Back to list of Stocks    See Also: Seasonal Analysis of SIHIGenetic Algorithms Stock Portfolio Generator, and Fourier Calculator

# Fourier Analysis of SIHI (SINOHUB INC)

SIHI (SINOHUB INC) appears to have interesting cyclic behaviour every 18 weeks (.119*sine), 14 weeks (.1158*sine), and 21 weeks (.1048*sine).

SIHI (SINOHUB INC) has an average price of 2.1 (topmost row, frequency = 0).

Click on the checkboxes shown on the right to see how the various frequencies contribute to the graph. Look for large magnitude coefficients (sine or cosine), as these are associated with frequencies which contribute most to the associated stock plot. If you find a large magnitude coefficient which dramatically changes the graph, look at the associated "Period" in weeks, as you may have found a significant recurring cycle for the stock of interest.

## Fourier Analysis

Using data from 5/22/2008 to 10/8/2012 for SIHI (SINOHUB INC), this program was able to calculate the following Fourier Series:
Sequence #Cosine Coefficients Sine Coefficients FrequenciesPeriod
02.10272   0
1-.81176 1.26793 (1*2π)/230230 weeks
2.04707 .1766 (2*2π)/230115 weeks
3.41968 .11587 (3*2π)/23077 weeks
4-.22251 .44398 (4*2π)/23058 weeks
5-.00194 .1805 (5*2π)/23046 weeks
6.03507 .08904 (6*2π)/23038 weeks
7.03716 .3025 (7*2π)/23033 weeks
8-.00596 .06689 (8*2π)/23029 weeks
9-.0613 .11817 (9*2π)/23026 weeks
10.02648 .06883 (10*2π)/23023 weeks
11.00221 .10482 (11*2π)/23021 weeks
12-.0427 .02716 (12*2π)/23019 weeks
13-.04964 .11898 (13*2π)/23018 weeks
14.02267 -.00927 (14*2π)/23016 weeks
15.02376 .08317 (15*2π)/23015 weeks
16.00421 .11581 (16*2π)/23014 weeks
17-.08027 .02358 (17*2π)/23014 weeks
18.06499 .0295 (18*2π)/23013 weeks
19.01054 .0624 (19*2π)/23012 weeks
20-.06877 .03814 (20*2π)/23012 weeks
21.0383 -.00545 (21*2π)/23011 weeks
22.02599 .02371 (22*2π)/23010 weeks
23-.05794 .07235 (23*2π)/23010 weeks
24-.00163 .01007 (24*2π)/23010 weeks
25.02713 .01638 (25*2π)/2309 weeks
26-.00049 .05021 (26*2π)/2309 weeks
27.00512 .02007 (27*2π)/2309 weeks
28.02092 .03813 (28*2π)/2308 weeks
29-.04984 .04373 (29*2π)/2308 weeks
30.0222 -.01502 (30*2π)/2308 weeks
31-.01843 .04858 (31*2π)/2307 weeks
32-.03293 .01736 (32*2π)/2307 weeks
33.02442 -.03047 (33*2π)/2307 weeks
34.00221 .03741 (34*2π)/2307 weeks
35-.00986 .03325 (35*2π)/2307 weeks
36-.00272 -.01801 (36*2π)/2306 weeks
37.02284 .01746 (37*2π)/2306 weeks
38.01396 .03401 (38*2π)/2306 weeks
39-.02201 .02833 (39*2π)/2306 weeks
40.0276 -.00226 (40*2π)/2306 weeks
41-.00263 .03087 (41*2π)/2306 weeks
42-.00323 .01029 (42*2π)/2305 weeks
43-.00193 .00669 (43*2π)/2305 weeks
44.00392 .00042 (44*2π)/2305 weeks
45.00536 .00558 (45*2π)/2305 weeks
46.02937 .01867 (46*2π)/2305 weeks
47-.02908 .01197 (47*2π)/2305 weeks
48.03817 -.01041 (48*2π)/2305 weeks
49.00867 .03002 (49*2π)/2305 weeks
50.00416 .02477 (50*2π)/2305 weeks
51.01523 -.00352 (51*2π)/2305 weeks
52-.00219 .03627 (52*2π)/2304 weeks
53.01016 -.006 (53*2π)/2304 weeks
54-.00275 .01854 (54*2π)/2304 weeks
55-.01646 .01649 (55*2π)/2304 weeks
56.02143 -.01937 (56*2π)/2304 weeks
57.01822 .03513 (57*2π)/2304 weeks
58-.01544 .02063 (58*2π)/2304 weeks
59.01676 -.00871 (59*2π)/2304 weeks
