Back to list of Stocks    See Also: Seasonal Analysis of SDRGenetic Algorithms Stock Portfolio Generator, and Best Months to Buy/Sell Stocks

Fourier Analysis of SDR (SandRidge Mississippian Trust II)


SDR (SandRidge Mississippian Trust II) appears to have interesting cyclic behaviour every 29 weeks (.2422*sine), 18 weeks (.205*sine), and 22 weeks (.1655*sine).

SDR (SandRidge Mississippian Trust II) has an average price of 3.1 (topmost row, frequency = 0).



Click on the checkboxes shown on the right to see how the various frequencies contribute to the graph. Look for large magnitude coefficients (sine or cosine), as these are associated with frequencies which contribute most to the associated stock plot. If you find a large magnitude coefficient which dramatically changes the graph, look at the associated "Period" in weeks, as you may have found a significant recurring cycle for the stock of interest.

Right click on the graph above to see the menu of operations (download, full screen, etc.)

Fourier Analysis

Using data from 4/18/2012 to 11/6/2017 for SDR (SandRidge Mississippian Trust II), this program was able to calculate the following Fourier Series:
Sequence #Cosine Coefficients Sine Coefficients FrequenciesPeriod
03.09941   0 
1.68195 1.92302 (1*2π)/291291 weeks
2.23541 .85011 (2*2π)/291146 weeks
3.09013 .54441 (3*2π)/29197 weeks
4.09907 .55781 (4*2π)/29173 weeks
5.02036 .405 (5*2π)/29158 weeks
6-.26414 .37428 (6*2π)/29149 weeks
7.05201 .03674 (7*2π)/29142 weeks
8.11876 .17685 (8*2π)/29136 weeks
9.06232 .17898 (9*2π)/29132 weeks
10-.0201 .2422 (10*2π)/29129 weeks
11.0143 .11146 (11*2π)/29126 weeks
12.02136 .04408 (12*2π)/29124 weeks
13.073 .16553 (13*2π)/29122 weeks
14.08181 .06682 (14*2π)/29121 weeks
15.10246 .098 (15*2π)/29119 weeks
16.06602 .20495 (16*2π)/29118 weeks
17-.00332 .12025 (17*2π)/29117 weeks
18.00189 .0942 (18*2π)/29116 weeks
19.03579 .07554 (19*2π)/29115 weeks
20.01764 .10592 (20*2π)/29115 weeks
21.04487 .0431 (21*2π)/29114 weeks
22.12252 .08502 (22*2π)/29113 weeks
23.0087 .1101 (23*2π)/29113 weeks
24.0065 .11576 (24*2π)/29112 weeks
25.02945 .06034 (25*2π)/29112 weeks
26.02837 .09897 (26*2π)/29111 weeks
27-.00494 .08459 (27*2π)/29111 weeks
28.00682 .08753 (28*2π)/29110 weeks
29.00467 .01655 (29*2π)/29110 weeks
30.07294 .05763 (30*2π)/29110 weeks
31.00914 .09239 (31*2π)/2919 weeks
32.0089 .08654 (32*2π)/2919 weeks
33.01481 .02635 (33*2π)/2919 weeks
34.02173 .04932 (34*2π)/2919 weeks
35.03194 .07312 (35*2π)/2918 weeks
36.01661 .05025 (36*2π)/2918 weeks
37.02483 .03831 (37*2π)/2918 weeks
38.01176 .05173 (38*2π)/2918 weeks
39.02186 .0616 (39*2π)/2917 weeks
40.00435 .04008 (40*2π)/2917 weeks
41.01807 .00976 (41*2π)/2917 weeks
42.03429 .05026 (42*2π)/2917 weeks
43.03453 .02483 (43*2π)/2917 weeks
44.03833 .0207 (44*2π)/2917 weeks
45.02438 .06218 (45*2π)/2916 weeks
46.03947 .06231 (46*2π)/2916 weeks
47.01129 .0426 (47*2π)/2916 weeks
48.03047 .03696 (48*2π)/2916 weeks
49.01202 .05837 (49*2π)/2916 weeks
