 -.10834 (62*2π)/186030 weeks
63-.00678 -.35539 (63*2π)/186030 weeks
64-.03706 -.08149 (64*2π)/186029 weeks
65.05578 -.33185 (65*2π)/186029 weeks
66-.10857 -.06624 (66*2π)/186028 weeks
67.01826 -.31629 (67*2π)/186028 weeks
68-.09194 -.09096 (68*2π)/186027 weeks
69.04084 -.26501 (69*2π)/186027 weeks
70-.09207 -.13256 (70*2π)/186027 weeks
71.05825 -.22162 (71*2π)/186026 weeks
72-.07366 -.07008 (72*2π)/186026 weeks
73.08883 -.26698 (73*2π)/186025 weeks
74-.18687 -.14098 (74*2π)/186025 weeks
75.0966 -.14073 (75*2π)/186025 weeks
76-.1049 -.11351 (76*2π)/186024 weeks
77.16159 -.11104 (77*2π)/186024 weeks
78-.07897 -.19801 (78*2π)/186024 weeks
79.12651 -.08891 (79*2π)/186024 weeks
80-.02733 -.32394 (80*2π)/186023 weeks
81.00463 -.09036 (81*2π)/186023 weeks
82.03427 -.27311 (82*2π)/186023 weeks
83-.09539 -.05086 (83*2π)/186022 weeks
84.08298 -.26941 (84*2π)/186022 weeks
85-.13349 -.08645 (85*2π)/186022 weeks
86.06527 -.22383 (86*2π)/186022 weeks
87-.07412 -.16487 (87*2π)/186021 weeks
88.08068 -.22314 (88*2π)/186021 weeks
89-.18234 -.20336 (89*2π)/186021 weeks
90-.02645 -.06292 (90*2π)/186021 weeks
91-.07328 -.1171 (91*2π)/186020 weeks
92.07236 -.12724 (92*2π)/186020 weeks
93-.12214 -.16361 (93*2π)/186020 weeks
94.01433 -.13595 (94*2π)/186020 weeks
95-.09289 -.10852 (95*2π)/186020 weeks
96-.03663 -.19215 (96*2π)/186019 weeks
97-.11827 -.05695 (97*2π)/186019 weeks
98-.05644 -.10599 (98*2π)/186019 weeks
99-.01249 -.06634 (99*2π)/186019 weeks
100-.01002 -.07434 (100*2π)/186019 weeks
101.00187 -.11429 (101*2π)/186018 weeks
102-.05759 -.04956 (102*2π)/186018 weeks
103.02403 -.10114 (103*2π)/186018 weeks
104.02471 -.02985 (104*2π)/186018 weeks
105.0282 -.18114 (105*2π)/186018 weeks
106-.0045 -.06115 (106*2π)/186018 weeks
107-.00158 -.15439 (107*2π)/186017 weeks
108.03877 -.07888 (108*2π)/186017 weeks
109.0238 -.22272 (109*2π)/186017 weeks
110-.06419 -.09589 (110*2π)/186017 weeks
111.01535 -.12333 (111*2π)/186017 weeks
112-.0349 -.06236 (112*2π)/186017 weeks
113.0971 -.20381 (113*2π)/186016 weeks
114-.14309 -.15078 (114*2π)/186016 weeks
115.02786 -.12841 (115*2π)/186016 weeks
116-.12278 -.05611 (116*2π)/186016 weeks
117.10823 -.10643 (117*2π)/186016 weeks
118-.13534 -.16527 (118*2π)/186016 weeks
119.03609 -.06982 (119*2π)/186016 weeks
120-.08646 -.15565 (120*2π)/186016 weeks
121.00054 -.03833 (121*2π)/186015 weeks
122-.06465 -.20834 (122*2π)/186015 weeks
123-.0257 .02223 (123*2π)/186015 weeks
124-.01847 -.16699 (124*2π)/186015 weeks
125-.04226 .01028 (125*2π)/186015 weeks
126.02549 -.18589 (126*2π)/186015 weeks
127-.06661 -.04037 (127*2π)/186015 weeks
128.06435 -.17056 (128*2π)/186015 weeks
129-.10238 -.07036 (129*2π)/186014 weeks
