Back to list of Stocks    See Also: Seasonal Analysis of SQQQGenetic Algorithms Stock Portfolio Generator, and Fourier Calculator

Fourier Analysis of SQQQ (ProShares UltraPro Short QQQ ETF)


SQQQ (ProShares UltraPro Short QQQ ETF) appears to have interesting cyclic behaviour every 39 weeks (97.259*sine), 23 weeks (87.3668*sine), and 35 weeks (84.3702*sine).

SQQQ (ProShares UltraPro Short QQQ ETF) has an average price of 816.81 (topmost row, frequency = 0).



Click on the checkboxes shown on the right to see how the various frequencies contribute to the graph. Look for large magnitude coefficients (sine or cosine), as these are associated with frequencies which contribute most to the associated stock plot. If you find a large magnitude coefficient which dramatically changes the graph, look at the associated "Period" in weeks, as you may have found a significant recurring cycle for the stock of interest.

Right click on the graph above to see the menu of operations (download, full screen, etc.)

Fourier Analysis

Using data from 2/11/2010 to 7/24/2017 for SQQQ (ProShares UltraPro Short QQQ ETF), this program was able to calculate the following Fourier Series:
Sequence #Cosine Coefficients Sine Coefficients FrequenciesPeriod
0816.8135   0 
1705.7412 778.3386 (1*2π)/390390 weeks
2295.7206 559.8536 (2*2π)/390195 weeks
3163.0282 447.326 (3*2π)/390130 weeks
4120.1585 349.0185 (4*2π)/39098 weeks
599.5419 347.2895 (5*2π)/39078 weeks
6-5.00896 321.2233 (6*2π)/39065 weeks
7-55.41259 226.5384 (7*2π)/39056 weeks
8-49.57674 147.7692 (8*2π)/39049 weeks
9-18.71472 111.6408 (9*2π)/39043 weeks
10-3.96933 97.25903 (10*2π)/39039 weeks
11-1.78281 84.37022 (11*2π)/39035 weeks
1214.09822 52.85724 (12*2π)/39033 weeks
1338.83405 64.032 (13*2π)/39030 weeks
1431.35204 66.52795 (14*2π)/39028 weeks
1542.98274 53.31417 (15*2π)/39026 weeks
1662.27648 71.01034 (16*2π)/39024 weeks
1733.10145 87.36682 (17*2π)/39023 weeks
1824.18118 63.98486 (18*2π)/39022 weeks
1947.24841 61.5779 (19*2π)/39021 weeks
2037.67429 80.85293 (20*2π)/39020 weeks
2120.62255 68.07657 (21*2π)/39019 weeks
2217.11523 56.95612 (22*2π)/39018 weeks
2325.07484 46.97409 (23*2π)/39017 weeks
2438.83142 48.50248 (24*2π)/39016 weeks
2534.67317 58.37379 (25*2π)/39016 weeks
2627.55387 50.51271 (26*2π)/39015 weeks
2736.6268 48.18914 (27*2π)/39014 weeks
2841.21523 52.46805 (28*2π)/39014 weeks
2942.69649 69.53751 (29*2π)/39013 weeks
3021.73603 75.24917 (30*2π)/39013 weeks
314.06783 62.96733 (31*2π)/39013 weeks
3210.29044 41.7965 (32*2π)/39012 weeks
3324.82906 42.60876 (33*2π)/39012 weeks
3421.02144 57.90054 (34*2π)/39011 weeks
3512.01686 51.43087 (35*2π)/39011 weeks
367.32329 48.00091 (36*2π)/39011 weeks
372.93058 35.86862 (37*2π)/39011 weeks
3814.54597 28.15278 (38*2π)/39010 weeks
3925.19195 30.59154 (39*2π)/39010 weeks
