Back to list of Stocks    See Also: Seasonal Analysis of TNETGenetic Algorithms Stock Portfolio Generator, and Fourier Calculator

Fourier Analysis of TNET (TNET)


TNET (TNET) appears to have interesting cyclic behaviour every 12 weeks (1.1258*sine), 18 weeks (1.0004*sine), and 15 weeks (.6494*cosine).

TNET (TNET) has an average price of 25.05 (topmost row, frequency = 0).



Click on the checkboxes shown on the right to see how the various frequencies contribute to the graph. Look for large magnitude coefficients (sine or cosine), as these are associated with frequencies which contribute most to the associated stock plot. If you find a large magnitude coefficient which dramatically changes the graph, look at the associated "Period" in weeks, as you may have found a significant recurring cycle for the stock of interest.

Right click on the graph above to see the menu of operations (download, full screen, etc.)

Fourier Analysis

Using data from 3/27/2014 to 9/5/2017 for TNET (TNET), this program was able to calculate the following Fourier Series:
Sequence #Cosine Coefficients Sine Coefficients FrequenciesPeriod
025.04536   0 
15.34599 3.37273 (1*2π)/181181 weeks
2-3.16712 -2.88219 (2*2π)/18191 weeks
31.32263 -2.89202 (3*2π)/18160 weeks
4.58428 -.81056 (4*2π)/18145 weeks
5-.89378 -.05419 (5*2π)/18136 weeks
6.69634 -1.65608 (6*2π)/18130 weeks
7-.70559 -.48194 (7*2π)/18126 weeks
8.1221 -.60886 (8*2π)/18123 weeks
9-.32238 -.43011 (9*2π)/18120 weeks
10-.01718 -1.00036 (10*2π)/18118 weeks
11-.2675 -.39236 (11*2π)/18116 weeks
12-.64942 -.28197 (12*2π)/18115 weeks
13-.10884 -.58772 (13*2π)/18114 weeks
14-.13489 -.49227 (14*2π)/18113 weeks
15-.33222 -1.1258 (15*2π)/18112 weeks
16.21536 -.52587 (16*2π)/18111 weeks
17-.09505 -.02385 (17*2π)/18111 weeks
18.10607 -.03886 (18*2π)/18110 weeks
19-.19091 -.18976 (19*2π)/18110 weeks
20-.07025 .02025 (20*2π)/1819 weeks
21.03721 -.01725 (21*2π)/1819 weeks
22-.25027 -.32352 (22*2π)/1818 weeks
23-.16161 -.36014 (23*2π)/1818 weeks
24-.22148 .18801 (24*2π)/1818 weeks
25-.40093 -.09316 (25*2π)/1817 weeks
26.10426 -.26808 (26*2π)/1817 weeks
27.01037 -.06284 (27*2π)/1817 weeks
28-.14471 -.16507 (28*2π)/1816 weeks
29.18957 .03274 (29*2π)/1816 weeks
30-.05122 -.14119 (30*2π)/1816 weeks
31-.06025 -.22417 (31*2π)/1816 weeks
32-.05727 .02576 (32*2π)/1816 weeks
33-.10225 -.18338 (33*2π)/1815 weeks
34-.00227 -.32735 (34*2π)/1815 weeks
35-.00552 -.31218 (35*2π)/1815 weeks
36.06893 -.0549 (36*2π)/1815 weeks
37-.02075 -.20462 (37*2π)/1815 weeks
38.08934 -.12594 (38*2π)/1815 weeks
39.08678 -.13036 (39*2π)/1815 weeks
40-.25918 .00746 (40*2π)/1815 weeks
