Back to list of Stocks    See Also: Seasonal Analysis of SSOLGenetic Algorithms Stock Portfolio Generator, and Fourier Calculator

Fourier Analysis of SSOL (SUNVALLEY SOLAR INC.)


SSOL (SUNVALLEY SOLAR INC.) appears to have interesting cyclic behaviour every 24 weeks (.0863*cosine), 15 weeks (.0634*cosine), and 13 weeks (.0604*cosine).

SSOL (SUNVALLEY SOLAR INC.) has an average price of .29 (topmost row, frequency = 0).



Click on the checkboxes shown on the right to see how the various frequencies contribute to the graph. Look for large magnitude coefficients (sine or cosine), as these are associated with frequencies which contribute most to the associated stock plot. If you find a large magnitude coefficient which dramatically changes the graph, look at the associated "Period" in weeks, as you may have found a significant recurring cycle for the stock of interest.

Right click on the graph above to see the menu of operations (download, full screen, etc.)

Fourier Analysis

Using data from 8/15/2012 to 3/20/2017 for SSOL (SUNVALLEY SOLAR INC.), this program was able to calculate the following Fourier Series:
Sequence #Cosine Coefficients Sine Coefficients FrequenciesPeriod
0.29075   0 
1.04886 .15826 (1*2π)/241241 weeks
2.12448 -.00738 (2*2π)/241121 weeks
3.1188 -.02095 (3*2π)/24180 weeks
4.16895 .06673 (4*2π)/24160 weeks
5.14489 .08735 (5*2π)/24148 weeks
6.07384 .07702 (6*2π)/24140 weeks
7.10491 .05527 (7*2π)/24134 weeks
8.10678 .05947 (8*2π)/24130 weeks
9.08028 .06733 (9*2π)/24127 weeks
10.08632 .06205 (10*2π)/24124 weeks
11.06196 .05877 (11*2π)/24122 weeks
12.04768 .05423 (12*2π)/24120 weeks
13.0608 .03977 (13*2π)/24119 weeks
14.05504 .05129 (14*2π)/24117 weeks
15.0543 .05848 (15*2π)/24116 weeks
16.06337 .04661 (16*2π)/24115 weeks
17.04614 .03597 (17*2π)/24114 weeks
18.0604 .0291 (18*2π)/24113 weeks
19.05792 .02724 (19*2π)/24113 weeks
20.05167 .04837 (20*2π)/24112 weeks
21.05024 .03397 (21*2π)/24111 weeks
22.04546 .03938 (22*2π)/24111 weeks
23.04152 .03502 (23*2π)/24110 weeks
24.04145 .02316 (24*2π)/24110 weeks
25.04703 .02911 (25*2π)/24110 weeks
26.04914 .03358 (26*2π)/2419 weeks
27.04334 .02938 (27*2π)/2419 weeks
28.0333 .02813 (28*2π)/2419 weeks
29.03752 .02547 (29*2π)/2418 weeks
30.04068 .02408 (30*2π)/2418 weeks
31.03312 .03067 (31*2π)/2418 weeks
32.0338 .01871 (32*2π)/2418 weeks
33.02192 .0132 (33*2π)/2417 weeks
34.04191 .01024 (34*2π)/2417 weeks
35.03922 .00839 (35*2π)/2417 weeks
36.04011 .014 (36*2π)/2417 weeks
37.03774 .00611 (37*2π)/2417 weeks
38.04295 .00625 (38*2π)/2416 weeks