4030.14926 44.6038 (40*2π)/39010 weeks
4116.63866 50.3257 (41*2π)/39010 weeks
429.67361 46.19969 (42*2π)/3909 weeks
434.67956 39.03178 (43*2π)/3909 weeks
447.90234 31.92103 (44*2π)/3909 weeks
4513.31402 35.99123 (45*2π)/3909 weeks
467.20309 38.22507 (46*2π)/3908 weeks
47-.93779 37.4066 (47*2π)/3908 weeks
48-6.47684 19.85334 (48*2π)/3908 weeks
499.07183 10.93202 (49*2π)/3908 weeks
5015.17693 19.11684 (50*2π)/3908 weeks
5111.56888 20.06641 (51*2π)/3908 weeks
527.29802 16.37682 (52*2π)/3908 weeks
5311.93737 5.30728 (53*2π)/3907 weeks
5428.61243 -.29736 (54*2π)/3907 weeks
5542.52699 14.86381 (55*2π)/3907 weeks
5636.72553 31.68852 (56*2π)/3907 weeks
5724.83057 31.95643 (57*2π)/3907 weeks
5825.34381 26.34638 (58*2π)/3907 weeks
5930.55689 30.8147 (59*2π)/3907 weeks
6026.16346 40.72422 (60*2π)/3907 weeks
6115.47484 40.14878 (61*2π)/3906 weeks
6211.46773 34.77024 (62*2π)/3906 weeks
639.16563 32.21942 (63*2π)/3906 weeks
647.57303 31.02249 (64*2π)/3906 weeks
655.59137 27.87742 (65*2π)/3906 weeks
662.61962 22.32535 (66*2π)/3906 weeks
677.19143 13.28299 (67*2π)/3906 weeks
6816.5385 15.1599 (68*2π)/3906 weeks
6916.14533 21.46537 (69*2π)/3906 weeks
7013.61358 21.06506 (70*2π)/3906 weeks
7112.91261 20.39403 (71*2π)/3905 weeks
7214.96197 19.9812 (72*2π)/3905 weeks
7314.6988 21.06658 (73*2π)/3905 weeks
7410.75194 22.49284 (74*2π)/3905 weeks
7510.90339 14.89195 (75*2π)/3905 weeks
7616.82197 17.92646 (76*2π)/3905 weeks
7716.1202 20.0718 (77*2π)/3905 weeks
7816.23711 20.85667 (78*2π)/3905 weeks
7914.11742 25.19102 (79*2π)/3905 weeks
808.40526 25.4191 (80*2π)/3905 weeks
815.32772 19.74261 (81*2π)/3905 weeks
827.37003 16.178 (82*2π)/3905 weeks
839.21539 14.48626 (83*2π)/3905 weeks
8411.46738 17.582 (84*2π)/3905 weeks
856.2452 20.03959 (85*2π)/3905 weeks
864.93785 13.69208 (86*2π)/3905 weeks
875.91665 11.6863 (87*2π)/3904 weeks
888.90183 8.11709 (88*2π)/3904 weeks
8910.74531 11.7798 (89*2π)/3904 weeks
908.12046 12.04053 (90*2π)/3904 weeks
918.55275 6.28893 (91*2π)/3904 weeks
9211.40433 6.01884 (92*2π)/3904 weeks
9313.7468 5.04033 (93*2π)/3904 weeks
9415.27513 4.76641 (94*2π)/3904 weeks
9520.15978 4.70228 (95*2π)/3904 weeks
9625.66449 11.51783 (96*2π)/3904 weeks
9719.80137 17.79027 (97*2π)/3904 weeks
9812.99429 17.52319 (98*2π)/3904 weeks
9911.75762 10.83448 (99*2π)/3904 weeks
10020.00455 9.0926 (100*2π)/3904 weeks
10121.38199 16.97716 (101*2π)/3904 weeks
10215.40544 19.64064 (102*2π)/3904 weeks
10310.68469 17.72174 (103*2π)/3904 weeks
10411.74503 15.25308 (104*2π)/3904 weeks
10513.50624 16.29315 (105*2π)/3904 weeks
1069.20745 20.49699 (106*2π)/3904 weeks
1071.2175 16.39556 (107*2π)/3904 weeks
1083.01975 6.00172 (108*2π)/3904 weeks
10911.17042 6.76647 (109*2π)/3904 weeks
11010.90171 11.25868 (110*2π)/3904 weeks
1117.53029 12.02059 (111*2π)/3904 weeks
1122.41632 8.04205 (112*2π)/3903 weeks