41-.24377 -.30904 (41*2π)/1814 weeks
42-.12184 -.1264 (42*2π)/1814 weeks
43-.2005 -.16187 (43*2π)/1814 weeks
44-.27443 -.16612 (44*2π)/1814 weeks
45-.15212 -.18324 (45*2π)/1814 weeks
46-.18557 -.17699 (46*2π)/1814 weeks
47.08068 -.18123 (47*2π)/1814 weeks
48-.11679 .01555 (48*2π)/1814 weeks
49-.11108 -.16108 (49*2π)/1814 weeks
50-.14957 -.02196 (50*2π)/1814 weeks
51-.13158 -.16031 (51*2π)/1814 weeks
52-.05442 .08094 (52*2π)/1813 weeks
53-.14186 .01359 (53*2π)/1813 weeks
54.04512 .01134 (54*2π)/1813 weeks
55-.11397 .12556 (55*2π)/1813 weeks
56-.15744 -.05888 (56*2π)/1813 weeks
57.11769 .01227 (57*2π)/1813 weeks
58-.06847 .18733 (58*2π)/1813 weeks
59-.15039 -.11024 (59*2π)/1813 weeks
60.05608 -.03856 (60*2π)/1813 weeks
61.03166 .04834 (61*2π)/1813 weeks
62-.08012 -.06042 (62*2π)/1813 weeks
63-.05599 -.11743 (63*2π)/1813 weeks
64-.00213 -.12104 (64*2π)/1813 weeks
65-.00883 .00491 (65*2π)/1813 weeks
66-.0914 -.03958 (66*2π)/1813 weeks
67.09445 -.07094 (67*2π)/1813 weeks
68-.07524 .06416 (68*2π)/1813 weeks
69-.16777 -.07349 (69*2π)/1813 weeks
70-.03341 -.13505 (70*2π)/1813 weeks
71-.10416 .06249 (71*2π)/1813 weeks
72-.08578 -.07418 (72*2π)/1813 weeks
73-.0628 -.0305 (73*2π)/1812 weeks
74-.18985 -.01189 (74*2π)/1812 weeks
75-.06239 -.06223 (75*2π)/1812 weeks
76-.13808 .08302 (76*2π)/1812 weeks
77.0158 -.0298 (77*2π)/1812 weeks
78-.10529 .03654 (78*2π)/1812 weeks
79-.12088 -.10544 (79*2π)/1812 weeks
80-.0264 .07761 (80*2π)/1812 weeks
81-.17336 .13145 (81*2π)/1812 weeks
82-.08665 -.06725 (82*2π)/1812 weeks
83.03951 .15205 (83*2π)/1812 weeks
84-.15533 .10293 (84*2π)/1812 weeks
85-.08176 -.04797 (85*2π)/1812 weeks
86.0444 .03488 (86*2π)/1812 weeks
87-.14646 -.0663 (87*2π)/1812 weeks
88.01494 -.02351 (88*2π)/1812 weeks
89-.09258 .10142 (89*2π)/1812 weeks
90-.04161 -.01253 (90*2π)/1812 weeks
91-.04161 .01253 (91*2π)/1812 weeks
92-.09258 -.10142 (92*2π)/1812 weeks
93.01494 .02351 (93*2π)/1812 weeks
94-.14646 .0663 (94*2π)/1812 weeks
95.0444 -.03488 (95*2π)/1812 weeks
96-.08176 .04797 (96*2π)/1812 weeks
97-.15533 -.10293 (97*2π)/1812 weeks
98.03951 -.15205 (98*2π)/1812 weeks
99-.08665 .06725 (99*2π)/1812 weeks
100-.17336 -.13145 (100*2π)/1812 weeks
101-.0264 -.07761 (101*2π)/1812 weeks
102-.12088 .10544 (102*2π)/1812 weeks
103-.10529 -.03654 (103*2π)/1812 weeks
104.0158 .0298 (104*2π)/1812 weeks
105-.13808 -.08302 (105*2π)/1812 weeks
106-.06239 .06223 (106*2π)/1812 weeks
107-.18985 .01189 (107*2π)/1812 weeks
108-.0628 .0305 (108*2π)/1812 weeks
109-.08578 .07418 (109*2π)/1812 weeks
110-.10416 -.06249 (110*2π)/1812 weeks
111-.03341 .13505 (111*2π)/1812 weeks
