Back to list of Stocks    See Also: Seasonal Analysis of SSLGenetic Algorithms Stock Portfolio Generator, and Fourier Calculator

Fourier Analysis of SSL (Sasol Ltd. American Depositary )

SSL (Sasol Ltd. American Depositary ) appears to have interesting cyclic behaviour every 140 weeks (1.7384*sine), 152 weeks (1.55*cosine), and 165 weeks (.9616*cosine).

SSL (Sasol Ltd. American Depositary ) has an average price of 12.99 (topmost row, frequency = 0).

Click on the checkboxes shown on the right to see how the various frequencies contribute to the graph. Look for large magnitude coefficients (sine or cosine), as these are associated with frequencies which contribute most to the associated stock plot. If you find a large magnitude coefficient which dramatically changes the graph, look at the associated "Period" in weeks, as you may have found a significant recurring cycle for the stock of interest.

Fourier Analysis

Using data from 4/26/1982 to 3/13/2017 for SSL (Sasol Ltd. American Depositary ), this program was able to calculate the following Fourier Series:
Sequence #Cosine Coefficients Sine Coefficients FrequenciesPeriod
012.99003   0
17.44709 -15.31882 (1*2π)/18201,820 weeks
2-2.53396 -8.50692 (2*2π)/1820910 weeks
3-.75318 -2.58502 (3*2π)/1820607 weeks
4-1.04099 -3.78321 (4*2π)/1820455 weeks
5-1.83709 -1.61841 (5*2π)/1820364 weeks
6-1.05287 -.18346 (6*2π)/1820303 weeks
7.17376 -1.05549 (7*2π)/1820260 weeks
8-.75833 -.70802 (8*2π)/1820228 weeks
9-.63999 -.22829 (9*2π)/1820202 weeks
10-.25073 .46608 (10*2π)/1820182 weeks
11.96158 .38805 (11*2π)/1820165 weeks
121.55 -.70187 (12*2π)/1820152 weeks
13.25504 -1.73844 (13*2π)/1820140 weeks
14-.08741 -.59137 (14*2π)/1820130 weeks
15.37081 -.50128 (15*2π)/1820121 weeks
16.36245 -1.3726 (16*2π)/1820114 weeks
17-.83004 -1.06443 (17*2π)/1820107 weeks
18-.37366 -.11692 (18*2π)/1820101 weeks
19.27879 -.38803 (19*2π)/182096 weeks
20-.17535 -.89488 (20*2π)/182091 weeks
21-.72311 -.21289 (21*2π)/182087 weeks
22-.0428 .3604 (22*2π)/182083 weeks
23.4754 .06164 (23*2π)/182079 weeks
24.45746 -.72843 (24*2π)/182076 weeks
25-.20917 -.63605 (25*2π)/182073 weeks
26-.23118 -.10303 (26*2π)/182070 weeks
27.28332 -.02208 (27*2π)/182067 weeks
28.50362 -.51265 (28*2π)/182065 weeks
29.02714 -.86112 (29*2π)/182063 weeks
30-.40849 -.53607 (30*2π)/182061 weeks
31-.29504 -.20119 (31*2π)/182059 weeks
32-.09443 -.22273 (32*2π)/182057 weeks
33-.20349 -.20784 (33*2π)/182055 weeks
34-.12607 -.02174 (34*2π)/182054 weeks
35.09764 .07781 (35*2π)/182052 weeks
36.20255 -.22307 (36*2π)/182051 weeks
37-.01721 -.25404 (37*2π)/182049 weeks
38-.17248 -.03133 (38*2π)/182048 weeks
39.23454 .20826 (39*2π)/182047 weeks
40.54278 -.18262 (40*2π)/182046 weeks
41.33522 -.51009 (41*2π)/182044 weeks
42.05843 -.51277 (42*2π)/182043 weeks
43-.08028 -.41359 (43*2π)/182042 weeks
44.01979 -.33474 (44*2π)/182041 weeks
45-.06061 -.51884 (45*2π)/182040 weeks