1135.68743 -.17906 (113*2π)/3903 weeks
11413.20541 .542 (114*2π)/3903 weeks
11514.83609 3.72717 (115*2π)/3903 weeks
11615.15363 2.74337 (116*2π)/3903 weeks
11719.91949 6.60448 (117*2π)/3903 weeks
11816.8906 11.39683 (118*2π)/3903 weeks
11914.28061 12.64835 (119*2π)/3903 weeks
12010.70798 12.47191 (120*2π)/3903 weeks
1218.40018 8.75088 (121*2π)/3903 weeks
12211.07983 6.88123 (122*2π)/3903 weeks
12310.63025 8.42727 (123*2π)/3903 weeks
1249.10532 8.00282 (124*2π)/3903 weeks
1257.5311 6.1378 (125*2π)/3903 weeks
1269.04075 1.43971 (126*2π)/3903 weeks
12712.43066 2.40225 (127*2π)/3903 weeks
12812.95311 3.87843 (128*2π)/3903 weeks
12912.50524 4.52839 (129*2π)/3903 weeks
13012.88561 4.5522 (130*2π)/3903 weeks
1319.90122 4.01963 (131*2π)/3903 weeks
13211.27364 -.88189 (132*2π)/3903 weeks
13316.61149 .74911 (133*2π)/3903 weeks
13416.14478 3.32055 (134*2π)/3903 weeks
13514.05866 2.72079 (135*2π)/3903 weeks
13615.56315 -.37543 (136*2π)/3903 weeks
13721.76602 -.8471 (137*2π)/3903 weeks
13825.77472 6.32586 (138*2π)/3903 weeks
13920.23437 14.24573 (139*2π)/3903 weeks
14013.66363 11.39137 (140*2π)/3903 weeks
14114.58002 7.58457 (141*2π)/3903 weeks
14218.39613 7.09403 (142*2π)/3903 weeks
14319.18828 16.12256 (143*2π)/3903 weeks
1447.91853 18.81097 (144*2π)/3903 weeks
1452.2684 10.53057 (145*2π)/3903 weeks
1464.15369 5.61967 (146*2π)/3903 weeks
1477.61677 2.91487 (147*2π)/3903 weeks
1488.09337 5.66429 (148*2π)/3903 weeks
1494.38904 3.95528 (149*2π)/3903 weeks
1505.27788 -2.17069 (150*2π)/3903 weeks
1519.48113 -4.26873 (151*2π)/3903 weeks
15214.51289 -.90261 (152*2π)/3903 weeks
15311.93751 1.58368 (153*2π)/3903 weeks
1549.90196 -.05546 (154*2π)/3903 weeks
15510.26824 -1.70338 (155*2π)/3903 weeks
15611.63975 -4.33308 (156*2π)/3903 weeks
15714.39432 -5.86513 (157*2π)/3902 weeks
15818.93701 -4.88967 (158*2π)/3902 weeks
15920.90232 .28466 (159*2π)/3902 weeks
16016.50046 3.081 (160*2π)/3902 weeks
16114.98776 -1.86762 (161*2π)/3902 weeks
16220.07119 -2.41725 (162*2π)/3902 weeks
16321.93012 1.59495 (163*2π)/3902 weeks
16420.80646 5.76669 (164*2π)/3902 weeks
16517.33404 6.02479 (165*2π)/3902 weeks
16616.48598 3.6927 (166*2π)/3902 weeks
16718.5684 4.04337 (167*2π)/3902 weeks
16819.07054 7.54755 (168*2π)/3902 weeks
16914.67024 10.85121 (169*2π)/3902 weeks
1708.32963 5.73415 (170*2π)/3902 weeks
17112.71135 .78504 (171*2π)/3902 weeks
17215.92343 4.47544 (172*2π)/3902 weeks
17312.57174 6.58119 (173*2π)/3902 weeks
1749.2523 4.30689 (174*2π)/3902 weeks
1759.05512 -.05671 (175*2π)/3902 weeks
17614.56992 -2.22073 (176*2π)/3902 weeks
17716.15658 .31389 (177*2π)/3902 weeks
17817.13259 2.61542 (178*2π)/3902 weeks
17915.85197 5.29054 (179*2π)/3902 weeks
18012.45331 5.4687 (180*2π)/3902 weeks
18113.22147 2.84226 (181*2π)/3902 weeks
18214.07668 5.94666 (182*2π)/3902 weeks