112-.16777 .07349 (112*2π)/1812 weeks
113-.07524 -.06416 (113*2π)/1812 weeks
114.09445 .07094 (114*2π)/1812 weeks
115-.0914 .03958 (115*2π)/1812 weeks
116-.00883 -.00491 (116*2π)/1812 weeks
117-.00213 .12104 (117*2π)/1812 weeks
118-.05599 .11743 (118*2π)/1812 weeks
119-.08012 .06042 (119*2π)/1812 weeks
120.03166 -.04834 (120*2π)/1812 weeks
121.05608 .03856 (121*2π)/1811 weeks
122-.15039 .11024 (122*2π)/1811 weeks
123-.06847 -.18733 (123*2π)/1811 weeks
124.11769 -.01227 (124*2π)/1811 weeks
125-.15744 .05888 (125*2π)/1811 weeks
126-.11397 -.12556 (126*2π)/1811 weeks
127.04512 -.01134 (127*2π)/1811 weeks
128-.14186 -.01359 (128*2π)/1811 weeks
129-.05442 -.08094 (129*2π)/1811 weeks
130-.13158 .16031 (130*2π)/1811 weeks
131-.14957 .02196 (131*2π)/1811 weeks
132-.11108 .16108 (132*2π)/1811 weeks
133-.11679 -.01555 (133*2π)/1811 weeks
134.08068 .18123 (134*2π)/1811 weeks
135-.18557 .17699 (135*2π)/1811 weeks
136-.15212 .18324 (136*2π)/1811 weeks
137-.27443 .16612 (137*2π)/1811 weeks
138-.2005 .16187 (138*2π)/1811 weeks
139-.12184 .1264 (139*2π)/1811 weeks
140-.24377 .30904 (140*2π)/1811 weeks
141-.25918 -.00746 (141*2π)/1811 weeks
142.08678 .13036 (142*2π)/1811 weeks
143.08934 .12594 (143*2π)/1811 weeks
144-.02075 .20462 (144*2π)/1811 weeks
145.06893 .0549 (145*2π)/1811 weeks
146-.00552 .31218 (146*2π)/1811 weeks
147-.00227 .32735 (147*2π)/1811 weeks
148-.10225 .18338 (148*2π)/1811 weeks
149-.05727 -.02576 (149*2π)/1811 weeks
150-.06025 .22417 (150*2π)/1811 weeks
151-.05122 .14119 (151*2π)/1811 weeks
152.18957 -.03274 (152*2π)/1811 weeks
153-.14471 .16507 (153*2π)/1811 weeks
154.01037 .06284 (154*2π)/1811 weeks
155.10426 .26808 (155*2π)/1811 weeks
156-.40093 .09316 (156*2π)/1811 weeks
157-.22148 -.18801 (157*2π)/1811 weeks
158-.16161 .36014 (158*2π)/1811 weeks
159-.25027 .32352 (159*2π)/1811 weeks
160.03721 .01725 (160*2π)/1811 weeks
161-.07025 -.02025 (161*2π)/1811 weeks
162-.19091 .18976 (162*2π)/1811 weeks
163.10607 .03886 (163*2π)/1811 weeks
164-.09505 .02385 (164*2π)/1811 weeks
165.21536 .52587 (165*2π)/1811 weeks
166-.33222 1.1258 (166*2π)/1811 weeks
167-.13489 .49227 (167*2π)/1811 weeks
168-.10884 .58772 (168*2π)/1811 weeks
169-.64942 .28197 (169*2π)/1811 weeks
170-.2675 .39236 (170*2π)/1811 weeks
171-.01718 1.00036 (171*2π)/1811 weeks
172-.32238 .43011 (172*2π)/1811 weeks
173.1221 .60886 (173*2π)/1811 weeks
174-.70559 .48194 (174*2π)/1811 weeks
175.69634 1.65608 (175*2π)/1811 weeks
176-.89378 .05419 (176*2π)/1811 weeks
177.58428 .81056 (177*2π)/1811 weeks
1781.32263 2.89202 (178*2π)/1811 weeks
179-3.16712 2.88219 (179*2π)/1811 weeks



Back to list of Stocks