46-.33325 -.18887 (46*2π)/182040 weeks
47-.09462 -.00535 (47*2π)/182039 weeks
48.24018 -.14419 (48*2π)/182038 weeks
49-.04206 -.46221 (49*2π)/182037 weeks
50-.26388 -.23158 (50*2π)/182036 weeks
51-.04398 .01868 (51*2π)/182036 weeks
52.09003 -.16655 (52*2π)/182035 weeks
53.03093 -.23763 (53*2π)/182034 weeks
54-.03781 -.1773 (54*2π)/182034 weeks
55.09139 -.15701 (55*2π)/182033 weeks
56.02433 -.32366 (56*2π)/182033 weeks
57-.12731 -.31519 (57*2π)/182032 weeks
58-.24084 -.14932 (58*2π)/182031 weeks
59-.02486 .02893 (59*2π)/182031 weeks
60.06677 -.09049 (60*2π)/182030 weeks
61.05487 -.34042 (61*2π)/182030 weeks
62-.22129 -.22583 (62*2π)/182029 weeks
63-.073 -.04764 (63*2π)/182029 weeks
64-.03348 -.19364 (64*2π)/182028 weeks
65-.15195 -.17085 (65*2π)/182028 weeks
66-.19625 .0207 (66*2π)/182028 weeks
67.01185 .03291 (67*2π)/182027 weeks
68.04633 -.03533 (68*2π)/182027 weeks
69-.03818 -.06617 (69*2π)/182026 weeks
70.10624 .03531 (70*2π)/182026 weeks
71.15332 -.10561 (71*2π)/182026 weeks
72.12844 -.22873 (72*2π)/182025 weeks
73-.05094 -.2028 (73*2π)/182025 weeks
74-.0251 -.05391 (74*2π)/182025 weeks
75.10075 -.11887 (75*2π)/182024 weeks
76.03337 -.24174 (76*2π)/182024 weeks
77-.01922 -.14734 (77*2π)/182024 weeks
78.01832 -.17803 (78*2π)/182023 weeks
79-.05681 -.19654 (79*2π)/182023 weeks
80-.08302 -.08218 (80*2π)/182023 weeks
81.09206 -.07452 (81*2π)/182022 weeks
82.00067 -.25793 (82*2π)/182022 weeks
83-.12253 -.17028 (83*2π)/182022 weeks
84-.03345 -.05996 (84*2π)/182022 weeks
85.06151 -.13875 (85*2π)/182021 weeks
86-.03385 -.24366 (86*2π)/182021 weeks
87-.13551 -.17732 (87*2π)/182021 weeks
88-.15935 -.07972 (88*2π)/182021 weeks
89-.03893 -.02834 (89*2π)/182020 weeks
90-.00825 -.131 (90*2π)/182020 weeks
91-.10058 -.13301 (91*2π)/182020 weeks
92-.13122 -.00411 (92*2π)/182020 weeks
93.04245 -.00223 (93*2π)/182020 weeks
94-.01157 -.15323 (94*2π)/182019 weeks
95-.09117 -.07264 (95*2π)/182019 weeks
96-.05563 -.02587 (96*2π)/182019 weeks
97.02492 -.01372 (97*2π)/182019 weeks
98.04271 -.07405 (98*2π)/182019 weeks
99.02017 -.13651 (99*2π)/182018 weeks
100-.06568 -.11378 (100*2π)/182018 weeks
101-.03341 -.00349 (101*2π)/182018 weeks
102.07435 -.05961 (102*2π)/182018 weeks
103.03469 -.1772 (103*2π)/182018 weeks
104-.07178 -.14669 (104*2π)/182018 weeks
105-.03642 -.02835 (105*2π)/182017 weeks
106.06409 -.15157 (106*2π)/182017 weeks
107-.09456 -.20965 (107*2π)/182017 weeks
108-.19061 -.0663 (108*2π)/182017 weeks
109-.05648 .04949 (109*2π)/182017 weeks
110.05605 -.02106 (110*2π)/182017 weeks
111.03579 -.14733 (111*2π)/182016 weeks
112-.08792 -.14612 (112*2π)/182016 weeks
113-.15333 -.05943 (113*2π)/182016 weeks
114-.05947 .1114 (114*2π)/182016 weeks
115.12884 -.03145 (115*2π)/182016 weeks
116.01412 -.17264 (116*2π)/182016 weeks
117-.10063 -.07585 (117*2π)/182016 weeks
118.04139 -.03095 (118*2π)/182015 weeks
119-.01369 -.17659 (119*2π)/182015 weeks