1839.44123 7.51867 (183*2π)/3902 weeks
1845.26852 4.06298 (184*2π)/3902 weeks
1855.92193 .12001 (185*2π)/3902 weeks
1865.29839 -1.90678 (186*2π)/3902 weeks
1878.31906 -5.4374 (187*2π)/3902 weeks
1889.88735 -4.86518 (188*2π)/3902 weeks
1898.23035 -7.30081 (189*2π)/3902 weeks
19012.18214 -10.98474 (190*2π)/3902 weeks
19118.53998 -11.82418 (191*2π)/3902 weeks
19223.06936 -7.29738 (192*2π)/3902 weeks
19320.62506 -3.55213 (193*2π)/3902 weeks
19422.79723 -4.07239 (194*2π)/3902 weeks
19525.27835   (195*2π)/3902 weeks
19622.79723 4.07239 (196*2π)/3902 weeks
19720.62506 3.55213 (197*2π)/3902 weeks
19823.06936 7.29738 (198*2π)/3902 weeks
19918.53998 11.82418 (199*2π)/3902 weeks
20012.18214 10.98474 (200*2π)/3902 weeks
2018.23035 7.30081 (201*2π)/3902 weeks
2029.88735 4.86518 (202*2π)/3902 weeks
2038.31906 5.4374 (203*2π)/3902 weeks
2045.29839 1.90678 (204*2π)/3902 weeks
2055.92193 -.12001 (205*2π)/3902 weeks
2065.26852 -4.06298 (206*2π)/3902 weeks
2079.44123 -7.51867 (207*2π)/3902 weeks
20814.07668 -5.94666 (208*2π)/3902 weeks
20913.22147 -2.84226 (209*2π)/3902 weeks
21012.45331 -5.4687 (210*2π)/3902 weeks
21115.85197 -5.29054 (211*2π)/3902 weeks
21217.13259 -2.61542 (212*2π)/3902 weeks
21316.15658 -.31389 (213*2π)/3902 weeks
21414.56992 2.22073 (214*2π)/3902 weeks
2159.05512 .05671 (215*2π)/3902 weeks
2169.2523 -4.30689 (216*2π)/3902 weeks
21712.57174 -6.58119 (217*2π)/3902 weeks
21815.92343 -4.47544 (218*2π)/3902 weeks
21912.71135 -.78504 (219*2π)/3902 weeks
2208.32963 -5.73415 (220*2π)/3902 weeks
22114.67024 -10.85121 (221*2π)/3902 weeks
22219.07054 -7.54755 (222*2π)/3902 weeks
22318.5684 -4.04337 (223*2π)/3902 weeks
22416.48598 -3.6927 (224*2π)/3902 weeks
22517.33404 -6.02479 (225*2π)/3902 weeks
22620.80646 -5.76669 (226*2π)/3902 weeks
22721.93012 -1.59495 (227*2π)/3902 weeks
22820.07119 2.41725 (228*2π)/3902 weeks
22914.98776 1.86762 (229*2π)/3902 weeks
23016.50046 -3.081 (230*2π)/3902 weeks
23120.90232 -.28466 (231*2π)/3902 weeks
23218.93701 4.88967 (232*2π)/3902 weeks
23314.39432 5.86513 (233*2π)/3902 weeks
23411.63975 4.33308 (234*2π)/3902 weeks
23510.26824 1.70338 (235*2π)/3902 weeks
2369.90196 .05546 (236*2π)/3902 weeks
23711.93751 -1.58368 (237*2π)/3902 weeks
23814.51289 .90261 (238*2π)/3902 weeks
2399.48113 4.26873 (239*2π)/3902 weeks
2405.27788 2.17069 (240*2π)/3902 weeks
2414.38904 -3.95528 (241*2π)/3902 weeks
2428.09337 -5.66429 (242*2π)/3902 weeks
2437.61677 -2.91487 (243*2π)/3902 weeks
2444.15369 -5.61967 (244*2π)/3902 weeks
2452.2684 -10.53057 (245*2π)/3902 weeks
2467.91853 -18.81097 (246*2π)/3902 weeks
24719.18828 -16.12256 (247*2π)/3902 weeks
24818.39613 -7.09403 (248*2π)/3902 weeks
24914.58002 -7.58457 (249*2π)/3902 weeks
25013.66363 -11.39137 (250*2π)/3902 weeks
25120.23437 -14.24573 (251*2π)/3902 weeks
25225.77472 -6.32586 (252*2π)/3902 weeks
