Back to list of Stocks    See Also: Seasonal Analysis of SDRGenetic Algorithms Stock Portfolio Generator, and Best Months to Buy/Sell Stocks

# Fourier Analysis of SDR (SandRidge Mississippian Trust II)

SDR (SandRidge Mississippian Trust II) appears to have interesting cyclic behaviour every 29 weeks (.18*sine), 18 weeks (.1468*sine), and 32 weeks (.1379*sine).

SDR (SandRidge Mississippian Trust II) has an average price of 2.53 (topmost row, frequency = 0).

Click on the checkboxes shown on the right to see how the various frequencies contribute to the graph. Look for large magnitude coefficients (sine or cosine), as these are associated with frequencies which contribute most to the associated stock plot. If you find a large magnitude coefficient which dramatically changes the graph, look at the associated "Period" in weeks, as you may have found a significant recurring cycle for the stock of interest.

## Fourier Analysis

Using data from 4/18/2012 to 5/21/2018 for SDR (SandRidge Mississippian Trust II), this program was able to calculate the following Fourier Series:
Sequence #Cosine Coefficients Sine Coefficients FrequenciesPeriod
02.53405   0
1.69286 1.62158 (1*2π)/319319 weeks
2.15477 .71742 (2*2π)/319160 weeks
3.03748 .53667 (3*2π)/319106 weeks
4.12085 .45647 (4*2π)/31980 weeks
5.00158 .40508 (5*2π)/31964 weeks
6.01049 .40833 (6*2π)/31953 weeks
7-.17127 .09842 (7*2π)/31946 weeks
8.09911 .08561 (8*2π)/31940 weeks
9.10615 .16125 (9*2π)/31935 weeks
10.07625 .13786 (10*2π)/31932 weeks
11-.00753 .18005 (11*2π)/31929 weeks
12.01844 .07793 (12*2π)/31927 weeks
13.00677 .042 (13*2π)/31925 weeks
14.09474 .10252 (14*2π)/31923 weeks
15.02635 .05066 (15*2π)/31921 weeks
16.06941 .08297 (16*2π)/31920 weeks
17.10389 .12461 (17*2π)/31919 weeks
18.0102 .14684 (18*2π)/31918 weeks
19.01624 .09047 (19*2π)/31917 weeks
20.01773 .06383 (20*2π)/31916 weeks
21.04388 .0573 (21*2π)/31915 weeks
22.01951 .07402 (22*2π)/31915 weeks
23.04252 .02482 (23*2π)/31914 weeks
24.09556 .04256 (24*2π)/31913 weeks
25.01239 .10039 (25*2π)/31913 weeks
26.02443 .08605 (26*2π)/31912 weeks
27.00248 .0481 (27*2π)/31912 weeks
28.03503 .06664 (28*2π)/31911 weeks
29.01383 .07763 (29*2π)/31911 weeks
30.00601 .05158 (30*2π)/31911 weeks
31-.0088 .06269 (31*2π)/31910 weeks
32.0233 .01049 (32*2π)/31910 weeks
33.06413 .05191 (33*2π)/31910 weeks
34.01372 .06908 (34*2π)/3199 weeks
35.01804 .06241 (35*2π)/3199 weeks
36.00642 .01567 (36*2π)/3199 weeks
37.02477 .03488 (37*2π)/3199 weeks
38.03557 .03568 (38*2π)/3198 weeks
39.00667 .038 (39*2π)/3198 weeks
40.00917 .0326 (40*2π)/3198 weeks