50.02156 .0573 (50*2π)/2916 weeks
51.01283 .01463 (51*2π)/2916 weeks
52.01639 .01366 (52*2π)/2916 weeks
53.05111 .06329 (53*2π)/2915 weeks
54.03384 .05105 (54*2π)/2915 weeks
55-.00461 .04477 (55*2π)/2915 weeks
56.01603 .06097 (56*2π)/2915 weeks
57.00763 .02184 (57*2π)/2915 weeks
58.0025 .02835 (58*2π)/2915 weeks
59.01483 .02531 (59*2π)/2915 weeks
60.02508 .03582 (60*2π)/2915 weeks
61.00569 .03406 (61*2π)/2915 weeks
62.01256 .04228 (62*2π)/2915 weeks
63.01184 .01391 (63*2π)/2915 weeks
64.01919 .01653 (64*2π)/2915 weeks
65.01601 .04633 (65*2π)/2914 weeks
66.00655 .02567 (66*2π)/2914 weeks
67-.00802 .01612 (67*2π)/2914 weeks
68.02486 .02893 (68*2π)/2914 weeks
69.00474 .01301 (69*2π)/2914 weeks
70-.00164 .02114 (70*2π)/2914 weeks
71.03295 .01873 (71*2π)/2914 weeks
72.00698 .01507 (72*2π)/2914 weeks
73.01143 .0117 (73*2π)/2914 weeks
74.03325 .01831 (74*2π)/2914 weeks
75.02233 .02475 (75*2π)/2914 weeks
76.01044 .03048 (76*2π)/2914 weeks
77.01282 .01713 (77*2π)/2914 weeks
78.01321 .01195 (78*2π)/2914 weeks
79.01258 .01232 (79*2π)/2914 weeks
80.0272 .01787 (80*2π)/2914 weeks
81.00946 .00561 (81*2π)/2914 weeks
82.03089 .01733 (82*2π)/2914 weeks
83.02019 .02622 (83*2π)/2914 weeks
84.00775 .02527 (84*2π)/2913 weeks
85.02079 .00378 (85*2π)/2913 weeks
86.02844 .00349 (86*2π)/2913 weeks
87.02094 .03057 (87*2π)/2913 weeks
88.01326 .02961 (88*2π)/2913 weeks
89.00577 -.00425 (89*2π)/2913 weeks
90.01352 .02355 (90*2π)/2913 weeks
91.01855 .00644 (91*2π)/2913 weeks
92.01997 .01217 (92*2π)/2913 weeks
93.02549 .00587 (93*2π)/2913 weeks
94.01578 .01764 (94*2π)/2913 weeks
95.01314 .01931 (95*2π)/2913 weeks
96.02675 .01532 (96*2π)/2913 weeks
97.00533 .01405 (97*2π)/2913 weeks
98.01732 .01677 (98*2π)/2913 weeks
99.01238 .00525 (99*2π)/2913 weeks
100.00974 .00036 (100*2π)/2913 weeks
101.02855 .00233 (101*2π)/2913 weeks
102.01791 .00984 (102*2π)/2913 weeks
103.03056 .00823 (103*2π)/2913 weeks
104.02735 .00861 (104*2π)/2913 weeks
105.02283 .02709 (105*2π)/2913 weeks
106.01143 .01089 (106*2π)/2913 weeks
107.02244 -.007 (107*2π)/2913 weeks
108.01937 .00688 (108*2π)/2913 weeks
109.02726 .01092 (109*2π)/2913 weeks
110.01346 .01673 (110*2π)/2913 weeks
111.02782 -.00903 (111*2π)/2913 weeks
112.02296 .01634 (112*2π)/2913 weeks
113.02002 .01854 (113*2π)/2913 weeks
114.03196 .00385 (114*2π)/2913 weeks
115.01627 .01056 (115*2π)/2913 weeks
116.0243 .01778 (116*2π)/2913 weeks
117.02012 .01765 (117*2π)/2912 weeks
118.0216 .01063 (118*2π)/2912 weeks
119.0185 .00353 (119*2π)/2912 weeks
120.01425 .01616 (120*2π)/2912 weeks
121.02035 .01604 (121*2π)/2912 weeks
122.00924 -.01244 (122*2π)/2912 weeks
123.02527 .0044 (123*2π)/2912 weeks
124.03467 .01417 (124*2π)/2912 weeks
125.02401 .01648 (125*2π)/2912 weeks
126.01687 .01978 (126*2π)/2912 weeks
127.01449 .01525 (127*2π)/2912 weeks
128.00815 .01522 (128*2π)/2912 weeks
129.01221 .00254 (129*2π)/2912 weeks
130.01382 .00332 (130*2π)/2912 weeks
131.01379 .00727 (131*2π)/2912 weeks
132.02359 .00942 (132*2π)/2912 weeks