25321.76602 .8471 (253*2π)/3902 weeks
25415.56315 .37543 (254*2π)/3902 weeks
25514.05866 -2.72079 (255*2π)/3902 weeks
25616.14478 -3.32055 (256*2π)/3902 weeks
25716.61149 -.74911 (257*2π)/3902 weeks
25811.27364 .88189 (258*2π)/3902 weeks
2599.90122 -4.01963 (259*2π)/3902 weeks
26012.88561 -4.5522 (260*2π)/3902 weeks
26112.50524 -4.52839 (261*2π)/3901 weeks
26212.95311 -3.87843 (262*2π)/3901 weeks
26312.43066 -2.40225 (263*2π)/3901 weeks
2649.04075 -1.43971 (264*2π)/3901 weeks
2657.5311 -6.1378 (265*2π)/3901 weeks
2669.10532 -8.00282 (266*2π)/3901 weeks
26710.63025 -8.42727 (267*2π)/3901 weeks
26811.07983 -6.88123 (268*2π)/3901 weeks
2698.40018 -8.75088 (269*2π)/3901 weeks
27010.70798 -12.47191 (270*2π)/3901 weeks
27114.28061 -12.64835 (271*2π)/3901 weeks
27216.8906 -11.39683 (272*2π)/3901 weeks
27319.91949 -6.60448 (273*2π)/3901 weeks
27415.15363 -2.74337 (274*2π)/3901 weeks
27514.83609 -3.72717 (275*2π)/3901 weeks
27613.20541 -.542 (276*2π)/3901 weeks
2775.68743 .17906 (277*2π)/3901 weeks
2782.41632 -8.04205 (278*2π)/3901 weeks
2797.53029 -12.02059 (279*2π)/3901 weeks
28010.90171 -11.25868 (280*2π)/3901 weeks
28111.17042 -6.76647 (281*2π)/3901 weeks
2823.01975 -6.00172 (282*2π)/3901 weeks
2831.2175 -16.39556 (283*2π)/3901 weeks
2849.20745 -20.49699 (284*2π)/3901 weeks
28513.50624 -16.29315 (285*2π)/3901 weeks
28611.74503 -15.25308 (286*2π)/3901 weeks
28710.68469 -17.72174 (287*2π)/3901 weeks
28815.40544 -19.64064 (288*2π)/3901 weeks
28921.38199 -16.97716 (289*2π)/3901 weeks
29020.00455 -9.0926 (290*2π)/3901 weeks
29111.75762 -10.83448 (291*2π)/3901 weeks
29212.99429 -17.52319 (292*2π)/3901 weeks
29319.80137 -17.79027 (293*2π)/3901 weeks
29425.66449 -11.51783 (294*2π)/3901 weeks
29520.15978 -4.70228 (295*2π)/3901 weeks
29615.27513 -4.76641 (296*2π)/3901 weeks
29713.7468 -5.04033 (297*2π)/3901 weeks
29811.40433 -6.01884 (298*2π)/3901 weeks
2998.55275 -6.28893 (299*2π)/3901 weeks
3008.12046 -12.04053 (300*2π)/3901 weeks
30110.74531 -11.7798 (301*2π)/3901 weeks
3028.90183 -8.11709 (302*2π)/3901 weeks
3035.91665 -11.6863 (303*2π)/3901 weeks
3044.93785 -13.69208 (304*2π)/3901 weeks
3056.2452 -20.03959 (305*2π)/3901 weeks
30611.46738 -17.582 (306*2π)/3901 weeks
3079.21539 -14.48626 (307*2π)/3901 weeks
3087.37003 -16.178 (308*2π)/3901 weeks
3095.32772 -19.74261 (309*2π)/3901 weeks
3108.40526 -25.4191 (310*2π)/3901 weeks
31114.11742 -25.19102 (311*2π)/3901 weeks
31216.23711 -20.85667 (312*2π)/3901 weeks
31316.1202 -20.0718 (313*2π)/3901 weeks
31416.82197 -17.92646 (314*2π)/3901 weeks
31510.90339 -14.89195 (315*2π)/3901 weeks
31610.75194 -22.49284 (316*2π)/3901 weeks
31714.6988 -21.06658 (317*2π)/3901 weeks
31814.96197 -19.9812 (318*2π)/3901 weeks
31912.91261 -20.39403 (319*2π)/3901 weeks
32013.61358 -21.06506 (320*2π)/3901 weeks
32116.14533 -21.46537 (321*2π)/3901 weeks