60.02615 .03257 (60*2π)/2304 weeks
61-.01949 .00714 (61*2π)/2304 weeks
62.01756 .01132 (62*2π)/2304 weeks
63.00405 .01593 (63*2π)/2304 weeks
64-.00125 .01932 (64*2π)/2304 weeks
65-.00228 .00659 (65*2π)/2304 weeks
66-.00751 .02088 (66*2π)/2303 weeks
67-.00366 .00317 (67*2π)/2303 weeks
68.01465 -.00927 (68*2π)/2303 weeks
69.0034 .0228 (69*2π)/2303 weeks
70-.02117 -.00224 (70*2π)/2303 weeks
71.03588 -.00914 (71*2π)/2303 weeks
72-.00978 .0224 (72*2π)/2303 weeks
73-.0121 .0135 (73*2π)/2303 weeks
74.01807 -.01499 (74*2π)/2303 weeks
75.00704 .02133 (75*2π)/2303 weeks
76-.00187 .0075 (76*2π)/2303 weeks
77.00357 .00389 (77*2π)/2303 weeks
78-.00018 -.00085 (78*2π)/2303 weeks
79.00935 .00904 (79*2π)/2303 weeks
80.0054 .00178 (80*2π)/2303 weeks
81-.01062 .0126 (81*2π)/2303 weeks
82.01371 -.00572 (82*2π)/2303 weeks
83.01864 .00363 (83*2π)/2303 weeks
84-.01119 .01633 (84*2π)/2303 weeks
85.01774 .00341 (85*2π)/2303 weeks
86.007 -.00467 (86*2π)/2303 weeks
87.00497 .00875 (87*2π)/2303 weeks
88.00144 .01501 (88*2π)/2303 weeks
89.00098 .00479 (89*2π)/2303 weeks
90.01127 -.00473 (90*2π)/2303 weeks
91.00868 .01509 (91*2π)/2303 weeks
92-.00628 .03111 (92*2π)/2303 weeks
93.01264 -.02677 (93*2π)/2302 weeks
94-.00795 .02792 (94*2π)/2302 weeks
95.00382 .0099 (95*2π)/2302 weeks
96-.00446 .00015 (96*2π)/2302 weeks
97-.01234 .00681 (97*2π)/2302 weeks
98.00637 -.00281 (98*2π)/2302 weeks
99-.00762 .00571 (99*2π)/2302 weeks
100-.01061 .00433 (100*2π)/2302 weeks
101.01053 -.01028 (101*2π)/2302 weeks
102.00546 -.00987 (102*2π)/2302 weeks
103-.0002 .01746 (103*2π)/2302 weeks
104-.00465 -.00785 (104*2π)/2302 weeks
105.0166 -.01713 (105*2π)/2302 weeks
106.01037 .02127 (106*2π)/2302 weeks
107-.01169 .00536 (107*2π)/2302 weeks
108.00822 -.01326 (108*2π)/2302 weeks
109-.00031 -.00189 (109*2π)/2302 weeks
110.00546 .01103 (110*2π)/2302 weeks
111-.00479 -.02116 (111*2π)/2302 weeks
112.00829 .00585 (112*2π)/2302 weeks
113.01421 -.02295 (113*2π)/2302 weeks
114.01004 .01579 (114*2π)/2302 weeks
115-.00754   (115*2π)/2302 weeks
116.01004 -.01579 (116*2π)/2302 weeks
117.01421 .02295 (117*2π)/2302 weeks
118.00829 -.00585 (118*2π)/2302 weeks
119-.00479 .02116 (119*2π)/2302 weeks
120.00546 -.01103 (120*2π)/2302 weeks
121-.00031 .00189 (121*2π)/2302 weeks
122.00822 .01326 (122*2π)/2302 weeks
123-.01169 -.00536 (123*2π)/2302 weeks
124.01037 -.02127 (124*2π)/2302 weeks
125.0166 .01713 (125*2π)/2302 weeks
126-.00465 .00785 (126*2π)/2302 weeks
127-.0002 -.01746 (127*2π)/2302 weeks
128.00546 .00987 (128*2π)/2302 weeks
129.01053 .01028 (129*2π)/2302 weeks
130-.01061 -.00433 (130*2π)/2302 weeks
131-.00762 -.00571 (131*2π)/2302 weeks
132.00637 .00281 (132*2π)/2302 weeks
133-.01234 -.00681 (133*2π)/2302 weeks
134-.00446 -.00015 (134*2π)/2302 weeks
135.00382 -.0099 (135*2π)/2302 weeks
136-.00795 -.02792 (136*2π)/2302 weeks
137.01264 .02677 (137*2π)/2302 weeks
138-.00628 -.03111 (138*2π)/2302 weeks
139.00868 -.01509 (139*2π)/2302 weeks
140.01127 .00473 (140*2π)/2302 weeks
141.00098 -.00479 (141*2π)/2302 weeks
142.00144 -.01501 (142*2π)/2302 weeks
143.00497 -.00875 (143*2π)/2302 weeks
144.007 .00467 (144*2π)/2302 weeks
145.01774 -.00341 (145*2π)/2302 weeks