41.02439 .03739 (41*2π)/3198 weeks
42.01338 .02942 (42*2π)/3198 weeks
43.00811 .04626 (43*2π)/3197 weeks
44.00371 .02882 (44*2π)/3197 weeks
45.0183 .00569 (45*2π)/3197 weeks
46.03106 .03726 (46*2π)/3197 weeks
47.02558 .01563 (47*2π)/3197 weeks
48.02533 .01918 (48*2π)/3197 weeks
49.04231 .04768 (49*2π)/3197 weeks
50.0344 .02755 (50*2π)/3196 weeks
51.01297 .04212 (51*2π)/3196 weeks
52.01748 .02248 (52*2π)/3196 weeks
53.03016 .03021 (53*2π)/3196 weeks
54.00616 .02911 (54*2π)/3196 weeks
55.00679 .04207 (55*2π)/3196 weeks
56.01313 .00766 (56*2π)/3196 weeks
57.01128 .00678 (57*2π)/3196 weeks
58.04443 .04193 (58*2π)/3196 weeks
59.02164 .03345 (59*2π)/3195 weeks
60.00008 .04719 (60*2π)/3195 weeks
61.021 .02978 (61*2π)/3195 weeks
62-.00937 .02756 (62*2π)/3195 weeks
63.01155 .02576 (63*2π)/3195 weeks
64.00975 .01341 (64*2π)/3195 weeks
65.01485 .01351 (65*2π)/3195 weeks
66.01696 .02609 (66*2π)/3195 weeks
67.00354 .01898 (67*2π)/3195 weeks
68.00657 .02914 (68*2π)/3195 weeks
69.00476 .00694 (69*2π)/3195 weeks
70.00922 .01197 (70*2π)/3195 weeks
71.01855 .03212 (71*2π)/3194 weeks
72-.00034 .02286 (72*2π)/3194 weeks
73.00079 .02504 (73*2π)/3194 weeks
74.01516 .00131 (74*2π)/3194 weeks
75.00659 .02364 (75*2π)/3194 weeks
76.01393 .00805 (76*2π)/3194 weeks
77-.00068 .00035 (77*2π)/3194 weeks
78.02231 .01592 (78*2π)/3194 weeks
79.00498 .00555 (79*2π)/3194 weeks
80.00668 .00487 (80*2π)/3194 weeks
81.02356 .00734 (81*2π)/3194 weeks
82.01463 .01628 (82*2π)/3194 weeks
83.01077 .02221 (83*2π)/3194 weeks
84.00408 .01161 (84*2π)/3194 weeks
85.00609 .01148 (85*2π)/3194 weeks
86.01153 .0098 (86*2π)/3194 weeks
87.01241 .0036 (87*2π)/3194 weeks
88.01577 .01698 (88*2π)/3194 weeks
89.01207 -.00177 (89*2π)/3194 weeks
90.02273 .01188 (90*2π)/3194 weeks
91.01457 .01755 (91*2π)/3194 weeks
92.00633 .01745 (92*2π)/3193 weeks
93.01063 -.00204 (93*2π)/3193 weeks
94.01421 .0015 (94*2π)/3193 weeks
95.02439 .01975 (95*2π)/3193 weeks
96.01198 .01684 (96*2π)/3193 weeks
97-.00446 .01489 (97*2π)/3193 weeks
98.02077 -.00047 (98*2π)/3193 weeks
99.00325 .00781 (99*2π)/3193 weeks
100.01361 .00358 (100*2π)/3193 weeks
101.01281 .00696 (101*2π)/3193 weeks
102.0187 .00248 (102*2π)/3193 weeks
103.01031 .0122 (103*2π)/3193 weeks
104.01076 .01392 (104*2π)/3193 weeks
105.01707 .00462 (105*2π)/3193 weeks
106.00554 .01561 (106*2π)/3193 weeks
107.01261 .00346 (107*2π)/3193 weeks
108.00352 .00632 (108*2π)/3193 weeks
109.00802 .00327 (109*2π)/3193 weeks
110.0103 -.00718 (110*2π)/3193 weeks
111.01946 .00251 (111*2π)/3193 weeks
112.00998 .00214 (112*2π)/3193 weeks