120-.16214 -.10506 (120*2π)/182015 weeks
121-.08217 .05478 (121*2π)/182015 weeks
122.04564 -.02427 (122*2π)/182015 weeks
123-.04152 -.06806 (123*2π)/182015 weeks
124-.04034 -.04042 (124*2π)/182015 weeks
125-.0081 -.03266 (125*2π)/182015 weeks
126-.0239 -.06222 (126*2π)/182014 weeks
127-.01488 -.02753 (127*2π)/182014 weeks
128-.03281 -.04588 (128*2π)/182014 weeks
129-.00581 .01988 (129*2π)/182014 weeks
130.10491 -.02016 (130*2π)/182014 weeks
131.09306 -.1755 (131*2π)/182014 weeks
132-.11041 -.18637 (132*2π)/182014 weeks
133-.1175 .00191 (133*2π)/182014 weeks
134.04916 .04185 (134*2π)/182014 weeks
135.10038 -.15324 (135*2π)/182013 weeks
136-.07474 -.14866 (136*2π)/182013 weeks
137-.07978 -.09504 (137*2π)/182013 weeks
138-.08099 -.06346 (138*2π)/182013 weeks
139-.11783 -.06033 (139*2π)/182013 weeks
140-.07932 .01945 (140*2π)/182013 weeks
141-.0431 .01742 (141*2π)/182013 weeks
142-.01739 -.02112 (142*2π)/182013 weeks
143-.06192 .00576 (143*2π)/182013 weeks
144-.00528 .03442 (144*2π)/182013 weeks
145.013 .0267 (145*2π)/182013 weeks
146.07126 .01503 (146*2π)/182012 weeks
147.06772 -.0433 (147*2π)/182012 weeks
148.05677 -.11557 (148*2π)/182012 weeks
149-.05364 -.06489 (149*2π)/182012 weeks
150.02448 -.01265 (150*2π)/182012 weeks
151.06233 -.07595 (151*2π)/182012 weeks
152-.02347 -.13258 (152*2π)/182012 weeks
153-.0555 -.04066 (153*2π)/182012 weeks
154.00646 -.06322 (154*2π)/182012 weeks
155-.03988 -.08398 (155*2π)/182012 weeks
156-.06381 -.04948 (156*2π)/182012 weeks
157-.0528 -.03933 (157*2π)/182012 weeks
158-.07943 -.02553 (158*2π)/182012 weeks
159-.05174 .01836 (159*2π)/182011 weeks
160-.02192 .03406 (160*2π)/182011 weeks
161.01506 .05453 (161*2π)/182011 weeks
162.06964 .03466 (162*2π)/182011 weeks
163.09496 -.01847 (163*2π)/182011 weeks
164.05263 -.05021 (164*2π)/182011 weeks
165.10372 -.05315 (165*2π)/182011 weeks
166.09008 -.11531 (166*2π)/182011 weeks
167-.03135 -.17132 (167*2π)/182011 weeks
168-.04511 -.02962 (168*2π)/182011 weeks
169.02004 -.03147 (169*2π)/182011 weeks
170.05007 -.10862 (170*2π)/182011 weeks
171-.04465 -.10261 (171*2π)/182011 weeks
172-.02774 -.05504 (172*2π)/182011 weeks
173-.00323 -.06116 (173*2π)/182011 weeks
174-.02272 -.06764 (174*2π)/182010 weeks
175-.02488 -.04329 (175*2π)/182010 weeks
176.01155 -.04974 (176*2π)/182010 weeks
177-.00662 -.07483 (177*2π)/182010 weeks
178-.04588 -.05503 (178*2π)/182010 weeks
179.02239 -.03659 (179*2π)/182010 weeks
180-.00701 -.09151 (180*2π)/182010 weeks
181-.03059 -.06313 (181*2π)/182010 weeks
182-.03228 -.0505 (182*2π)/182010 weeks
183.00753 -.03579 (183*2π)/182010 weeks
184.0159 -.08474 (184*2π)/182010 weeks
185-.02221 -.12126 (185*2π)/182010 weeks
186-.09861 -.08807 (186*2π)/182010 weeks
187-.07528 .00951 (187*2π)/182010 weeks
188-.00097 -.0071 (188*2π)/182010 weeks
189-.02127 -.07614 (189*2π)/182010 weeks
190-.0537 -.02494 (190*2π)/182010 weeks
191-.01884 -.01461 (191*2π)/182010 weeks
