Back to list of Stocks    See Also: Seasonal Analysis of URSGenetic Algorithms Stock Portfolio Generator, and Fourier Calculator

Fourier Analysis of URS (URS Corporation)


URS (URS Corporation) appears to have interesting cyclic behaviour every 234 weeks (6.9449*sine), 195 weeks (6.4185*cosine), and 156 weeks (5.7742*cosine).

URS (URS Corporation) has an average price of 39.67 (topmost row, frequency = 0).



Click on the checkboxes shown on the right to see how the various frequencies contribute to the graph. Look for large magnitude coefficients (sine or cosine), as these are associated with frequencies which contribute most to the associated stock plot. If you find a large magnitude coefficient which dramatically changes the graph, look at the associated "Period" in weeks, as you may have found a significant recurring cycle for the stock of interest.

Right click on the graph above to see the menu of operations (download, full screen, etc.)

Fourier Analysis

Using data from 6/1/1972 to 3/20/2017 for URS (URS Corporation), this program was able to calculate the following Fourier Series:
Sequence #Cosine Coefficients Sine Coefficients FrequenciesPeriod
039.67484   0 
15.89287 25.68582 (1*2π)/23352,335 weeks
2-32.24563 -9.08125 (2*2π)/23351,168 weeks
34.90888 -15.79656 (3*2π)/2335778 weeks
43.36539 8.81971 (4*2π)/2335584 weeks
5-4.25533 -2.66174 (5*2π)/2335467 weeks
65.08023 -.35263 (6*2π)/2335389 weeks
7-4.04193 10.52584 (7*2π)/2335334 weeks
8-4.76813 -2.73057 (8*2π)/2335292 weeks
97.47902 1.07047 (9*2π)/2335259 weeks
10-.43447 6.94486 (10*2π)/2335234 weeks
11-.77509 .31668 (11*2π)/2335212 weeks
126.41846 3.58144 (12*2π)/2335195 weeks
13-.63632 5.50295 (13*2π)/2335180 weeks
14-.47501 -1.59167 (14*2π)/2335167 weeks
155.77417 -1.94058 (15*2π)/2335156 weeks
161.36789 2.82436 (16*2π)/2335146 weeks
17-.84546 1.43916 (17*2π)/2335137 weeks
18.9506 .2489 (18*2π)/2335130 weeks
19-2.0996 .68853 (19*2π)/2335123 weeks
20-.03991 -2.05265 (20*2π)/2335117 weeks
211.94467 -.01157 (21*2π)/2335111 weeks
22-1.93625 3.15839 (22*2π)/2335106 weeks
23-.6646 .56306 (23*2π)/2335102 weeks
241.25392 .73846 (24*2π)/233597 weeks
25-.97858 1.31799 (25*2π)/233593 weeks
26-.76111 .53802 (26*2π)/233590 weeks
27.45171 1.92214 (27*2π)/233586 weeks
28.18375 .59469 (28*2π)/233583 weeks
291.24158 .83173 (29*2π)/233581 weeks
30.79924 2.42451 (30*2π)/233578 weeks
31-1.16997 .4295 (31*2π)/233575 weeks
321.06091 -.10061 (32*2π)/233573 weeks
331.4697 2.15687 (33*2π)/233571 weeks
34-.97902 .44782 (34*2π)/233569 weeks
35.55067 -.61925 (35*2π)/233567 weeks
361.18965 1.11111 (36*2π)/233565 weeks
37-.36662 .36034 (37*2π)/233563 weeks
38.17227 -.50986 (38*2π)/233561 weeks
39.20391 .71726 (39*2π)/233560 weeks
40-1.66294 .33772 (40*2π)/233558 weeks
41-.76549 -.50269 (41*2π)/233557 weeks
42.02926 .62518 (42*2π)/233556 weeks
43-.48328 .96932 (43*2π)/233554 weeks
44-.48507 .83634 (44*2π)/233553 weeks
45-.0378 .95867 (45*2π)/233552 weeks
46.09968 .41626 (46*2π)/233551 weeks
47.40961 .44077 (47*2π)/233550 weeks
48.27709 .86853 (48*2π)/233549 weeks
49-.59391 .62037 (49*2π)/233548 weeks
50-.09472 1.22567 (50*2π)/233547 weeks
51.56892 .54969 (51*2π)/233546 weeks