39.04467 .0079 (39*2π)/2416 weeks
40.03973 .00497 (40*2π)/2416 weeks
41.04683 .00493 (41*2π)/2416 weeks
42.04515 .00934 (42*2π)/2416 weeks
43.0446 .00349 (43*2π)/2416 weeks
44.04321 .00121 (44*2π)/2415 weeks
45.05609 .00616 (45*2π)/2415 weeks
46.0527 .0046 (46*2π)/2415 weeks
47.05414 .01922 (47*2π)/2415 weeks
48.04222 .01043 (48*2π)/2415 weeks
49.04835 .01024 (49*2π)/2415 weeks
50.04903 .01419 (50*2π)/2415 weeks
51.04164 .01317 (51*2π)/2415 weeks
52.0434 .01258 (52*2π)/2415 weeks
53.04657 .00984 (53*2π)/2415 weeks
54.04197 .01001 (54*2π)/2414 weeks
55.04575 .00759 (55*2π)/2414 weeks
56.04233 .01062 (56*2π)/2414 weeks
57.04369 .00633 (57*2π)/2414 weeks
58.04116 .01037 (58*2π)/2414 weeks
59.03927 .00394 (59*2π)/2414 weeks
60.04374 .00171 (60*2π)/2414 weeks
61.05115 .00515 (61*2π)/2414 weeks
62.04496 .00525 (62*2π)/2414 weeks
63.04572 .00102 (63*2π)/2414 weeks
64.04752 .00154 (64*2π)/2414 weeks
65.04639 .00858 (65*2π)/2414 weeks
66.04742 .00086 (66*2π)/2414 weeks
67.05483 .01007 (67*2π)/2414 weeks
68.04707 .01353 (68*2π)/2414 weeks
69.04388 .00671 (69*2π)/2413 weeks
70.0461 .00332 (70*2π)/2413 weeks
71.05131 .00597 (71*2π)/2413 weeks
72.04737 .00749 (72*2π)/2413 weeks
73.04392 .01008 (73*2π)/2413 weeks
74.04183 .01002 (74*2π)/2413 weeks
75.04721 .0117 (75*2π)/2413 weeks
76.04441 .01383 (76*2π)/2413 weeks
77.03921 .0099 (77*2π)/2413 weeks
78.03215 .01132 (78*2π)/2413 weeks
79.03529 -.00039 (79*2π)/2413 weeks
80.0369 .00014 (80*2π)/2413 weeks
81.04127 .0057 (81*2π)/2413 weeks
82.03512 .00081 (82*2π)/2413 weeks
83.03877 .00015 (83*2π)/2413 weeks
84.0374 -.00169 (84*2π)/2413 weeks
85.04026 -.00606 (85*2π)/2413 weeks
86.04555 -.00187 (86*2π)/2413 weeks
87.04487 .00067 (87*2π)/2413 weeks
88.03793 -.00684 (88*2π)/2413 weeks
89.04212 -.00598 (89*2π)/2413 weeks
90.04519 -.00747 (90*2π)/2413 weeks
91.04812 -.0046 (91*2π)/2413 weeks
92.04905 -.00004 (92*2π)/2413 weeks
93.04204 -.00436 (93*2π)/2413 weeks
94.04761 -.00544 (94*2π)/2413 weeks
95.04573 -.00551 (95*2π)/2413 weeks
96.04457 -.00289 (96*2π)/2413 weeks
97.04544 -.00165 (97*2π)/2412 weeks
98.04719 -.00526 (98*2π)/2412 weeks
99.04921 -.00746 (99*2π)/2412 weeks
100.05393 -.0066 (100*2π)/2412 weeks
101.05211 -.00173 (101*2π)/2412 weeks
102.05412 .00106 (102*2π)/2412 weeks
103.04964 .00035 (103*2π)/2412 weeks
104.04658 -.00329 (104*2π)/2412 weeks
105.0498 -.00023 (105*2π)/2412 weeks
106.05132 .00312 (106*2π)/2412 weeks
107.04511 -.00127 (107*2π)/2412 weeks
108.048 -.00168 (108*2π)/2412 weeks
109.04569 -.00433 (109*2π)/2412 weeks
110.04881 -.00188 (110*2π)/2412 weeks