192-.01771 -.03436 (192*2π)/18209 weeks
193-.01447 -.02237 (193*2π)/18209 weeks
194.01149 -.03761 (194*2π)/18209 weeks
195-.04246 -.04955 (195*2π)/18209 weeks
196-.0163 -.00781 (196*2π)/18209 weeks
197.01293 -.05243 (197*2π)/18209 weeks
198-.0541 -.06526 (198*2π)/18209 weeks
199-.04837 .04277 (199*2π)/18209 weeks
200.07121 .00381 (200*2π)/18209 weeks
201.06181 -.08389 (201*2π)/18209 weeks
202-.04274 -.10239 (202*2π)/18209 weeks
203-.04167 -.0226 (203*2π)/18209 weeks
204.01566 -.04526 (204*2π)/18209 weeks
205-.01167 -.07272 (205*2π)/18209 weeks
206-.03225 -.05602 (206*2π)/18209 weeks
207-.00158 -.0267 (207*2π)/18209 weeks
208.00609 -.07505 (208*2π)/18209 weeks
209-.04427 -.10974 (209*2π)/18209 weeks
210-.11208 -.04461 (210*2π)/18209 weeks
211-.04993 -.00683 (211*2π)/18209 weeks
212-.04075 -.00398 (212*2π)/18209 weeks
213-.03971 -.0127 (213*2π)/18209 weeks
214-.02892 -.00417 (214*2π)/18209 weeks
215-.03211 .0127 (215*2π)/18208 weeks
216.00413 .01331 (216*2π)/18208 weeks
217-.00924 .00046 (217*2π)/18208 weeks
218.01562 .01631 (218*2π)/18208 weeks
219.03602 -.00989 (219*2π)/18208 weeks
220.04034 -.02632 (220*2π)/18208 weeks
221.04145 -.06689 (221*2π)/18208 weeks
222-.01075 -.08717 (222*2π)/18208 weeks
223-.02604 -.04819 (223*2π)/18208 weeks
224-.00352 -.04376 (224*2π)/18208 weeks
225-.03083 -.05196 (225*2π)/18208 weeks
226-.0183 -.00155 (226*2π)/18208 weeks
227.02389 -.0119 (227*2π)/18208 weeks
228.0376 -.07635 (228*2π)/18208 weeks
229-.07255 -.0802 (229*2π)/18208 weeks
230-.03958 .02807 (230*2π)/18208 weeks
231.03021 -.00679 (231*2π)/18208 weeks
232.01109 -.05968 (232*2π)/18208 weeks
233-.01721 -.01538 (233*2π)/18208 weeks
234.03965 -.04056 (234*2π)/18208 weeks
235-.00644 -.07582 (235*2π)/18208 weeks
236-.03154 -.03241 (236*2π)/18208 weeks
237.02523 -.02577 (237*2π)/18208 weeks
238-.00193 -.10198 (238*2π)/18208 weeks
239-.06862 -.03968 (239*2π)/18208 weeks
240-.00826 -.0028 (240*2π)/18208 weeks
241.0165 -.04848 (241*2π)/18208 weeks
242-.0143 -.08306 (242*2π)/18208 weeks
243-.07301 -.0509 (243*2π)/18207 weeks
244-.03875 .01931 (244*2π)/18207 weeks
245.01306 .01259 (245*2π)/18207 weeks
246.02702 -.03607 (246*2π)/18207 weeks
247.01531 -.04823 (247*2π)/18207 weeks
248-.01602 -.05931 (248*2π)/18207 weeks
249-.01999 -.04668 (249*2π)/18207 weeks
250-.01982 -.01604 (250*2π)/18207 weeks
251.01649 -.0355 (251*2π)/18207 weeks
252.00792 -.05562 (252*2π)/18207 weeks
253-.01277 -.06593 (253*2π)/18207 weeks
254-.0187 -.0763 (254*2π)/18207 weeks
255-.06999 -.05687 (255*2π)/18207 weeks
256-.05711 -.01125 (256*2π)/18207 weeks
257-.00298 .01928 (257*2π)/18207 weeks
258.01035 -.05377 (258*2π)/18207 weeks
259-.03185 -.06632 (259*2π)/18207 weeks
260-.07857 -.03139 (260*2π)/18207 weeks
261-.06044 .03585 (261*2π)/18207 weeks
262.02813 .06823 (262*2π)/18207 weeks
263.08395 -.00304 (263*2π)/18207 weeks
264.0492 -.08023 (264*2π)/18207 weeks