130.04874 -.1149 (130*2π)/186014 weeks
131-.12796 -.08082 (131*2π)/186014 weeks
132.05736 -.09088 (132*2π)/186014 weeks
133-.06216 -.09012 (133*2π)/186014 weeks
134.00916 -.09134 (134*2π)/186014 weeks
135-.07985 -.06072 (135*2π)/186014 weeks
136-.00398 -.04767 (136*2π)/186014 weeks
137-.00115 -.0714 (137*2π)/186014 weeks
138.00774 -.09758 (138*2π)/186013 weeks
139.00394 -.11132 (139*2π)/186013 weeks
140-.00672 -.10566 (140*2π)/186013 weeks
141-.06421 -.10453 (141*2π)/186013 weeks
142-.00074 -.05117 (142*2π)/186013 weeks
143-.03478 -.11641 (143*2π)/186013 weeks
144-.00589 -.06935 (144*2π)/186013 weeks
145-.02158 -.12308 (145*2π)/186013 weeks
146-.04898 -.0633 (146*2π)/186013 weeks
147-.03521 -.10118 (147*2π)/186013 weeks
148-.05646 -.02385 (148*2π)/186013 weeks
149.02175 -.09773 (149*2π)/186012 weeks
150-.03437 .00362 (150*2π)/186012 weeks
151.06429 -.13687 (151*2π)/186012 weeks
152-.08163 -.05789 (152*2π)/186012 weeks
153.0448 -.09438 (153*2π)/186012 weeks
154-.05106 -.07914 (154*2π)/186012 weeks
155.02347 -.11995 (155*2π)/186012 weeks
156-.08437 -.07533 (156*2π)/186012 weeks
157.06024 -.07208 (157*2π)/186012 weeks
158-.08387 -.1298 (158*2π)/186012 weeks
159.00036 -.08937 (159*2π)/186012 weeks
160-.1048 -.11372 (160*2π)/186012 weeks
161-.0164 -.0199 (161*2π)/186012 weeks
162-.04589 -.06185 (162*2π)/186011 weeks
163-.01956 -.03597 (163*2π)/186011 weeks
164-.00214 -.05861 (164*2π)/186011 weeks
165-.00662 -.03633 (165*2π)/186011 weeks
166-.00521 -.09868 (166*2π)/186011 weeks
167-.02525 -.06485 (167*2π)/186011 weeks
168.00368 -.05669 (168*2π)/186011 weeks
169.00296 -.0934 (169*2π)/186011 weeks
170-.03382 -.06621 (170*2π)/186011 weeks
171-.01811 -.08445 (171*2π)/186011 weeks
172-.04038 -.04827 (172*2π)/186011 weeks
173.01988 -.0638 (173*2π)/186011 weeks
174-.01867 -.10676 (174*2π)/186011 weeks
175-.01146 -.05127 (175*2π)/186011 weeks
176-.01447 -.1152 (176*2π)/186011 weeks
177-.03848 -.09546 (177*2π)/186011 weeks
178-.04227 -.08171 (178*2π)/186010 weeks
179-.02868 -.05587 (179*2π)/186010 weeks
180-.03059 -.07933 (180*2π)/186010 weeks
181-.01128 -.07169 (181*2π)/186010 weeks
182-.04528 -.06878 (182*2π)/186010 weeks
183.00211 -.06855 (183*2π)/186010 weeks
184-.04227 -.0714 (184*2π)/186010 weeks
185-.03845 -.04892 (185*2π)/186010 weeks
186-.03583 -.05661 (186*2π)/186010 weeks
187-.01737 -.06178 (187*2π)/186010 weeks
188-.01474 -.0787 (188*2π)/186010 weeks
189-.0608 -.0949 (189*2π)/186010 weeks
190-.04308 -.03706 (190*2π)/186010 weeks
191-.05267 -.04364 (191*2π)/186010 weeks
192.00777 -.00842 (192*2π)/186010 weeks
193-.03716 -.08555 (193*2π)/186010 weeks
194-.00866 -.0384 (194*2π)/186010 weeks
195-.01284 -.06755 (195*2π)/186010 weeks