52.85154 .11511 (52*2π)/233545 weeks
53.40818 -.13793 (53*2π)/233544 weeks
54.10555 -.83228 (54*2π)/233543 weeks
55.19341 .07681 (55*2π)/233542 weeks
56-.42532 .74367 (56*2π)/233542 weeks
57-.61719 -.45662 (57*2π)/233541 weeks
58.11864 -.54395 (58*2π)/233540 weeks
59-.19044 .37506 (59*2π)/233540 weeks
60-.88613 .14648 (60*2π)/233539 weeks
61.0676 .63406 (61*2π)/233538 weeks
62-.12737 1.18014 (62*2π)/233538 weeks
63-1.15787 -.1574 (63*2π)/233537 weeks
64.52024 -.25414 (64*2π)/233536 weeks
65.99049 1.40743 (65*2π)/233536 weeks
66-.37001 .82707 (66*2π)/233535 weeks
67-.11314 -.33806 (67*2π)/233535 weeks
68.74751 .44062 (68*2π)/233534 weeks
69.42723 .17794 (69*2π)/233534 weeks
70.56047 .10027 (70*2π)/233533 weeks
71.73784 .50864 (71*2π)/233533 weeks
72-.09729 -.44015 (72*2π)/233532 weeks
73.2326 -.58458 (73*2π)/233532 weeks
74-.19144 .59126 (74*2π)/233532 weeks
75-.88654 .34214 (75*2π)/233531 weeks
76.41309 -.34645 (76*2π)/233531 weeks
77.34253 1.02488 (77*2π)/233530 weeks
78-.83517 .42704 (78*2π)/233530 weeks
79-.71995 -.63353 (79*2π)/233530 weeks
80.11766 .26634 (80*2π)/233529 weeks
81.38631 .6979 (81*2π)/233529 weeks
82.06136 .97358 (82*2π)/233528 weeks
83-.43662 .55876 (83*2π)/233528 weeks
84-.15466 -.40096 (84*2π)/233528 weeks
85.9486 .44295 (85*2π)/233527 weeks
86.17855 1.14412 (86*2π)/233527 weeks
87-.53596 .0602 (87*2π)/233527 weeks
88.68999 -.54165 (88*2π)/233527 weeks
89.42993 .16355 (89*2π)/233526 weeks
90-.01689 .30161 (90*2π)/233526 weeks
91.17599 -.05662 (91*2π)/233526 weeks
92-.61445 -.2518 (92*2π)/233525 weeks
93-.21349 -.6995 (93*2π)/233525 weeks
94.67564 -.0695 (94*2π)/233525 weeks
95-.15841 1.07053 (95*2π)/233525 weeks
96-.74448 .06057 (96*2π)/233524 weeks
97.0973 -.31828 (97*2π)/233524 weeks
98.06259 .58227 (98*2π)/233524 weeks
99-.26289 .1171 (99*2π)/233524 weeks
100.43767 .23421 (100*2π)/233523 weeks
101.0707 .84519 (101*2π)/233523 weeks
102.09109 .28987 (102*2π)/233523 weeks
103.56795 .47788 (103*2π)/233523 weeks
104-.40931 .3788 (104*2π)/233522 weeks
105.12302 -.57205 (105*2π)/233522 weeks
1061.08497 .22554 (106*2π)/233522 weeks
107-.14246 1.03484 (107*2π)/233522 weeks
108-.49224 -.33793 (108*2π)/233522 weeks
109.71286 -.49146 (109*2π)/233521 weeks
110.15663 .30579 (110*2π)/233521 weeks
111-.59693 -.17858 (111*2π)/233521 weeks
112-.197 .05238 (112*2π)/233521 weeks
113-.17095 .57398 (113*2π)/233521 weeks
114-.24044 .17769 (114*2π)/233520 weeks
115-.02001 .14903 (115*2π)/233520 weeks
116-.17416 .05268 (116*2π)/233520 weeks
117-.00019 .00414 (117*2π)/233520 weeks
118.30821 .69626 (118*2π)/233520 weeks
119-.15127 .74191 (119*2π)/233520 weeks
120-.06976 -.19438 (120*2π)/233519 weeks
121.23506 .09351 (121*2π)/233519 weeks
122-.06932 .26042 (122*2π)/233519 weeks
123.21825 -.06309 (123*2π)/233519 weeks
124.38516 .72255 (124*2π)/233519 weeks
125-.32535 .22138 (125*2π)/233519 weeks
126.11701 -.8061 (126*2π)/233519 weeks
127.591 -.07483 (127*2π)/233518 weeks
128-.19796 .20986 (128*2π)/233518 weeks
129-.35968 -.03793 (129*2π)/233518 weeks
130-.04919 .09522 (130*2π)/233518 weeks
131.0392 -.00599 (131*2π)/233518 weeks
132.01752 .1331 (132*2π)/233518 weeks
133-.16193 .31252 (133*2π)/233518 weeks