146-.01119 -.01633 (146*2π)/2302 weeks
147.01864 -.00363 (147*2π)/2302 weeks
148.01371 .00572 (148*2π)/2302 weeks
149-.01062 -.0126 (149*2π)/2302 weeks
150.0054 -.00178 (150*2π)/2302 weeks
151.00935 -.00904 (151*2π)/2302 weeks
152-.00018 .00085 (152*2π)/2302 weeks
153.00357 -.00389 (153*2π)/2302 weeks
154-.00187 -.0075 (154*2π)/2301 weeks
155.00704 -.02133 (155*2π)/2301 weeks
156.01807 .01499 (156*2π)/2301 weeks
157-.0121 -.0135 (157*2π)/2301 weeks
158-.00978 -.0224 (158*2π)/2301 weeks
159.03588 .00914 (159*2π)/2301 weeks
160-.02117 .00224 (160*2π)/2301 weeks
161.0034 -.0228 (161*2π)/2301 weeks
162.01465 .00927 (162*2π)/2301 weeks
163-.00366 -.00317 (163*2π)/2301 weeks
164-.00751 -.02088 (164*2π)/2301 weeks
165-.00228 -.00659 (165*2π)/2301 weeks
166-.00125 -.01932 (166*2π)/2301 weeks
167.00405 -.01593 (167*2π)/2301 weeks
168.01756 -.01132 (168*2π)/2301 weeks
169-.01949 -.00714 (169*2π)/2301 weeks
170.02615 -.03257 (170*2π)/2301 weeks
171.01676 .00871 (171*2π)/2301 weeks
172-.01544 -.02063 (172*2π)/2301 weeks
173.01822 -.03513 (173*2π)/2301 weeks
174.02143 .01937 (174*2π)/2301 weeks
175-.01646 -.01649 (175*2π)/2301 weeks
176-.00275 -.01854 (176*2π)/2301 weeks
177.01016 .006 (177*2π)/2301 weeks
178-.00219 -.03627 (178*2π)/2301 weeks
179.01523 .00352 (179*2π)/2301 weeks
180.00416 -.02477 (180*2π)/2301 weeks
181.00867 -.03002 (181*2π)/2301 weeks
182.03817 .01041 (182*2π)/2301 weeks
183-.02908 -.01197 (183*2π)/2301 weeks
184.02937 -.01867 (184*2π)/2301 weeks
185.00536 -.00558 (185*2π)/2301 weeks
186.00392 -.00042 (186*2π)/2301 weeks
187-.00193 -.00669 (187*2π)/2301 weeks
188-.00323 -.01029 (188*2π)/2301 weeks
189-.00263 -.03087 (189*2π)/2301 weeks
190.0276 .00226 (190*2π)/2301 weeks
191-.02201 -.02833 (191*2π)/2301 weeks
192.01396 -.03401 (192*2π)/2301 weeks
193.02284 -.01746 (193*2π)/2301 weeks
194-.00272 .01801 (194*2π)/2301 weeks
195-.00986 -.03325 (195*2π)/2301 weeks
196.00221 -.03741 (196*2π)/2301 weeks
197.02442 .03047 (197*2π)/2301 weeks
198-.03293 -.01736 (198*2π)/2301 weeks
199-.01843 -.04858 (199*2π)/2301 weeks
200.0222 .01502 (200*2π)/2301 weeks
201-.04984 -.04373 (201*2π)/2301 weeks
202.02092 -.03813 (202*2π)/2301 weeks
203.00512 -.02007 (203*2π)/2301 weeks
204-.00049 -.05021 (204*2π)/2301 weeks
205.02713 -.01638 (205*2π)/2301 weeks
206-.00163 -.01007 (206*2π)/2301 weeks
207-.05794 -.07235 (207*2π)/2301 weeks
208.02599 -.02371 (208*2π)/2301 weeks
209.0383 .00545 (209*2π)/2301 weeks
210-.06877 -.03814 (210*2π)/2301 weeks
211.01054 -.0624 (211*2π)/2301 weeks
212.06499 -.0295 (212*2π)/2301 weeks
213-.08027 -.02358 (213*2π)/2301 weeks
214.00421 -.11581 (214*2π)/2301 weeks
215.02376 -.08317 (215*2π)/2301 weeks
216.02267 .00927 (216*2π)/2301 weeks
217-.04964 -.11898 (217*2π)/2301 weeks
218-.0427 -.02716 (218*2π)/2301 weeks
219.00221 -.10482 (219*2π)/2301 weeks
220.02648 -.06883 (220*2π)/2301 weeks
221-.0613 -.11817 (221*2π)/2301 weeks
222-.00596 -.06689 (222*2π)/2301 weeks
223.03716 -.3025 (223*2π)/2301 weeks
224.03507 -.08904 (224*2π)/2301 weeks
225-.00194 -.1805 (225*2π)/2301 weeks
226-.22251 -.44398 (226*2π)/2301 weeks
227.41968 -.11587 (227*2π)/2301 weeks
228.04707 -.1766 (228*2π)/2301 weeks