133.02086 .00568 (133*2π)/2912 weeks
134.01505 .01692 (134*2π)/2912 weeks
135.00416 .01967 (135*2π)/2912 weeks
136.009 -.00243 (136*2π)/2912 weeks
137.00206 -.00291 (137*2π)/2912 weeks
138.02765 .0031 (138*2π)/2912 weeks
139.0039 .01125 (139*2π)/2912 weeks
140.01114 .00125 (140*2π)/2912 weeks
141.01852 -.00809 (141*2π)/2912 weeks
142.01611 .00712 (142*2π)/2912 weeks
143.01545 .01045 (143*2π)/2912 weeks
144.00313 .00234 (144*2π)/2912 weeks
145.0078 .00345 (145*2π)/2912 weeks
146.0078 -.00345 (146*2π)/2912 weeks
147.00313 -.00234 (147*2π)/2912 weeks
148.01545 -.01045 (148*2π)/2912 weeks
149.01611 -.00712 (149*2π)/2912 weeks
150.01852 .00809 (150*2π)/2912 weeks
151.01114 -.00125 (151*2π)/2912 weeks
152.0039 -.01125 (152*2π)/2912 weeks
153.02765 -.0031 (153*2π)/2912 weeks
154.00206 .00291 (154*2π)/2912 weeks
155.009 .00243 (155*2π)/2912 weeks
156.00416 -.01967 (156*2π)/2912 weeks
157.01505 -.01692 (157*2π)/2912 weeks
158.02086 -.00568 (158*2π)/2912 weeks
159.02359 -.00942 (159*2π)/2912 weeks
160.01379 -.00727 (160*2π)/2912 weeks
161.01382 -.00332 (161*2π)/2912 weeks
162.01221 -.00254 (162*2π)/2912 weeks
163.00815 -.01522 (163*2π)/2912 weeks
164.01449 -.01525 (164*2π)/2912 weeks
165.01687 -.01978 (165*2π)/2912 weeks
166.02401 -.01648 (166*2π)/2912 weeks
167.03467 -.01417 (167*2π)/2912 weeks
168.02527 -.0044 (168*2π)/2912 weeks
169.00924 .01244 (169*2π)/2912 weeks
170.02035 -.01604 (170*2π)/2912 weeks
171.01425 -.01616 (171*2π)/2912 weeks
172.0185 -.00353 (172*2π)/2912 weeks
173.0216 -.01063 (173*2π)/2912 weeks
174.02012 -.01765 (174*2π)/2912 weeks
175.0243 -.01778 (175*2π)/2912 weeks
176.01627 -.01056 (176*2π)/2912 weeks
177.03196 -.00385 (177*2π)/2912 weeks
178.02002 -.01854 (178*2π)/2912 weeks
179.02296 -.01634 (179*2π)/2912 weeks
180.02782 .00903 (180*2π)/2912 weeks
181.01346 -.01673 (181*2π)/2912 weeks
182.02726 -.01092 (182*2π)/2912 weeks
183.01937 -.00688 (183*2π)/2912 weeks
184.02244 .007 (184*2π)/2912 weeks
185.01143 -.01089 (185*2π)/2912 weeks
186.02283 -.02709 (186*2π)/2912 weeks
187.02735 -.00861 (187*2π)/2912 weeks
188.03056 -.00823 (188*2π)/2912 weeks
189.01791 -.00984 (189*2π)/2912 weeks
190.02855 -.00233 (190*2π)/2912 weeks
191.00974 -.00036 (191*2π)/2912 weeks
192.01238 -.00525 (192*2π)/2912 weeks
193.01732 -.01677 (193*2π)/2912 weeks
194.00533 -.01405 (194*2π)/2912 weeks
195.02675 -.01532 (195*2π)/2911 weeks
196.01314 -.01931 (196*2π)/2911 weeks
197.01578 -.01764 (197*2π)/2911 weeks
198.02549 -.00587 (198*2π)/2911 weeks
199.01997 -.01217 (199*2π)/2911 weeks
200.01855 -.00644 (200*2π)/2911 weeks
201.01352 -.02355 (201*2π)/2911 weeks
202.00577 .00425 (202*2π)/2911 weeks
203.01326 -.02961 (203*2π)/2911 weeks
204.02094 -.03057 (204*2π)/2911 weeks
205.02844 -.00349 (205*2π)/2911 weeks
206.02079 -.00378 (206*2π)/2911 weeks
207.00775 -.02527 (207*2π)/2911 weeks
208.02019 -.02622 (208*2π)/2911 weeks
209.03089 -.01733 (209*2π)/2911 weeks
210.00946 -.00561 (210*2π)/2911 weeks
211.0272 -.01787 (211*2π)/2911 weeks