134-.18496 .06855 (134*2π)/233517 weeks
135.10084 .31318 (135*2π)/233517 weeks
136.03688 .36173 (136*2π)/233517 weeks
137.02017 .24923 (137*2π)/233517 weeks
138-.10751 .18833 (138*2π)/233517 weeks
139-.13017 .07228 (139*2π)/233517 weeks
140.41937 .2097 (140*2π)/233517 weeks
141.35888 .22752 (141*2π)/233517 weeks
142-.03879 -.23287 (142*2π)/233516 weeks
143.21163 -.21536 (143*2π)/233516 weeks
144-.01051 .3 (144*2π)/233516 weeks
145-.17988 .07562 (145*2π)/233516 weeks
146.24038 .09403 (146*2π)/233516 weeks
147.04132 .26557 (147*2π)/233516 weeks
148-.34629 -.29647 (148*2π)/233516 weeks
149.05564 -.19689 (149*2π)/233516 weeks
150.01652 .57661 (150*2π)/233516 weeks
151-.45201 .07091 (151*2π)/233515 weeks
152.18906 -.33665 (152*2π)/233515 weeks
153.2788 .33589 (153*2π)/233515 weeks
154-.64748 .20502 (154*2π)/233515 weeks
155.03736 -.18157 (155*2π)/233515 weeks
156.67818 .33656 (156*2π)/233515 weeks
157.04583 .32527 (157*2π)/233515 weeks
158.15461 -.24832 (158*2π)/233515 weeks
159.14301 .09729 (159*2π)/233515 weeks
160-.23536 .21563 (160*2π)/233515 weeks
161.2412 -.15386 (161*2π)/233515 weeks
162.39863 .257 (162*2π)/233514 weeks
163-.14201 .17895 (163*2π)/233514 weeks
164.10892 -.1896 (164*2π)/233514 weeks
165.30939 .10893 (165*2π)/233514 weeks
166.08157 -.05581 (166*2π)/233514 weeks
167.23181 .09625 (167*2π)/233514 weeks
168-.201 .36498 (168*2π)/233514 weeks
169-.30632 -.33397 (169*2π)/233514 weeks
170.36517 -.07085 (170*2π)/233514 weeks
171.0846 .57495 (171*2π)/233514 weeks
172-.03144 .0297 (172*2π)/233514 weeks
173.0844 .2267 (173*2π)/233513 weeks
174-.28206 .41262 (174*2π)/233513 weeks
175.08467 .02702 (175*2π)/233513 weeks
176.461 .56669 (176*2π)/233513 weeks
177-.00263 .34399 (177*2π)/233513 weeks
178.03486 -.27312 (178*2π)/233513 weeks
179.18317 .09524 (179*2π)/233513 weeks
180-.2171 .37638 (180*2π)/233513 weeks
181.22436 .16817 (181*2π)/233513 weeks
182.35527 .11339 (182*2π)/233513 weeks
183-.09649 -.12014 (183*2π)/233513 weeks
184-.17929 -.30085 (184*2π)/233513 weeks
185-.208 -.02466 (185*2π)/233513 weeks
186-.03913 .11194 (186*2π)/233513 weeks
187.17132 .25609 (187*2π)/233512 weeks
188.02347 .36797 (188*2π)/233512 weeks
189-.23959 -.01921 (189*2π)/233512 weeks
190-.05965 -.34304 (190*2π)/233512 weeks
191.15557 .20882 (191*2π)/233512 weeks
192-.03225 .60974 (192*2π)/233512 weeks
193.04097 .36095 (193*2π)/233512 weeks
194.12778 .08915 (194*2π)/233512 weeks
195.1365 -.11755 (195*2π)/233512 weeks
196.17983 .24168 (196*2π)/233512 weeks
197-.1897 .27697 (197*2π)/233512 weeks
198.04635 -.25695 (198*2π)/233512 weeks
199.56476 .17483 (199*2π)/233512 weeks
200.00655 .39193 (200*2π)/233512 weeks
201-.29619 -.32254 (201*2π)/233512 weeks
202.21821 -.29635 (202*2π)/233512 weeks
203.0205 .24124 (203*2π)/233512 weeks
204-.32763 .0877 (204*2π)/233511 weeks
205.13112 .13648 (205*2π)/233511 weeks
206.05582 .30161 (206*2π)/233511 weeks
207-.22173 .00482 (207*2π)/233511 weeks
208.03555 .06132 (208*2π)/233511 weeks
209-.17622 .39606 (209*2π)/233511 weeks
210-.355 .16417 (210*2π)/233511 weeks
211.26727 .03873 (211*2π)/233511 weeks
212.27577 .29522 (212*2π)/233511 weeks
213-.22321 .0608 (213*2π)/233511 weeks
214.01184 <