196-.00353 -.03657 (196*2π)/18609 weeks
197-.03118 -.08513 (197*2π)/18609 weeks
198-.02504 -.03602 (198*2π)/18609 weeks
199-.01728 -.06749 (199*2π)/18609 weeks
200-.04244 -.04495 (200*2π)/18609 weeks
201-.00845 -.08154 (201*2π)/18609 weeks
202-.05652 -.05439 (202*2π)/18609 weeks
203-.01241 -.02445 (203*2π)/18609 weeks
204-.03229 -.05395 (204*2π)/18609 weeks
205.01169 -.04051 (205*2π)/18609 weeks
206-.04586 -.06698 (206*2π)/18609 weeks
207.00714 -.03142 (207*2π)/18609 weeks
208-.04403 -.07382 (208*2π)/18609 weeks
209-.01347 -.01769 (209*2π)/18609 weeks
210-.01821 -.05553 (210*2π)/18609 weeks
211.01538 -.03579 (211*2π)/18609 weeks
212-.01627 -.09388 (212*2π)/18609 weeks
213-.01557 -.02778 (213*2π)/18609 weeks
214-.02549 -.11301 (214*2π)/18609 weeks
215-.01917 -.00621 (215*2π)/18609 weeks
216-.03898 -.12051 (216*2π)/18609 weeks
217-.04314 .00758 (217*2π)/18609 weeks
218.00066 -.09052 (218*2π)/18609 weeks
219-.02778 .01516 (219*2π)/18608 weeks
220.00602 -.10699 (220*2π)/18608 weeks
221-.04093 .00332 (221*2π)/18608 weeks
222.01578 -.07801 (222*2π)/18608 weeks
223-.01407 -.03231 (223*2π)/18608 weeks
224.0231 -.09107 (224*2π)/18608 weeks
225-.04578 -.06485 (225*2π)/18608 weeks
226.00455 -.08279 (226*2π)/18608 weeks
227-.06642 -.06215 (227*2π)/18608 weeks
228-.01277 -.0323 (228*2π)/18608 weeks
229-.05177 -.04223 (229*2π)/18608 weeks
230.00378 -.03134 (230*2π)/18608 weeks
231-.01722 -.05329 (231*2π)/18608 weeks
232.01394 -.05185 (232*2π)/18608 weeks
233-.03763 -.07812 (233*2π)/18608 weeks
234-.03675 -.03833 (234*2π)/18608 weeks
235-.02625 -.06425 (235*2π)/18608 weeks
236-.03814 -.02576 (236*2π)/18608 weeks
237-.00438 -.04703 (237*2π)/18608 weeks
238-.01376 -.04482 (238*2π)/18608 weeks
239.00075 -.09121 (239*2π)/18608 weeks
240-.05853 -.04693 (240*2π)/18608 weeks
241-.01516 -.03026 (241*2π)/18608 weeks
242-.001 -.06058 (242*2π)/18608 weeks
243-.01797 -.06965 (243*2π)/18608 weeks
244-.05552 -.04815 (244*2π)/18608 weeks
245-.02233 -.03415 (245*2π)/18608 weeks
246-.04072 -.05617 (246*2π)/18608 weeks
247-.01703 -.04061 (247*2π)/18608 weeks
248-.06059 -.05605 (248*2π)/18608 weeks
249-.03979 .00058 (249*2π)/18607 weeks
250.00046 -.03943 (250*2π)/18607 weeks
251-.00212 -.03027 (251*2π)/18607 weeks
252-.0229 -.07959 (252*2π)/18607 weeks
253-.03327 -.03225 (253*2π)/18607 weeks
254.00255 -.04095 (254*2π)/18607 weeks
255-.02089 -.02567 (255*2π)/18607 weeks
256.01998 -.0445 (256*2π)/18607 weeks
257-.02763 -.07822 (257*2π)/18607 weeks
258-.01275 -.05693 (258*2π)/18607 weeks
259-.04627 -.0676 (259*2π)/18607 weeks
260-.03204 -.03517 (260*2π)/18607 weeks
261-.02642 -.01618 (261*2π)/18607 weeks
262-.00626 -.03577 (262*2π)/18607 weeks