265.01167 -.06698 (265*2π)/18207 weeks
266-.0242 -.07537 (266*2π)/18207 weeks
267-.02686 -.05531 (267*2π)/18207 weeks
268-.03493 -.03164 (268*2π)/18207 weeks
269.00786 -.02191 (269*2π)/18207 weeks
270.0122 -.06384 (270*2π)/18207 weeks
271-.02833 -.06935 (271*2π)/18207 weeks
272-.02284 -.05203 (272*2π)/18207 weeks
273-.04259 -.08704 (273*2π)/18207 weeks
274-.10563 -.02989 (274*2π)/18207 weeks
275-.05667 .0589 (275*2π)/18207 weeks
276.05187 .01881 (276*2π)/18207 weeks
277.02676 -.06848 (277*2π)/18207 weeks
278-.04862 -.06123 (278*2π)/18207 weeks
279-.01634 -.01085 (279*2π)/18207 weeks
280-.0008 -.04733 (280*2π)/18207 weeks
281-.04128 -.05473 (281*2π)/18206 weeks
282-.01981 -.00744 (282*2π)/18206 weeks
283.00255 -.02884 (283*2π)/18206 weeks
284-.00169 -.05234 (284*2π)/18206 weeks
285-.01902 -.06353 (285*2π)/18206 weeks
286-.05529 -.06487 (286*2π)/18206 weeks
287-.05091 -.02159 (287*2π)/18206 weeks
288-.0412 -.02816 (288*2π)/18206 weeks
289-.04933 -.03498 (289*2π)/18206 weeks
290-.07093 .00383 (290*2π)/18206 weeks
291-.01931 .03241 (291*2π)/18206 weeks
292.0168 -.01028 (292*2π)/18206 weeks
293-.04264 -.02865 (293*2π)/18206 weeks
294-.03784 .02832 (294*2π)/18206 weeks
295.01963 .03885 (295*2π)/18206 weeks
296.05586 -.01716 (296*2π)/18206 weeks
297.02451 -.05498 (297*2π)/18206 weeks
298-.01728 -.05067 (298*2π)/18206 weeks
299-.01331 -.02058 (299*2π)/18206 weeks
300.02221 -.0239 (300*2π)/18206 weeks
301.00543 -.0613 (301*2π)/18206 weeks
302-.03653 -.06149 (302*2π)/18206 weeks
303-.04466 -.00126 (303*2π)/18206 weeks
304.00349 -.00368 (304*2π)/18206 weeks
305.01385 -.04596 (305*2π)/18206 weeks
306-.02957 -.03737 (306*2π)/18206 weeks
307-.02182 -.02616 (307*2π)/18206 weeks
308-.01944 -.0191 (308*2π)/18206 weeks
309-.01402 -.01378 (309*2π)/18206 weeks
310.00149 -.01776 (310*2π)/18206 weeks
311-.00723 -.03748 (311*2π)/18206 weeks
312-.01276 -.01815 (312*2π)/18206 weeks
313-.00667 -.00971 (313*2π)/18206 weeks
314.04087 -.01164 (314*2π)/18206 weeks
315.02784 -.04761 (315*2π)/18206 weeks
316.03514 -.09427 (316*2π)/18206 weeks
317-.02272 -.10863 (317*2π)/18206 weeks
318-.06968 -.08355 (318*2π)/18206 weeks
319-.05265 -.04626 (319*2π)/18206 weeks
320-.05601 -.04918 (320*2π)/18206 weeks
321-.07509 -.04227 (321*2π)/18206 weeks
322-.08368 -.01291 (322*2π)/18206 weeks
323-.04666 .01493 (323*2π)/18206 weeks
324-.03356 -.0058 (324*2π)/18206 weeks
325-.02424 -.02566 (325*2π)/18206 weeks
326-.06194 -.0174 (326*2π)/18206 weeks
327-.05568 .0201 (327*2π)/18206 weeks
328-.00794 .03229 (328*2π)/18206 weeks
329.00393 -.01748 (329*2π)/18206 weeks
330-.03559 -.02462 (330*2π)/18206 weeks
331-.03626 .01353 (331*2π)/18205 weeks
332.00782 -.001 (332*2π)/18205 weeks
333-.02194 -.03536 (333*2π)/18205 weeks
334-.06002 -.00446 (334*2π)/18205 weeks
335-.02449 .03545 (335*2π)/18205 weeks
336-.00018 .01466 (336*2π)/18205 weeks
337-.0054 .00645 (337*2π)/18205 weeks
338-.00758 .02004 (338*2π)/18205 weeks