32216.5385 -15.1599 (322*2π)/3901 weeks
3237.19143 -13.28299 (323*2π)/3901 weeks
3242.61962 -22.32535 (324*2π)/3901 weeks
3255.59137 -27.87742 (325*2π)/3901 weeks
3267.57303 -31.02249 (326*2π)/3901 weeks
3279.16563 -32.21942 (327*2π)/3901 weeks
32811.46773 -34.77024 (328*2π)/3901 weeks
32915.47484 -40.14878 (329*2π)/3901 weeks
33026.16346 -40.72422 (330*2π)/3901 weeks
33130.55689 -30.8147 (331*2π)/3901 weeks
33225.34381 -26.34638 (332*2π)/3901 weeks
33324.83057 -31.95643 (333*2π)/3901 weeks
33436.72553 -31.68852 (334*2π)/3901 weeks
33542.52699 -14.86381 (335*2π)/3901 weeks
33628.61243 .29736 (336*2π)/3901 weeks
33711.93737 -5.30728 (337*2π)/3901 weeks
3387.29802 -16.37682 (338*2π)/3901 weeks
33911.56888 -20.06641 (339*2π)/3901 weeks
34015.17693 -19.11684 (340*2π)/3901 weeks
3419.07183 -10.93202 (341*2π)/3901 weeks
342-6.47684 -19.85334 (342*2π)/3901 weeks
343-.93779 -37.4066 (343*2π)/3901 weeks
3447.20309 -38.22507 (344*2π)/3901 weeks
34513.31402 -35.99123 (345*2π)/3901 weeks
3467.90234 -31.92103 (346*2π)/3901 weeks
3474.67956 -39.03178 (347*2π)/3901 weeks
3489.67361 -46.19969 (348*2π)/3901 weeks
34916.63866 -50.3257 (349*2π)/3901 weeks
35030.14926 -44.6038 (350*2π)/3901 weeks
35125.19195 -30.59154 (351*2π)/3901 weeks
35214.54597 -28.15278 (352*2π)/3901 weeks
3532.93058 -35.86862 (353*2π)/3901 weeks
3547.32329 -48.00091 (354*2π)/3901 weeks
35512.01686 -51.43087 (355*2π)/3901 weeks
35621.02144 -57.90054 (356*2π)/3901 weeks
35724.82906 -42.60876 (357*2π)/3901 weeks
35810.29044 -41.7965 (358*2π)/3901 weeks
3594.06783 -62.96733 (359*2π)/3901 weeks
36021.73603 -75.24917 (360*2π)/3901 weeks
36142.69649 -69.53751 (361*2π)/3901 weeks
36241.21523 -52.46805 (362*2π)/3901 weeks
36336.6268 -48.18914 (363*2π)/3901 weeks
36427.55387 -50.51271 (364*2π)/3901 weeks
36534.67317 -58.37379 (365*2π)/3901 weeks
36638.83142 -48.50248 (366*2π)/3901 weeks
36725.07484 -46.97409 (367*2π)/3901 weeks
36817.11523 -56.95612 (368*2π)/3901 weeks
36920.62255 -68.07657 (369*2π)/3901 weeks
37037.67429 -80.85293 (370*2π)/3901 weeks
37147.24841 -61.5779 (371*2π)/3901 weeks
37224.18118 -63.98486 (372*2π)/3901 weeks
37333.10145 -87.36682 (373*2π)/3901 weeks
37462.27648 -71.01034 (374*2π)/3901 weeks
37542.98274 -53.31417 (375*2π)/3901 weeks
37631.35204 -66.52795 (376*2π)/3901 weeks
37738.83405 -64.032 (377*2π)/3901 weeks
37814.09822 -52.85724 (378*2π)/3901 weeks
379-1.78281 -84.37022 (379*2π)/3901 weeks
380-3.96933 -97.25903 (380*2π)/3901 weeks
381-18.71472 -111.6408 (381*2π)/3901 weeks
382-49.57674 -147.7692 (382*2π)/3901 weeks
383-55.41259 -226.5384 (383*2π)/3901 weeks
384-5.00896 -321.2233 (384*2π)/3901 weeks
38599.5419 -347.2895 (385*2π)/3901 weeks
386120.1585 -349.0185 (386*2π)/3901 weeks
387163.0282 -447.326 (387*2π)/3901 weeks
388295.7206 -559.8536 (388*2π)/3901 weeks



Back to list of Stocks