113.02002 .00552 (113*2π)/3193 weeks
114.01788 .00483 (114*2π)/3193 weeks
115.017 .01873 (115*2π)/3193 weeks
116.00453 .00756 (116*2π)/3193 weeks
117.00494 -.00461 (117*2π)/3193 weeks
118.01643 .00811 (118*2π)/3193 weeks
119.01833 .0035 (119*2π)/3193 weeks
120.01673 .01141 (120*2π)/3193 weeks
121.00301 .0034 (121*2π)/3193 weeks
122.0275 -.00032 (122*2π)/3193 weeks
123.0141 .00843 (123*2π)/3193 weeks
124.00973 .01273 (124*2π)/3193 weeks
125.02252 .00323 (125*2π)/3193 weeks
126.00951 .0094 (126*2π)/3193 weeks
127.01851 .01271 (127*2π)/3193 weeks
128.01473 .01186 (128*2π)/3192 weeks
129.01029 .00677 (129*2π)/3192 weeks
130.00803 .00959 (130*2π)/3192 weeks
131.01841 .01069 (131*2π)/3192 weeks
132.00961 .00573 (132*2π)/3192 weeks
133.00458 .01453 (133*2π)/3192 weeks
134.0162 -.01058 (134*2π)/3192 weeks
135.01789 .00123 (135*2π)/3192 weeks
136.02448 .01142 (136*2π)/3192 weeks
137.01658 .01213 (137*2π)/3192 weeks
138.01172 .01527 (138*2π)/3192 weeks
139.00876 .01166 (139*2π)/3192 weeks
140.00641 .0126 (140*2π)/3192 weeks
141.00253 .00393 (141*2π)/3192 weeks
142.00876 .00481 (142*2π)/3192 weeks
143.01236 .00369 (143*2π)/3192 weeks
144.00971 .00101 (144*2π)/3192 weeks
145.01243 .00968 (145*2π)/3192 weeks
146.01616 .00667 (146*2π)/3192 weeks
147.00898 .01305 (147*2π)/3192 weeks
148.00073 .01567 (148*2π)/3192 weeks
149.00309 -.00204 (149*2π)/3192 weeks
150-.00021 .00241 (150*2π)/3192 weeks
151.01793 -.00412 (151*2π)/3192 weeks
152.0087 .01339 (152*2π)/3192 weeks
153.00432 -.00107 (153*2π)/3192 weeks
154.0043 -.00229 (154*2π)/3192 weeks
155.01754 .00054 (155*2π)/3192 weeks
156.01038 .00364 (156*2π)/3192 weeks
157.00748 .00897 (157*2π)/3192 weeks
158.00105 -.00032 (158*2π)/3192 weeks
159.00294 .00242 (159*2π)/3192 weeks
160.00294 -.00242 (160*2π)/3192 weeks
161.00105 .00032 (161*2π)/3192 weeks
162.00748 -.00897 (162*2π)/3192 weeks
163.01038 -.00364 (163*2π)/3192 weeks
164.01754 -.00054 (164*2π)/3192 weeks
165.0043 .00229 (165*2π)/3192 weeks
166.00432 .00107 (166*2π)/3192 weeks
167.0087 -.01339 (167*2π)/3192 weeks
168.01793 .00412 (168*2π)/3192 weeks
169-.00021 -.00241 (169*2π)/3192 weeks
170.00309 .00204 (170*2π)/3192 weeks
171.00073 -.01567 (171*2π)/3192 weeks
172.00898 -.01305 (172*2π)/3192 weeks
173.01616 -.00667 (173*2π)/3192 weeks
174.01243 -.00968 (174*2π)/3192 weeks
175.00971 -.00101 (175*2π)/3192 weeks
176.01236 -.00369 (176*2π)/3192 weeks
177.00876 -.00481 (177*2π)/3192 weeks
178.00253 -.00393 (178*2π)/3192 weeks
179.00641 -.0126 (179*2π)/3192 weeks
180.00876 -.01166 (180*2π)/3192 weeks
181.01172 -.01527 (181*2π)/3192 weeks
