Back to list of Stocks    See Also: Seasonal Analysis of SEMXGenetic Algorithms Stock Portfolio Generator, and Fourier Calculator

# Fourier Analysis of SEMX

SEMX appears to have interesting cyclic behaviour every 11 weeks (.2854*sine), 10 weeks (.2128*cosine), and 6 weeks (.1601*cosine).

SEMX has an average price of 24.26 (topmost row, frequency = 0).

Click on the checkboxes shown on the right to see how the various frequencies contribute to the graph. Look for large magnitude coefficients (sine or cosine), as these are associated with frequencies which contribute most to the associated stock plot. If you find a large magnitude coefficient which dramatically changes the graph, look at the associated "Period" in weeks, as you may have found a significant recurring cycle for the stock of interest.

## Fourier Analysis

Using data from 3/17/2010 to 6/10/2013 for SEMX, this program was able to calculate the following Fourier Series:
Sequence #Cosine Coefficients Sine Coefficients FrequenciesPeriod
024.25987   0
1.71906 -.09736 (1*2π)/114114 weeks
2.96512 .23209 (2*2π)/11457 weeks
3.7572 .73097 (3*2π)/11438 weeks
4.21334 .8474 (4*2π)/11429 weeks
5-.13018 .52748 (5*2π)/11423 weeks
6-.0667 .20668 (6*2π)/11419 weeks
7.12518 .17576 (7*2π)/11416 weeks
8.15025 .3173 (8*2π)/11414 weeks
9-.00416 .38835 (9*2π)/11413 weeks
10-.17735 .28543 (10*2π)/11411 weeks
11-.21275 .07075 (11*2π)/11410 weeks
12-.06755 -.0873 (12*2π)/11410 weeks
13.12225 -.0521 (13*2π)/1149 weeks
14.15866 .10635 (14*2π)/1148 weeks
15.03498 .17082 (15*2π)/1148 weeks
16-.04734 .06854 (16*2π)/1147 weeks
17.03104 -.03556 (17*2π)/1147 weeks
18.15196 .00519 (18*2π)/1146 weeks
19.16009 .12459 (19*2π)/1146 weeks
20.0704 .17877 (20*2π)/1146 weeks
21-.00331 .1416 (21*2π)/1145 weeks
22-.0118 .08677 (22*2π)/1145 weeks
23.00943 .06877 (23*2π)/1145 weeks
24.01066 .08131 (24*2π)/1145 weeks
25-.0238 .08131 (25*2π)/1145 weeks
26-.05859 .03266 (26*2π)/1144 weeks
27-.03779 -.04374 (27*2π)/1144 weeks
28.04208 -.08041 (28*2π)/1144 weeks
29.11995 -.04651 (29*2π)/1144 weeks
30.14978 .0216 (30*2π)/1144 weeks
31.13849 .08666 (31*2π)/1144 weeks
32.09369 .14109 (32*2π)/1144 weeks
33.01121 .15971 (33*2π)/1143 weeks
34-.06827 .10666 (34*2π)/1143 weeks
35-.07609 .01202 (35*2π)/1143 weeks
36-.01358 -.03947 (36*2π)/1143 weeks
37.04063 -.01872 (37*2π)/1143 weeks
38.03816 .01671 (38*2π)/1143 weeks
39.01151 .01268 (39*2π)/1143 weeks
40.01148 -.0212 (40*2π)/1143 weeks
41.0492 -.04291 (41*2π)/1143 weeks
42.09755 -.02191 (42*2π)/1143 weeks
43.11105 .03769 (43*2π)/1143 weeks
44.06445 .08583 (44*2π)/1143 weeks
45-.00149 .06848 (45*2π)/1143 weeks
46-.01248 .00538 (46*2π)/1142 weeks
47.03796 -.0219 (47*2π)/1142 weeks
48.07376 .01788 (48*2π)/1142 weeks
49.04515 .06427 (49*2π)/1142 weeks
50-.00979 .05853 (50*2π)/1142 weeks
51-.03549 .01465 (51*2π)/1142 weeks
52-.02732 -.02695 (52*2π)/1142 weeks
53-.00443 -.05534 (53*2π)/1142 weeks
54.02926 -.07252 (54*2π)/1142 weeks
55.0711 -.06963 (55*2π)/1142 weeks
56.10533 -.04207 (56*2π)/1142 weeks
57.11798   (57*2π)/1142 weeks
58.10533 .04207 (58*2π)/1142 weeks
59.0711 .06963 (59*2π)/1142 weeks
60.02926 .07252 (60*2π)/1142 weeks
61-.00443 .05534 (61*2π)/1142 weeks
62-.02732 .02695 (62*2π)/1142 weeks
63-.03549 -.01465 (63*2π)/1142 weeks
64-.00979 -.05853 (64*2π)/1142 weeks
65.04515 -.06427 (65*2π)/1142 weeks
66.07376 -.01788 (66*2π)/1142 weeks
67.03796 .0219 (67*2π)/1142 weeks
68-.01248 -.00538 (68*2π)/1142 weeks
69-.00149 -.06848 (69*2π)/1142 weeks
70.06445 -.08583 (70*2π)/1142 weeks
71.11105 -.03769 (71*2π)/1142 weeks
72.09755 .02191 (72*2π)/1142 weeks
73.0492 .04291 (73*2π)/1142 weeks
74.01148 .0212 (74*2π)/1142 weeks
75.01151 -.01268 (75*2π)/1142 weeks
76.03816 -.01671 (76*2π)/1142 weeks
77.04063 .01872 (77*2π)/1141 weeks
78-.01358 .03947 (78*2π)/1141 weeks
79-.07609 -.01202 (79*2π)/1141 weeks
80-.06827 -.10666 (80*2π)/1141 weeks
81.01121 -.15971 (81*2π)/1141 weeks
82.09369 -.14109 (82*2π)/1141 weeks
83.13849 -.08666 (83*2π)/1141 weeks
84.14978 -.0216 (84*2π)/1141 weeks
85.11995 .04651 (85*2π)/1141 weeks
86.04208 .08041 (86*2π)/1141 weeks
87-.03779 .04374 (87*2π)/1141 weeks
88-.05859 -.03266 (88*2π)/1141 weeks
89-.0238 -.08131 (89*2π)/1141 weeks
90.01066 -.08131 (90*2π)/1141 weeks
91.00943 -.06877 (91*2π)/1141 weeks
92-.0118 -.08677 (92*2π)/1141 weeks
93-.00331 -.1416 (93*2π)/1141 weeks
94.0704 -.17877 (94*2π)/1141 weeks
95.16009 -.12459 (95*2π)/1141 weeks
96.15196 -.00519 (96*2π)/1141 weeks
97.03104 .03556 (97*2π)/1141 weeks
98-.04734 -.06854 (98*2π)/1141 weeks
99.03498 -.17082 (99*2π)/1141 weeks
100.15866 -.10635 (100*2π)/1141 weeks
101.12225 .0521 (101*2π)/1141 weeks
102-.06755 .0873 (102*2π)/1141 weeks
103-.21275 -.07075 (103*2π)/1141 weeks
104-.17735 -.28543 (104*2π)/1141 weeks
105-.00416 -.38835 (105*2π)/1141 weeks
106.15025 -.3173 (106*2π)/1141 weeks
107.12518 -.17576 (107*2π)/1141 weeks
108-.0667 -.20668 (108*2π)/1141 weeks
109-.13018 -.52748 (109*2π)/1141 weeks
110.21334 -.8474 (110*2π)/1141 weeks
111.7572 -.73097 (111*2π)/1141 weeks
112.96512 -.23209 (112*2π)/1141 weeks