Back to list of Stocks    See Also: Seasonal Analysis of TRLAGenetic Algorithms Stock Portfolio Generator, and Best Months to Buy/Sell Stocks

# Fourier Analysis of TRLA (Trulia Inc)

TRLA (Trulia Inc) appears to have interesting cyclic behaviour every 12 weeks (1.8761*sine), 11 weeks (1.3445*cosine), and 8 weeks (1.2207*cosine).

TRLA (Trulia Inc) has an average price of 36.59 (topmost row, frequency = 0).

Click on the checkboxes shown on the right to see how the various frequencies contribute to the graph. Look for large magnitude coefficients (sine or cosine), as these are associated with frequencies which contribute most to the associated stock plot. If you find a large magnitude coefficient which dramatically changes the graph, look at the associated "Period" in weeks, as you may have found a significant recurring cycle for the stock of interest.

Right click on the graph above to see the menu of operations (download, full screen, etc.)

## Fourier Analysis

Using data from 9/20/2012 to 9/26/2017 for TRLA (Trulia Inc), this program was able to calculate the following Fourier Series:
Sequence #Cosine Coefficients Sine Coefficients FrequenciesPeriod
036.58664   0
1-2.50671 -8.17812 (1*2π)/128128 weeks
2-4.02735 -10.01303 (2*2π)/12864 weeks
3-2.24128 .63326 (3*2π)/12843 weeks
4.37594 -2.74167 (4*2π)/12832 weeks
52.49924 -2.95655 (5*2π)/12826 weeks
6-1.92455 -.44105 (6*2π)/12821 weeks
7-1.18019 -.47085 (7*2π)/12818 weeks
8-.46014 1.21884 (8*2π)/12816 weeks
9.40039 -.02562 (9*2π)/12814 weeks
10-.46149 -.55111 (10*2π)/12813 weeks
11-.59608 -1.87607 (11*2π)/12812 weeks
12-1.34451 .14866 (12*2π)/12811 weeks
13-.30968 .02877 (13*2π)/12810 weeks
14-.76937 -.586 (14*2π)/1289 weeks
15-1.0551 .47451 (15*2π)/1289 weeks
16-1.22074 .09226 (16*2π)/1288 weeks
17-.32233 .24107 (17*2π)/1288 weeks
18-1.02629 -.3095 (18*2π)/1287 weeks
19-.8562 -.26848 (19*2π)/1287 weeks
20-.41684 .44038 (20*2π)/1286 weeks
21-.30812 -.00638 (21*2π)/1286 weeks
22-.3837 -.38294 (22*2π)/1286 weeks
23-.72387 .17716 (23*2π)/1286 weeks
24-.45293 .20962 (24*2π)/1285 weeks
25.22367 .46394 (25*2π)/1285 weeks
26-.76524 .35158 (26*2π)/1285 weeks
27-.59236 .53022 (27*2π)/1285 weeks
28-.05573 1.06365 (28*2π)/1285 weeks
29-.16393 -.21089 (29*2π)/1284 weeks
30-.5299 .12112 (30*2π)/1284 weeks
31-.56058 .88506 (31*2π)/1284 weeks
32.16828 1.04906 (32*2π)/1284 weeks
33-.42546 .31688 (33*2π)/1284 weeks
34-.34551 .20155 (34*2π)/1284 weeks
35-.45525 .22871 (35*2π)/1284 weeks
36.12499 .76972 (36*2π)/1284 weeks
37.10698 .53208 (37*2π)/1283 weeks
38-.12863 .41968 (38*2π)/1283 weeks
39-.25564 .71029 (39*2π)/1283 weeks
40.13389 .69786 (40*2π)/1283 weeks
41.3891 .31231 (41*2π)/1283 weeks
42.07397 .04964 (42*2π)/1283 weeks
43.74435 .78671 (43*2π)/1283 weeks
44.3714 .50674 (44*2π)/1283 weeks
45.27881 .40448 (45*2π)/1283 weeks
46-.15819 .53906 (46*2π)/1283 weeks
47.32612 .08847 (47*2π)/1283 weeks
