Back to list of Stocks    See Also: Seasonal Analysis of SAYGenetic Algorithms Stock Portfolio Generator, and Fourier Calculator

# Fourier Analysis of SAY (SATYAM COMPUTER SERV)

SAY (SATYAM COMPUTER SERV) appears to have interesting cyclic behaviour every 16 weeks (3.3143*sine), 13 weeks (2.8462*sine), and 6 weeks (1.0111*cosine).

SAY (SATYAM COMPUTER SERV) has an average price of 37.73 (topmost row, frequency = 0).

Click on the checkboxes shown on the right to see how the various frequencies contribute to the graph. Look for large magnitude coefficients (sine or cosine), as these are associated with frequencies which contribute most to the associated stock plot. If you find a large magnitude coefficient which dramatically changes the graph, look at the associated "Period" in weeks, as you may have found a significant recurring cycle for the stock of interest.

## Fourier Analysis

Using data from 7/7/2008 to 10/10/2016 for SAY (SATYAM COMPUTER SERV), this program was able to calculate the following Fourier Series:
Sequence #Cosine Coefficients Sine Coefficients FrequenciesPeriod
037.72559   0
1-.82445 36.31578 (1*2π)/171171 weeks
2.98834 .16286 (2*2π)/17186 weeks
3-.74096 11.85083 (3*2π)/17157 weeks
4.7019 .24685 (4*2π)/17143 weeks
5-.68512 7.15271 (5*2π)/17134 weeks
6.66458 .37639 (6*2π)/17129 weeks
7-.45916 5.19717 (7*2π)/17124 weeks
8.76 .18158 (8*2π)/17121 weeks
9-.65065 3.99494 (9*2π)/17119 weeks
10.71756 .40823 (10*2π)/17117 weeks
11-.49365 3.31431 (11*2π)/17116 weeks
12.74209 .4205 (12*2π)/17114 weeks
13-.38889 2.84616 (13*2π)/17113 weeks
14.80645 .35311 (14*2π)/17112 weeks
15-.42354 2.46272 (15*2π)/17111 weeks
16.85452 .42183 (16*2π)/17111 weeks
17-.35135 2.14672 (17*2π)/17110 weeks
18.87703 .41421 (18*2π)/17110 weeks
19-.33256 1.90128 (19*2π)/1719 weeks
20.89876 .4516 (20*2π)/1719 weeks
21-.26328 1.70575 (21*2π)/1718 weeks
22.93589 .43487 (22*2π)/1718 weeks
23-.23759 1.52516 (23*2π)/1717 weeks
24.97204 .44568 (24*2π)/1717 weeks
25-.193 1.35132 (25*2π)/1717 weeks
26.99221 .44555 (26*2π)/1717 weeks
27-.13729 1.1972 (27*2π)/1716 weeks
281.01112 .40348 (28*2π)/1716 weeks
29-.14007 1.0432 (29*2π)/1716 weeks
301.00357 .40986 (30*2π)/1716 weeks
31-.12344 .92139 (31*2π)/1716 weeks
321.00448 .4329 (32*2π)/1715 weeks
33-.0568 .80538 (33*2π)/1715 weeks
341.00397 .39096 (34*2π)/1715 weeks
35-.03748 .6948 (35*2π)/1715 weeks
361.00877 .35618 (36*2π)/1715 weeks
37-.03938 .55886 (37*2π)/1715 weeks
38.95709 .33636 (38*2π)/1715 weeks
39-.05324 .48117 (39*2π)/1714 weeks
40.9303 .34412 (40*2π)/1714 weeks
41-.04805 .40904 (41*2π)/1714 weeks
42.9152 .35111 (42*2π)/1714 weeks
43-.03577 .32765 (43*2π)/1714 weeks
44.89322 .36105 (44*2π)/1714 weeks
45.0021 .23754 (45*2π)/1714 weeks
46.83836 .32328 (46*2π)/1714 weeks
47-.01267 .18169 (47*2π)/1714 weeks
48.78664 .31623 (48*2π)/1714 weeks
49-.03532 .15456 (49*2π)/1713 weeks
50.76913 .34714 (50*2π)/1713 weeks
51-.01445 .10178 (51*2π)/1713 weeks
52.72476 .34471 (52*2π)/1713 weeks
53-.02108 .08635 (53*2π)/1713 weeks
54.72376 .37592 (54*2π)/1713 weeks
55.01578 .02968 (55*2π)/1713 weeks
56.69159 .35809 (56*2π)/1713 weeks
57.00273 -.02025 (57*2π)/1713 weeks
58.6289 .38551 (58*2π)/1713 weeks
59.02063 -.01006 (59*2π)/1713 weeks
60.63058 .40266 (60*2π)/1713 weeks
61.04203 -.05139 (61*2π)/1713 weeks
62.58997 .4155 (62*2π)/1713 weeks
63.05933 -.0508 (63*2π)/1713 weeks
64.58895 .44452 (64*2π)/1713 weeks
65.11053 -.07905 (65*2π)/1713 weeks
66.57377 .43537 (66*2π)/1713 weeks
67.13899 -.10672 (67*2π)/1713 weeks
68.54827 .4251 (68*2π)/1713 weeks
69.14582 -.11954 (69*2π)/1712 weeks
70.53106 .44926 (70*2π)/1712 weeks
71.18708 -.12691 (71*2π)/1712 weeks