182.01658 -.01213 (182*2π)/3192 weeks
183.02448 -.01142 (183*2π)/3192 weeks
184.01789 -.00123 (184*2π)/3192 weeks
185.0162 .01058 (185*2π)/3192 weeks
186.00458 -.01453 (186*2π)/3192 weeks
187.00961 -.00573 (187*2π)/3192 weeks
188.01841 -.01069 (188*2π)/3192 weeks
189.00803 -.00959 (189*2π)/3192 weeks
190.01029 -.00677 (190*2π)/3192 weeks
191.01473 -.01186 (191*2π)/3192 weeks
192.01851 -.01271 (192*2π)/3192 weeks
193.00951 -.0094 (193*2π)/3192 weeks
194.02252 -.00323 (194*2π)/3192 weeks
195.00973 -.01273 (195*2π)/3192 weeks
196.0141 -.00843 (196*2π)/3192 weeks
197.0275 .00032 (197*2π)/3192 weeks
198.00301 -.0034 (198*2π)/3192 weeks
199.01673 -.01141 (199*2π)/3192 weeks
200.01833 -.0035 (200*2π)/3192 weeks
201.01643 -.00811 (201*2π)/3192 weeks
202.00494 .00461 (202*2π)/3192 weeks
203.00453 -.00756 (203*2π)/3192 weeks
204.017 -.01873 (204*2π)/3192 weeks
205.01788 -.00483 (205*2π)/3192 weeks
206.02002 -.00552 (206*2π)/3192 weeks
207.00998 -.00214 (207*2π)/3192 weeks
208.01946 -.00251 (208*2π)/3192 weeks
209.0103 .00718 (209*2π)/3192 weeks
210.00802 -.00327 (210*2π)/3192 weeks
211.00352 -.00632 (211*2π)/3192 weeks
212.01261 -.00346 (212*2π)/3192 weeks
213.00554 -.01561 (213*2π)/3191 weeks
214.01707 -.00462 (214*2π)/3191 weeks
215.01076 -.01392 (215*2π)/3191 weeks
216.01031 -.0122 (216*2π)/3191 weeks
217.0187 -.00248 (217*2π)/3191 weeks
218.01281 -.00696 (218*2π)/3191 weeks
219.01361 -.00358 (219*2π)/3191 weeks
220.00325 -.00781 (220*2π)/3191 weeks
221.02077 .00047 (221*2π)/3191 weeks
222-.00446 -.01489 (222*2π)/3191 weeks
223.01198 -.01684 (223*2π)/3191 weeks
224.02439 -.01975 (224*2π)/3191 weeks
225.01421 -.0015 (225*2π)/3191 weeks
226.01063 .00204 (226*2π)/3191 weeks
227.00633 -.01745 (227*2π)/3191 weeks
228.01457 -.01755 (228*2π)/3191 weeks
229.02273 -.01188 (229*2π)/3191 weeks
230.01207 .00177 (230*2π)/3191 weeks
231.01577 -.01698 (231*2π)/3191 weeks
232.01241 -.0036 (232*2π)/3191 weeks
233.01153 -.0098 (233*2π)/3191 weeks
234.00609 -.01148 (234*2π)/3191 weeks
235.00408 -.01161 (235*2π)/3191 weeks
236.01077 -.02221 (236*2π)/3191 weeks
237.01463 -.01628 (237*2π)/3191 weeks
238.02356 -.00734 (238*2π)/3191 weeks
239.00668 -.00487 (239*2π)/3191 weeks
240.00498 -.00555 (240*2π)/3191 weeks
241.02231 -.01592 (241*2π)/3191 weeks
242-.00068 -.00035 (242*2π)/3191 weeks
243.01393 -.00805 (243*2π)/3191 weeks
244.00659 -.02364 (244*2π)/3191 weeks
245.01516 -.00131 (245*2π)/3191 weeks
246.00079 -.02504 (246*2π)/3191 weeks
247-.00034 -.02286 (247*2π)/3191 weeks
248.01855 -.03212 (248*2π)/3191 weeks
249.00922 -.01197 (249*2π)/3191 weeks