263-.00485 -.04928 (263*2π)/18607 weeks
264-.03106 -.06835 (264*2π)/18607 weeks
265-.0439 -.04755 (265*2π)/18607 weeks
266-.03121 -.0371 (266*2π)/18607 weeks
267-.02224 -.01409 (267*2π)/18607 weeks
268.00248 -.04319 (268*2π)/18607 weeks
269-.02982 -.06206 (269*2π)/18607 weeks
270-.01955 -.05331 (270*2π)/18607 weeks
271-.04051 -.03354 (271*2π)/18607 weeks
272-.00345 -.05207 (272*2π)/18607 weeks
273-.04177 -.04246 (273*2π)/18607 weeks
274-.02599 -.04512 (274*2π)/18607 weeks
275-.02478 -.0161 (275*2π)/18607 weeks
276.0006 -.04485 (276*2π)/18607 weeks
277-.02763 -.06276 (277*2π)/18607 weeks
278-.02203 -.03401 (278*2π)/18607 weeks
279-.04123 -.04761 (279*2π)/18607 weeks
280-.01519 -.01656 (280*2π)/18607 weeks
281-.03199 -.04859 (281*2π)/18607 weeks
282-.00981 -.03037 (282*2π)/18607 weeks
283-.0221 -.04131 (283*2π)/18607 weeks
284-.02164 -.04004 (284*2π)/18607 weeks
285-.02939 -.05159 (285*2π)/18607 weeks
286-.03985 -.02705 (286*2π)/18607 weeks
287-.01916 -.04067 (287*2π)/18606 weeks
288-.03065 -.0068 (288*2π)/18606 weeks
289.01895 -.04908 (289*2π)/18606 weeks
290-.04687 -.04101 (290*2π)/18606 weeks
291-.0148 -.02827 (291*2π)/18606 weeks
292-.0489 -.03038 (292*2π)/18606 weeks
293-.00378 -.01299 (293*2π)/18606 weeks
294-.0349 -.06 (294*2π)/18606 weeks
295-.01677 -.00377 (295*2π)/18606 weeks
296-.02358 -.03046 (296*2π)/18606 weeks
297-.00196 -.0047 (297*2π)/18606 weeks
298-.00651 -.05548 (298*2π)/18606 weeks
299-.03839 -.02489 (299*2π)/18606 weeks
300.01625 -.03803 (300*2π)/18606 weeks
301-.03048 -.03405 (301*2π)/18606 weeks
302.02274 -.02814 (302*2π)/18606 weeks
303-.04399 -.06993 (303*2π)/18606 weeks
304-.00233 -.02136 (304*2π)/18606 weeks
305-.02086 -.06208 (305*2π)/18606 weeks
306-.00485 -.02631 (306*2π)/18606 weeks
307-.03664 -.06839 (307*2π)/18606 weeks
308-.01185 -.01989 (308*2π)/18606 weeks
309-.03153 -.05199 (309*2π)/18606 weeks
310-.01555 -.02955 (310*2π)/18606 weeks
311-.02153 -.04366 (311*2π)/18606 weeks
312-.02063 -.04161 (312*2π)/18606 weeks
313-.03563 -.03169 (313*2π)/18606 weeks
314-.00611 -.03223 (314*2π)/18606 weeks
315-.0368 -.04109 (315*2π)/18606 weeks
316.0017 -.04003 (316*2π)/18606 weeks
317-.04632 -.05455 (317*2π)/18606 weeks
318-.02021 -.02175 (318*2π)/18606 weeks
319-.04294 -.03454 (319*2π)/18606 weeks
320-.00951 -.00106 (320*2π)/18606 weeks
321-.02098 -.05839 (321*2π)/18606 weeks
322-.01284 -.0168 (322*2π)/18606 weeks
323-.01531 -.05843 (323*2π)/18606 weeks
324-.04215 -.01881 (324*2π)/18606 weeks
325-.01089 -.03802 (325*2π)/18606 weeks
326-.04085 -.01968 (326*2π)/18606 weeks
327.00077 -.04219 (327*2π)/18606 weeks
328-.0454 -.02567 (328*2π)/18606 weeks
329-.0005 -.03053 (329*2π)/18606 weeks
330-.03398 -.0344 (330*2π)/18606 weeks