111.04993 -.00198 (111*2π)/2412 weeks
112.04663 -.00195 (112*2π)/2412 weeks
113.05211 -.00218 (113*2π)/2412 weeks
114.04668 .00068 (114*2π)/2412 weeks
115.04846 -.00131 (115*2π)/2412 weeks
116.05313 -.00132 (116*2π)/2412 weeks
117.05196 .00242 (117*2π)/2412 weeks
118.0498 -.00253 (118*2π)/2412 weeks
119.05445 -.00602 (119*2π)/2412 weeks
120.05484 -.00443 (120*2π)/2412 weeks
121.05484 .00443 (121*2π)/2412 weeks
122.05445 .00602 (122*2π)/2412 weeks
123.0498 .00253 (123*2π)/2412 weeks
124.05196 -.00242 (124*2π)/2412 weeks
125.05313 .00132 (125*2π)/2412 weeks
126.04846 .00131 (126*2π)/2412 weeks
127.04668 -.00068 (127*2π)/2412 weeks
128.05211 .00218 (128*2π)/2412 weeks
129.04663 .00195 (129*2π)/2412 weeks
130.04993 .00198 (130*2π)/2412 weeks
131.04881 .00188 (131*2π)/2412 weeks
132.04569 .00433 (132*2π)/2412 weeks
133.048 .00168 (133*2π)/2412 weeks
134.04511 .00127 (134*2π)/2412 weeks
135.05132 -.00312 (135*2π)/2412 weeks
136.0498 .00023 (136*2π)/2412 weeks
137.04658 .00329 (137*2π)/2412 weeks
138.04964 -.00035 (138*2π)/2412 weeks
139.05412 -.00106 (139*2π)/2412 weeks
140.05211 .00173 (140*2π)/2412 weeks
141.05393 .0066 (141*2π)/2412 weeks
142.04921 .00746 (142*2π)/2412 weeks
143.04719 .00526 (143*2π)/2412 weeks
144.04544 .00165 (144*2π)/2412 weeks
145.04457 .00289 (145*2π)/2412 weeks
146.04573 .00551 (146*2π)/2412 weeks
147.04761 .00544 (147*2π)/2412 weeks
148.04204 .00436 (148*2π)/2412 weeks
149.04905 .00004 (149*2π)/2412 weeks
150.04812 .0046 (150*2π)/2412 weeks
151.04519 .00747 (151*2π)/2412 weeks
152.04212 .00598 (152*2π)/2412 weeks
153.03793 .00684 (153*2π)/2412 weeks
154.04487 -.00067 (154*2π)/2412 weeks
155.04555 .00187 (155*2π)/2412 weeks
156.04026 .00606 (156*2π)/2412 weeks
157.0374 .00169 (157*2π)/2412 weeks
158.03877 -.00015 (158*2π)/2412 weeks
159.03512 -.00081 (159*2π)/2412 weeks
160.04127 -.0057 (160*2π)/2412 weeks
161.0369 -.00014 (161*2π)/2411 weeks
162.03529 .00039 (162*2π)/2411 weeks
163.03215 -.01132 (163*2π)/2411 weeks
164.03921 -.0099 (164*2π)/2411 weeks
165.04441 -.01383 (165*2π)/2411 weeks
166.04721 -.0117 (166*2π)/2411 weeks
167.04183 -.01002 (167*2π)/2411 weeks
168.04392 -.01008 (168*2π)/2411 weeks
169.04737 -.00749 (169*2π)/2411 weeks
170.05131 -.00597 (170*2π)/2411 weeks
171.0461 -.00332 (171*2π)/2411 weeks
172.04388 -.00671 (172*2π)/2411 weeks
173.04707 -.01353 (173*2π)/2411 weeks
174.05483 -.01007 (174*2π)/2411 weeks
175.04742 -.00086 (175*2π)/2411 weeks
176.04639 -.00858 (176*2π)/2411 weeks
177.04752 -.00154 (177*2π)/2411 weeks