339.02343 .03055 (339*2π)/18205 weeks
340.03892 .00303 (340*2π)/18205 weeks
341.04922 -.02506 (341*2π)/18205 weeks
342.00368 -.04473 (342*2π)/18205 weeks
343-.00107 -.00424 (343*2π)/18205 weeks
344.04051 -.00821 (344*2π)/18205 weeks
345.04791 -.05376 (345*2π)/18205 weeks
346.00981 -.07584 (346*2π)/18205 weeks
347-.00847 -.05744 (347*2π)/18205 weeks
348-.01453 -.05433 (348*2π)/18205 weeks
349-.01156 -.07213 (349*2π)/18205 weeks
350-.04786 -.06207 (350*2π)/18205 weeks
351-.06365 -.03434 (351*2π)/18205 weeks
352-.03232 -.00964 (352*2π)/18205 weeks
353-.03226 -.01887 (353*2π)/18205 weeks
354-.03257 -.01282 (354*2π)/18205 weeks
355-.03064 -.0021 (355*2π)/18205 weeks
356-.01611 .0068 (356*2π)/18205 weeks
357.00886 -.01145 (357*2π)/18205 weeks
358-.00746 -.04992 (358*2π)/18205 weeks
359-.05091 -.02216 (359*2π)/18205 weeks
360-.03786 .00949 (360*2π)/18205 weeks
361.00206 .02548 (361*2π)/18205 weeks
362.02749 -.00976 (362*2π)/18205 weeks
363.00791 -.03661 (363*2π)/18205 weeks
364-.01419 -.03171 (364*2π)/18205 weeks
365-.0112 -.01498 (365*2π)/18205 weeks
366.00572 -.02008 (366*2π)/18205 weeks
367.01037 -.0543 (367*2π)/18205 weeks
368-.04131 -.06563 (368*2π)/18205 weeks
369-.05667 -.012 (369*2π)/18205 weeks
370-.01513 .00203 (370*2π)/18205 weeks
371-.01326 -.03799 (371*2π)/18205 weeks
372-.05087 -.01966 (372*2π)/18205 weeks
373-.02972 .01662 (373*2π)/18205 weeks
374.00168 -.00493 (374*2π)/18205 weeks
375-.01365 -.03017 (375*2π)/18205 weeks
376-.0401 -.00548 (376*2π)/18205 weeks
377-.01492 .02774 (377*2π)/18205 weeks
378.04177 .01049 (378*2π)/18205 weeks
379.02478 -.07195 (379*2π)/18205 weeks
380-.05333 -.04933 (380*2π)/18205 weeks
381-.03326 .00429 (381*2π)/18205 weeks
382-.00697 -.01243 (382*2π)/18205 weeks
383-.02293 -.01516 (383*2π)/18205 weeks
384-.01956 .00382 (384*2π)/18205 weeks
385.00012 .01249 (385*2π)/18205 weeks
386.02846 -.01504 (386*2π)/18205 weeks
387.00759 -.04361 (387*2π)/18205 weeks
388-.02641 -.03721 (388*2π)/18205 weeks
389-.01986 .00444 (389*2π)/18205 weeks
390.0227 -.0106 (390*2π)/18205 weeks
391.01668 -.05814 (391*2π)/18205 weeks
392-.04348 -.04955 (392*2π)/18205 weeks
393-.0413 .00651 (393*2π)/18205 weeks
394.02443 -.00229 (394*2π)/18205 weeks
395-.00468 -.04716 (395*2π)/18205 weeks
396-.02823 -.0347 (396*2π)/18205 weeks
397-.02698 -.01382 (397*2π)/18205 weeks
398-.01726 -.00656 (398*2π)/18205 weeks
399.00765 -.01715 (399*2π)/18205 weeks
400-.02365 -.03863 (400*2π)/18205 weeks
401-.03478 -.00447 (401*2π)/18205 weeks
402-.00033 .01304 (402*2π)/18205 weeks
403.02754 -.01739 (403*2π)/18205 weeks
404.00558 -.05583 (404*2π)/18205 weeks
405-.04011 -.03128 (405*2π)/18204 weeks
406-.00775 .00069 (406*2π)/18204 weeks
407.01506 -.03655 (407*2π)/18204 weeks
408-.00849 -.05626 (408*2π)/18204 weeks
409-.0348 -.05903 (409*2π)/18204 weeks
410-.05392 -.03843 (410*2π)/18204 weeks
411-.06524 -.02042 (411*2π)/18204 weeks
412-.04959 .00742