250.00476 -.00694 (250*2π)/3191 weeks
251.00657 -.02914 (251*2π)/3191 weeks
252.00354 -.01898 (252*2π)/3191 weeks
253.01696 -.02609 (253*2π)/3191 weeks
254.01485 -.01351 (254*2π)/3191 weeks
255.00975 -.01341 (255*2π)/3191 weeks
256.01155 -.02576 (256*2π)/3191 weeks
257-.00937 -.02756 (257*2π)/3191 weeks
258.021 -.02978 (258*2π)/3191 weeks
259.00008 -.04719 (259*2π)/3191 weeks
260.02164 -.03345 (260*2π)/3191 weeks
261.04443 -.04193 (261*2π)/3191 weeks
262.01128 -.00678 (262*2π)/3191 weeks
263.01313 -.00766 (263*2π)/3191 weeks
264.00679 -.04207 (264*2π)/3191 weeks
265.00616 -.02911 (265*2π)/3191 weeks
266.03016 -.03021 (266*2π)/3191 weeks
267.01748 -.02248 (267*2π)/3191 weeks
268.01297 -.04212 (268*2π)/3191 weeks
269.0344 -.02755 (269*2π)/3191 weeks
270.04231 -.04768 (270*2π)/3191 weeks
271.02533 -.01918 (271*2π)/3191 weeks
272.02558 -.01563 (272*2π)/3191 weeks
273.03106 -.03726 (273*2π)/3191 weeks
274.0183 -.00569 (274*2π)/3191 weeks
275.00371 -.02882 (275*2π)/3191 weeks
276.00811 -.04626 (276*2π)/3191 weeks
277.01338 -.02942 (277*2π)/3191 weeks
278.02439 -.03739 (278*2π)/3191 weeks
279.00917 -.0326 (279*2π)/3191 weeks
280.00667 -.038 (280*2π)/3191 weeks
281.03557 -.03568 (281*2π)/3191 weeks
282.02477 -.03488 (282*2π)/3191 weeks
283.00642 -.01567 (283*2π)/3191 weeks
284.01804 -.06241 (284*2π)/3191 weeks
285.01372 -.06908 (285*2π)/3191 weeks
286.06413 -.05191 (286*2π)/3191 weeks
287.0233 -.01049 (287*2π)/3191 weeks
288-.0088 -.06269 (288*2π)/3191 weeks
289.00601 -.05158 (289*2π)/3191 weeks
290.01383 -.07763 (290*2π)/3191 weeks
291.03503 -.06664 (291*2π)/3191 weeks
292.00248 -.0481 (292*2π)/3191 weeks
293.02443 -.08605 (293*2π)/3191 weeks
294.01239 -.10039 (294*2π)/3191 weeks
295.09556 -.04256 (295*2π)/3191 weeks
296.04252 -.02482 (296*2π)/3191 weeks
297.01951 -.07402 (297*2π)/3191 weeks
298.04388 -.0573 (298*2π)/3191 weeks
299.01773 -.06383 (299*2π)/3191 weeks
300.01624 -.09047 (300*2π)/3191 weeks
301.0102 -.14684 (301*2π)/3191 weeks
302.10389 -.12461 (302*2π)/3191 weeks
303.06941 -.08297 (303*2π)/3191 weeks
304.02635 -.05066 (304*2π)/3191 weeks
305.09474 -.10252 (305*2π)/3191 weeks
306.00677 -.042 (306*2π)/3191 weeks
307.01844 -.07793 (307*2π)/3191 weeks
308-.00753 -.18005 (308*2π)/3191 weeks
309.07625 -.13786 (309*2π)/3191 weeks
310.10615 -.16125 (310*2π)/3191 weeks
311.09911 -.08561 (311*2π)/3191 weeks
312-.17127 -.09842 (312*2π)/3191 weeks
313.01049 -.40833 (313*2π)/3191 weeks
314.00158 -.40508 (314*2π)/3191 weeks
315.12085 -.45647 (315*2π)/3191 weeks
316.03748 -.53667 (316*2π)/3191 weeks
317.15477 -.71742 (317*2π)/3191 weeks