Back to list of Stocks    See Also: Seasonal Analysis of ROKGenetic Algorithms Stock Portfolio Generator, and Fourier Calculator

Fourier Analysis of ROK (Rockwell Automation, Inc. Commo)


ROK (Rockwell Automation, Inc. Commo) appears to have interesting cyclic behaviour every 141 weeks (3.967*sine), 152 weeks (3.5716*sine), and 152 weeks (2.4678*cosine).

ROK (Rockwell Automation, Inc. Commo) has an average price of 28.54 (topmost row, frequency = 0).



Click on the checkboxes shown on the right to see how the various frequencies contribute to the graph. Look for large magnitude coefficients (sine or cosine), as these are associated with frequencies which contribute most to the associated stock plot. If you find a large magnitude coefficient which dramatically changes the graph, look at the associated "Period" in weeks, as you may have found a significant recurring cycle for the stock of interest.

Right click on the graph above to see the menu of operations (download, full screen, etc.)

Fourier Analysis

Using data from 12/31/1981 to 1/17/2017 for ROK (Rockwell Automation, Inc. Commo), this program was able to calculate the following Fourier Series:
Sequence #Cosine Coefficients Sine Coefficients FrequenciesPeriod
028.53944   0 
120.19809 -28.32582 (1*2π)/18291,829 weeks
25.73151 -17.45972 (2*2π)/1829915 weeks
36.05623 -13.01368 (3*2π)/1829610 weeks
4.31495 -15.22636 (4*2π)/1829457 weeks
5-3.54594 -7.09179 (5*2π)/1829366 weeks
6.8175 -4.32615 (6*2π)/1829305 weeks
71.10537 -6.58934 (7*2π)/1829261 weeks
8-1.57082 -5.57638 (8*2π)/1829229 weeks
9-2.02375 -2.60852 (9*2π)/1829203 weeks
10.20037 -.7197 (10*2π)/1829183 weeks
112.08399 -1.84544 (11*2π)/1829166 weeks
122.46783 -3.57164 (12*2π)/1829152 weeks
13.39311 -3.967 (13*2π)/1829141 weeks
14.32828 -2.85773 (14*2π)/1829131 weeks
15.53095 -2.58056 (15*2π)/1829122 weeks
16.61771 -2.91715 (16*2π)/1829114 weeks
17-.53417 -2.78557 (17*2π)/1829108 weeks
18.15402 -1.57356 (18*2π)/1829102 weeks
19.6582 -1.8656 (19*2π)/182996 weeks
20.76934 -2.45445 (20*2π)/182991 weeks
21-.34488 -2.11574 (21*2π)/182987 weeks
22.1653 -1.15396 (22*2π)/182983 weeks
23.96616 -1.33375 (23*2π)/182980 weeks
241.15372 -2.36135 (24*2π)/182976 weeks
25.14068 -2.38738 (25*2π)/182973 weeks
26.46438 -2.18651 (26*2π)/182970 weeks
27-.52282 -2.38225 (27*2π)/182968 weeks
28-.37797 -1.22495 (28*2π)/182965 weeks
29.422 -1.48045 (29*2π)/182963 weeks
30.08409 -2.3797 (30*2π)/182961 weeks
31-.94862 -1.87908 (31*2π)/182959 weeks
32-.58944 -1.19935 (32*2π)/182957 weeks
33-.65584 -.98862 (33*2π)/182955 weeks
34-.60573 -.4941 (34*2π)/182954 weeks
35.45372 -.09205 (35*2π)/182952 weeks
36.59561 -1.28218 (36*2π)/182951 weeks
37.25972 -1.31734 (37*2π)/182949 weeks
38-.1418 -1.52244 (38*2π)/182948 weeks
39-.64953 -.97572 (39*2π)/182947 weeks
40-.30221 -.17952 (40*2π)/182946 weeks
41.52999 -.17596 (41*2π)/182945 weeks
42.91021 -.79903 (42*2π)/182944 weeks
43.52539 -1.26291 (43*2π)/182943 weeks