331-.0016 -.02616 (331*2π)/18606 weeks
332-.04804 -.0573 (332*2π)/18606 weeks
333-.01446 .0067 (333*2π)/18606 weeks
334-.01557 -.0535 (334*2π)/18606 weeks
335-.01682 -.00301 (335*2π)/18606 weeks
336-.03328 -.05503 (336*2π)/18606 weeks
337-.03466 .00851 (337*2π)/18606 weeks
338-.00743 -.03713 (338*2π)/18606 weeks
339-.01267 -.01271 (339*2π)/18605 weeks
340-.01249 -.03834 (340*2π)/18605 weeks
341-.01361 -.01052 (341*2π)/18605 weeks
342-.00307 -.03778 (342*2π)/18605 weeks
343-.02585 -.02842 (343*2π)/18605 weeks
344.01155 -.05173 (344*2π)/18605 weeks
345-.04794 -.04368 (345*2π)/18605 weeks
346.01428 -.02444 (346*2π)/18605 weeks
347-.05152 -.05079 (347*2π)/18605 weeks
348.0068 .00851 (348*2π)/18605 weeks
349-.03607 -.08038 (349*2π)/18605 weeks
350-.03201 .01596 (350*2π)/18605 weeks
351-.01073 -.06686 (351*2π)/18605 weeks
352-.02745 .00739 (352*2π)/18605 weeks
353.00014 -.06484 (353*2π)/18605 weeks
354-.05098 .00216 (354*2π)/18605 weeks
355.01278 -.04908 (355*2π)/18605 weeks
356-.0294 -.02908 (356*2π)/18605 weeks
357-.0106 -.06239 (357*2π)/18605 weeks
358-.06307 -.03606 (358*2π)/18605 weeks
359-.00926 -.01082 (359*2π)/18605 weeks
360-.03903 -.03277 (360*2π)/18605 weeks
361-.01191 -.02474 (361*2π)/18605 weeks
362-.04256 -.03077 (362*2π)/18605 weeks
363-.00422 -.00557 (363*2π)/18605 weeks
364-.02633 -.04547 (364*2π)/18605 weeks
365-.0039 -.01 (365*2π)/18605 weeks
366-.02789 -.04827 (366*2π)/18605 weeks
367-.02369 .00906 (367*2π)/18605 weeks
368.00633 -.05496 (368*2π)/18605 weeks
369-.01658 -.00145 (369*2π)/18605 weeks
370-.01059 -.06712 (370*2π)/18605 weeks
371-.04087 -.00025 (371*2π)/18605 weeks
372.01229 -.05883 (372*2π)/18605 weeks
373-.04326 -.00549 (373*2π)/18605 weeks
374.00518 -.06776 (374*2π)/18605 weeks
375-.05334 -.02496 (375*2π)/18605 weeks
376-.01028 -.03531 (376*2π)/18605 weeks
377-.0512 -.01941 (377*2π)/18605 weeks
378.00819 -.03634 (378*2π)/18605 weeks
379-.0508 -.0389 (379*2π)/18605 weeks
380-.00974 -.02155 (380*2π)/18605 weeks
381-.04672 -.0233 (381*2π)/18605 weeks
382-.01183 -.02214 (382*2π)/18605 weeks
383-.03844 -.03252 (383*2π)/18605 weeks
384-.01984 -.0036 (384*2π)/18605 weeks
385-.00442 -.03224 (385*2π)/18605 weeks
386-.01919 -.0273 (386*2π)/18605 weeks
387-.02875 -.04113 (387*2π)/18605 weeks
388-.03872 -.00614 (388*2π)/18605 weeks
389-.01295 -.02833 (389*2π)/18605 weeks
390-.0254 -.00973 (390*2π)/18605 weeks
391-.00686 -.03447 (391*2π)/18605 weeks
392-.03 -.00861 (392*2π)/18605 weeks
393-.00528 -.02878 (393*2π)/18605 weeks
394-.0242 .00277 (394*2π)/18605 weeks
395.00793 -.04288 (395*2π)/18605 weeks
396-.03705 -.01368 (396*2π)/18605 weeks
397.01631 -.03577 (397*2π)/18605 weeks
398-.03261 -.02244