212.01258 -.01232 (212*2π)/2911 weeks
213.01321 -.01195 (213*2π)/2911 weeks
214.01282 -.01713 (214*2π)/2911 weeks
215.01044 -.03048 (215*2π)/2911 weeks
216.02233 -.02475 (216*2π)/2911 weeks
217.03325 -.01831 (217*2π)/2911 weeks
218.01143 -.0117 (218*2π)/2911 weeks
219.00698 -.01507 (219*2π)/2911 weeks
220.03295 -.01873 (220*2π)/2911 weeks
221-.00164 -.02114 (221*2π)/2911 weeks
222.00474 -.01301 (222*2π)/2911 weeks
223.02486 -.02893 (223*2π)/2911 weeks
224-.00802 -.01612 (224*2π)/2911 weeks
225.00655 -.02567 (225*2π)/2911 weeks
226.01601 -.04633 (226*2π)/2911 weeks
227.01919 -.01653 (227*2π)/2911 weeks
228.01184 -.01391 (228*2π)/2911 weeks
229.01256 -.04228 (229*2π)/2911 weeks
230.00569 -.03406 (230*2π)/2911 weeks
231.02508 -.03582 (231*2π)/2911 weeks
232.01483 -.02531 (232*2π)/2911 weeks
233.0025 -.02835 (233*2π)/2911 weeks
234.00763 -.02184 (234*2π)/2911 weeks
235.01603 -.06097 (235*2π)/2911 weeks
236-.00461 -.04477 (236*2π)/2911 weeks
237.03384 -.05105 (237*2π)/2911 weeks
238.05111 -.06329 (238*2π)/2911 weeks
239.01639 -.01366 (239*2π)/2911 weeks
240.01283 -.01463 (240*2π)/2911 weeks
241.02156 -.0573 (241*2π)/2911 weeks
242.01202 -.05837 (242*2π)/2911 weeks
243.03047 -.03696 (243*2π)/2911 weeks
244.01129 -.0426 (244*2π)/2911 weeks
245.03947 -.06231 (245*2π)/2911 weeks
246.02438 -.06218 (246*2π)/2911 weeks
247.03833 -.0207 (247*2π)/2911 weeks
248.03453 -.02483 (248*2π)/2911 weeks
249.03429 -.05026 (249*2π)/2911 weeks
250.01807 -.00976 (250*2π)/2911 weeks
251.00435 -.04008 (251*2π)/2911 weeks
252.02186 -.0616 (252*2π)/2911 weeks
253.01176 -.05173 (253*2π)/2911 weeks
254.02483 -.03831 (254*2π)/2911 weeks
255.01661 -.05025 (255*2π)/2911 weeks
256.03194 -.07312 (256*2π)/2911 weeks
257.02173 -.04932 (257*2π)/2911 weeks
258.01481 -.02635 (258*2π)/2911 weeks
259.0089 -.08654 (259*2π)/2911 weeks
260.00914 -.09239 (260*2π)/2911 weeks
261.07294 -.05763 (261*2π)/2911 weeks
262.00467 -.01655 (262*2π)/2911 weeks
263.00682 -.08753 (263*2π)/2911 weeks
264-.00494 -.08459 (264*2π)/2911 weeks
265.02837 -.09897 (265*2π)/2911 weeks
266.02945 -.06034 (266*2π)/2911 weeks
267.0065 -.11576 (267*2π)/2911 weeks
268.0087 -.1101 (268*2π)/2911 weeks
269.12252 -.08502 (269*2π)/2911 weeks
270.04487 -.0431 (270*2π)/2911 weeks
271.01764 -.10592 (271*2π)/2911 weeks
272.03579 -.07554 (272*2π)/2911 weeks
273.00189 -.0942 (273*2π)/2911 weeks
274-.00332 -.12025 (274*2π)/2911 weeks
275.06602 -.20495 (275*2π)/2911 weeks
276.10246 -.098 (276*2π)/2911 weeks
277.08181 -.06682 (277*2π)/2911 weeks
278.073 -.16553 (278*2π)/2911 weeks
279.02136 -.04408 (279*2π)/2911 weeks
280.0143 -.11146 (280*2π)/2911 weeks
281-.0201 -.2422 (281*2π)/2911 weeks
282.06232 -.17898 (282*2π)/2911 weeks
283.11876 -.17685 (283*2π)/2911 weeks
284.05201 -.03674 (284*2π)/2911 weeks
285-.26414 -.37428 (285*2π)/2911 weeks
286.02036 -.405 (286*2π)/2911 weeks
287.09907 -.55781 (287*2π)/2911 weeks
288.09013 -.54441 (288*2π)/2911 weeks
289.23541 -.85011 (289*2π)/2911 weeks



Back to list of Stocks