72.52647 .45617 (72*2π)/1712 weeks
73.2345 -.13711 (73*2π)/1712 weeks
74.54045 .45014 (74*2π)/1712 weeks
75.28726 -.18093 (75*2π)/1712 weeks
76.5248 .41344 (76*2π)/1712 weeks
77.29849 -.21195 (77*2π)/1712 weeks
78.51209 .41255 (78*2π)/1712 weeks
79.33281 -.25579 (79*2π)/1712 weeks
80.46328 .4048 (80*2π)/1712 weeks
81.37921 -.24393 (81*2π)/1712 weeks
82.47432 .37199 (82*2π)/1712 weeks
83.40064 -.27883 (83*2π)/1712 weeks
84.463 .3595 (84*2π)/1712 weeks
85.44648 -.31398 (85*2π)/1712 weeks
86.44648 .31398 (86*2π)/1712 weeks
87.463 -.3595 (87*2π)/1712 weeks
88.40064 .27883 (88*2π)/1712 weeks
89.47432 -.37199 (89*2π)/1712 weeks
90.37921 .24393 (90*2π)/1712 weeks
91.46328 -.4048 (91*2π)/1712 weeks
92.33281 .25579 (92*2π)/1712 weeks
93.51209 -.41255 (93*2π)/1712 weeks
94.29849 .21195 (94*2π)/1712 weeks
95.5248 -.41344 (95*2π)/1712 weeks
96.28726 .18093 (96*2π)/1712 weeks
97.54045 -.45014 (97*2π)/1712 weeks
98.2345 .13711 (98*2π)/1712 weeks
99.52647 -.45617 (99*2π)/1712 weeks
100.18708 .12691 (100*2π)/1712 weeks
101.53106 -.44926 (101*2π)/1712 weeks
102.14582 .11954 (102*2π)/1712 weeks
103.54827 -.4251 (103*2π)/1712 weeks
104.13899 .10672 (104*2π)/1712 weeks
105.57377 -.43537 (105*2π)/1712 weeks
106.11053 .07905 (106*2π)/1712 weeks
107.58895 -.44452 (107*2π)/1712 weeks
108.05933 .0508 (108*2π)/1712 weeks
109.58997 -.4155 (109*2π)/1712 weeks
110.04203 .05139 (110*2π)/1712 weeks
111.63058 -.40266 (111*2π)/1712 weeks
112.02063 .01006 (112*2π)/1712 weeks
113.6289 -.38551 (113*2π)/1712 weeks
114.00273 .02025 (114*2π)/1712 weeks
115.69159 -.35809 (115*2π)/1711 weeks
116.01578 -.02968 (116*2π)/1711 weeks
117.72376 -.37592 (117*2π)/1711 weeks
118-.02108 -.08635 (118*2π)/1711 weeks
119.72476 -.34471 (119*2π)/1711 weeks
120-.01445 -.10178 (120*2π)/1711 weeks
121.76913 -.34714 (121*2π)/1711 weeks
122-.03532 -.15456 (122*2π)/1711 weeks
123.78664 -.31623 (123*2π)/1711 weeks
124-.01267 -.18169 (124*2π)/1711 weeks
125.83836 -.32328 (125*2π)/1711 weeks
126.0021 -.23754 (126*2π)/1711 weeks
127.89322 -.36105 (127*2π)/1711 weeks
128-.03577 -.32765 (128*2π)/1711 weeks
129.9152 -.35111 (129*2π)/1711 weeks
130-.04805 -.40904 (130*2π)/1711 weeks
131.9303 -.34412 (131*2π)/1711 weeks
132-.05324 -.48117 (132*2π)/1711 weeks
133.95709 -.33636 (133*2π)/1711 weeks
134-.03938 -.55886 (134*2π)/1711 weeks
1351.00877 -.35618 (135*2π)/1711 weeks
136-.03748 -.6948 (136*2π)/1711 weeks
1371.00397 -.39096 (137*2π)/1711 weeks
138-.0568 -.80538 (138*2π)/1711 weeks
1391.00448 -.4329 (139*2π)/1711 weeks
140-.12344 -.92139 (140*2π)/1711 weeks
1411.00357 -.40986 (141*2π)/1711 weeks
142-.14007 -1.0432 (142*2π)/1711 weeks
1431.01112 -.40348 (143*2π)/1711 weeks
144-.13729 -1.1972 (144*2π)/1711 weeks
145.99221 -.44555 (145*2π)/1711 weeks
146-.193 -1.35132 (146*2π)/1711 weeks
147.97204 -.44568 (147*2π)/1711 weeks
148-.23759 -1.52516 (148*2π)/1711 weeks
149.93589 -.43487 (149*2π)/1711 weeks
150-.26328 -1.70575 (150*2π)/1711 weeks
151.89876 -.4516 (151*2π)/1711 weeks
152-.33256 -1.90128 (152*2π)/1711 weeks
153.87703 -.41421 (153*2π)/1711 weeks
154-.35135 -2.14672 (154*2π)/1711 weeks
155.85452 -.42183 (155*2π)/1711 weeks
156-.42354 -2.46272 (156*2π)/1711 weeks
157.80645 -.35311 (157*2π)/1711 weeks
158-.38889 -2.84616 (158*2π)/1711 weeks
159.74209 -.4205 (159*2π)/1711 weeks
160-.49365 -3.31431 (160*2π)/1711 weeks
161.71756 -.40823 (161*2π)/1711 weeks
162-.65065 -3.99494 (162*2π)/1711 weeks
163.76 -.18158 (163*2π)/1711 weeks
164-.45916 -5.19717 (164*2π)/1711 weeks
165.66458 -.37639 (165*2π)/1711 weeks
166-.68512 -7.15271 (166*2π)/1711 weeks
167.7019 -.24685 (167*2π)/1711 weeks
168-.74096 -11.85083 (168*2π)/1711 weeks
169.98834 -.16286 (169*2π)/1711 weeks