178.04572 -.00102 (178*2π)/2411 weeks
179.04496 -.00525 (179*2π)/2411 weeks
180.05115 -.00515 (180*2π)/2411 weeks
181.04374 -.00171 (181*2π)/2411 weeks
182.03927 -.00394 (182*2π)/2411 weeks
183.04116 -.01037 (183*2π)/2411 weeks
184.04369 -.00633 (184*2π)/2411 weeks
185.04233 -.01062 (185*2π)/2411 weeks
186.04575 -.00759 (186*2π)/2411 weeks
187.04197 -.01001 (187*2π)/2411 weeks
188.04657 -.00984 (188*2π)/2411 weeks
189.0434 -.01258 (189*2π)/2411 weeks
190.04164 -.01317 (190*2π)/2411 weeks
191.04903 -.01419 (191*2π)/2411 weeks
192.04835 -.01024 (192*2π)/2411 weeks
193.04222 -.01043 (193*2π)/2411 weeks
194.05414 -.01922 (194*2π)/2411 weeks
195.0527 -.0046 (195*2π)/2411 weeks
196.05609 -.00616 (196*2π)/2411 weeks
197.04321 -.00121 (197*2π)/2411 weeks
198.0446 -.00349 (198*2π)/2411 weeks
199.04515 -.00934 (199*2π)/2411 weeks
200.04683 -.00493 (200*2π)/2411 weeks
201.03973 -.00497 (201*2π)/2411 weeks
202.04467 -.0079 (202*2π)/2411 weeks
203.04295 -.00625 (203*2π)/2411 weeks
204.03774 -.00611 (204*2π)/2411 weeks
205.04011 -.014 (205*2π)/2411 weeks
206.03922 -.00839 (206*2π)/2411 weeks
207.04191 -.01024 (207*2π)/2411 weeks
208.02192 -.0132 (208*2π)/2411 weeks
209.0338 -.01871 (209*2π)/2411 weeks
210.03312 -.03067 (210*2π)/2411 weeks
211.04068 -.02408 (211*2π)/2411 weeks
212.03752 -.02547 (212*2π)/2411 weeks
213.0333 -.02813 (213*2π)/2411 weeks
214.04334 -.02938 (214*2π)/2411 weeks
215.04914 -.03358 (215*2π)/2411 weeks
216.04703 -.02911 (216*2π)/2411 weeks
217.04145 -.02316 (217*2π)/2411 weeks
218.04152 -.03502 (218*2π)/2411 weeks
219.04546 -.03938 (219*2π)/2411 weeks
220.05024 -.03397 (220*2π)/2411 weeks
221.05167 -.04837 (221*2π)/2411 weeks
222.05792 -.02724 (222*2π)/2411 weeks
223.0604 -.0291 (223*2π)/2411 weeks
224.04614 -.03597 (224*2π)/2411 weeks
225.06337 -.04661 (225*2π)/2411 weeks
226.0543 -.05848 (226*2π)/2411 weeks
227.05504 -.05129 (227*2π)/2411 weeks
228.0608 -.03977 (228*2π)/2411 weeks
229.04768 -.05423 (229*2π)/2411 weeks
230.06196 -.05877 (230*2π)/2411 weeks
231.08632 -.06205 (231*2π)/2411 weeks
232.08028 -.06733 (232*2π)/2411 weeks
233.10678 -.05947 (233*2π)/2411 weeks
234.10491 -.05527 (234*2π)/2411 weeks
235.07384 -.07702 (235*2π)/2411 weeks
236.14489 -.08735 (236*2π)/2411 weeks
237.16895 -.06673 (237*2π)/2411 weeks
238.1188 .02095 (238*2π)/2411 weeks
239.12448 .00738 (239*2π)/2411 weeks

Problems, Comments, Suggestions? Click here to contact Greg Thatcher

Please read my Disclaimer





Copyright (c) 2013 Thatcher Development Software, LLC. All rights reserved. No claim to original U.S. Gov't works.