48.67917 .30726 (48*2π)/1283 weeks
49.68908 .51222 (49*2π)/1283 weeks
50.17258 .40882 (50*2π)/1283 weeks
51.025 .28871 (51*2π)/1283 weeks
52.29986 .3931 (52*2π)/1282 weeks
53.29 .10958 (53*2π)/1282 weeks
54.31516 .2403 (54*2π)/1282 weeks
55.41147 .27158 (55*2π)/1282 weeks
56.52294 .4177 (56*2π)/1282 weeks
57.47209 .23745 (57*2π)/1282 weeks
58.10876 .41041 (58*2π)/1282 weeks
59.39404 -.22082 (59*2π)/1282 weeks
60.73364 .04874 (60*2π)/1282 weeks
61.53683 .24361 (61*2π)/1282 weeks
62.70225 .1182 (62*2π)/1282 weeks
63.41561 .46139 (63*2π)/1282 weeks
64.96328   (64*2π)/1282 weeks
65.41561 -.46139 (65*2π)/1282 weeks
66.70225 -.1182 (66*2π)/1282 weeks
67.53683 -.24361 (67*2π)/1282 weeks
68.73364 -.04874 (68*2π)/1282 weeks
69.39404 .22082 (69*2π)/1282 weeks
70.10876 -.41041 (70*2π)/1282 weeks
71.47209 -.23745 (71*2π)/1282 weeks
72.52294 -.4177 (72*2π)/1282 weeks
73.41147 -.27158 (73*2π)/1282 weeks
74.31516 -.2403 (74*2π)/1282 weeks
75.29 -.10958 (75*2π)/1282 weeks
76.29986 -.3931 (76*2π)/1282 weeks
77.025 -.28871 (77*2π)/1282 weeks
78.17258 -.40882 (78*2π)/1282 weeks
79.68908 -.51222 (79*2π)/1282 weeks
80.67917 -.30726 (80*2π)/1282 weeks
81.32612 -.08847 (81*2π)/1282 weeks
82-.15819 -.53906 (82*2π)/1282 weeks
83.27881 -.40448 (83*2π)/1282 weeks
84.3714 -.50674 (84*2π)/1282 weeks
85.74435 -.78671 (85*2π)/1282 weeks
86.07397 -.04964 (86*2π)/1281 weeks
87.3891 -.31231 (87*2π)/1281 weeks
88.13389 -.69786 (88*2π)/1281 weeks
89-.25564 -.71029 (89*2π)/1281 weeks
90-.12863 -.41968 (90*2π)/1281 weeks
91.10698 -.53208 (91*2π)/1281 weeks
92.12499 -.76972 (92*2π)/1281 weeks
93-.45525 -.22871 (93*2π)/1281 weeks
94-.34551 -.20155 (94*2π)/1281 weeks
95-.42546 -.31688 (95*2π)/1281 weeks
96.16828 -1.04906 (96*2π)/1281 weeks
97-.56058 -.88506 (97*2π)/1281 weeks
98-.5299 -.12112 (98*2π)/1281 weeks
99-.16393 .21089 (99*2π)/1281 weeks
100-.05573 -1.06365 (100*2π)/1281 weeks
101-.59236 -.53022 (101*2π)/1281 weeks
102-.76524 -.35158 (102*2π)/1281 weeks
103.22367 -.46394 (103*2π)/1281 weeks
104-.45293 -.20962 (104*2π)/1281 weeks
105-.72387 -.17716 (105*2π)/1281 weeks
106-.3837 .38294 (106*2π)/1281 weeks
107-.30812 .00638 (107*2π)/1281 weeks
108-.41684 -.44038 (108*2π)/1281 weeks
109-.8562 .26848 (109*2π)/1281 weeks
110-1.02629 .3095 (110*2π)/1281 weeks
111-.32233 -.24107 (111*2π)/1281 weeks
112-1.22074 -.09226 (112*2π)/1281 weeks
113-1.0551 -.47451 (113*2π)/1281 weeks
114-.76937 .586 (114*2π)/1281 weeks
115-.30968 -.02877 (115*2π)/1281 weeks
116-1.34451 -.14866 (116*2π)/1281 weeks
117-.59608 1.87607 (117*2π)/1281 weeks
118-.46149 .55111 (118*2π)/1281 weeks
119.40039 .02562 (119*2π)/1281 weeks
120-.46014 -1.21884 (120*2π)/1281 weeks
121-1.18019 .47085 (121*2π)/1281 weeks
122-1.92455 .44105 (122*2π)/1281 weeks
1232.49924 2.95655 (123*2π)/1281 weeks
124.37594 2.74167 (124*2π)/1281 weeks
125-2.24128 -.63326 (125*2π)/1281 weeks
126-4.02735 10.01303 (126*2π)/1281 weeks