44.25004 -1.22169 (44*2π)/182942 weeks
45.22104 -1.27044 (45*2π)/182941 weeks
46-.11998 -1.2176 (46*2π)/182940 weeks
47-.12057 -.83718 (47*2π)/182939 weeks
48.1438 -.79361 (48*2π)/182938 weeks
49.1987 -.94467 (49*2π)/182937 weeks
50.18575 -.95019 (50*2π)/182937 weeks
51-.08232 -.93944 (51*2π)/182936 weeks
52.2482 -.74816 (52*2π)/182935 weeks
53.08869 -1.12066 (53*2π)/182935 weeks
54-.05917 -.88302 (54*2π)/182934 weeks
55.1466 -.71405 (55*2π)/182933 weeks
56.30582 -1.04451 (56*2π)/182933 weeks
57-.16005 -1.1502 (57*2π)/182932 weeks
58-.17929 -.84135 (58*2π)/182932 weeks
59-.22867 -.75716 (59*2π)/182931 weeks
60-.18859 -.57729 (60*2π)/182930 weeks
61.12841 -.38536 (61*2π)/182930 weeks
62.41454 -.91474 (62*2π)/182930 weeks
63-.07433 -.93903 (63*2π)/182929 weeks
64-.02336 -.70905 (64*2π)/182929 weeks
65.07198 -.78559 (65*2π)/182928 weeks
66.01015 -.87372 (66*2π)/182928 weeks
67.00648 -.75946 (67*2π)/182927 weeks
68-.02676 -.88564 (68*2π)/182927 weeks
69-.11179 -.72433 (69*2π)/182927 weeks
70.00349 -.79639 (70*2π)/182926 weeks
71-.24939 -.75585 (71*2π)/182926 weeks
72-.04772 -.61581 (72*2π)/182925 weeks
73-.03874 -.78676 (73*2π)/182925 weeks
74-.20146 -.84049 (74*2π)/182925 weeks
75-.3586 -.63399 (75*2π)/182924 weeks
76-.19793 -.42828 (76*2π)/182924 weeks
77-.1224 -.57207 (77*2π)/182924 weeks
78-.2317 -.53188 (78*2π)/182923 weeks
79-.13139 -.34255 (79*2π)/182923 weeks
80-.0125 -.47722 (80*2π)/182923 weeks
81-.08269 -.40005 (81*2π)/182923 weeks
82.05673 -.3828 (82*2π)/182922 weeks
83.14688 -.54924 (83*2π)/182922 weeks
84-.07533 -.60519 (84*2π)/182922 weeks
85-.03601 -.46199 (85*2π)/182922 weeks
86-.03418 -.45942 (86*2π)/182921 weeks
87.17216 -.33089 (87*2π)/182921 weeks
88.33759 -.58148 (88*2π)/182921 weeks
89.09872 -.9012 (89*2π)/182921 weeks
90-.15136 -.66347 (90*2π)/182920 weeks
91-.05146 -.59846 (91*2π)/182920 weeks
92-.08833 -.61958 (92*2π)/182920 weeks
93-.13976 -.51387 (93*2π)/182920 weeks
94-.01443 -.43852 (94*2π)/182919 weeks
95.14534 -.55686 (95*2π)/182919 weeks
96.10175 -.821 (96*2π)/182919 weeks
97-.26341 -.90192 (97*2π)/182919 weeks
98-.46222 -.58924 (98*2π)/182919 weeks
99-.23601 -.30718 (99*2π)/182918 weeks
100.00938 -.47204 (100*2π)/182918 weeks
101-.22437 -.67707 (101*2π)/182918 weeks
102-.33554 -.43386 (102*2π)/182918 weeks
103-.18869 -.37294 (103*2π)/182918 weeks
104-.15899 -.48225 (104*2π)/182918 weeks
105-.27763 -.44756 (105*2π)/182917 weeks
106-.33276 -.26066 (106*2π)/182917 weeks
107-.08118 -.19751 (107*2π)/182917 weeks
108-.04333 -.26384 (108*2π)/182917 weeks
109.09995 -.40299 (109*2π)/182917 weeks
110-.21968 -.57901 (110*2π)/182917 weeks
111-.33012 -.20757 (111*2π)/182916 weeks
112.04261 -.06173 (112*2π)/182916 weeks
113.23956 -.39588 (113*2π)/182916 weeks
114-.01563 -.61989 (114*2π)/182916 weeks
115-.18863 -.48868 (115*2π)/182916 weeks
116-.21597 -.34345 (116*2π)/182916 weeks
117-.10387 -.32246 (117*2π)/182916 weeks
118-.12414 -.36612 (118*2π)/182916 weeks
119-.15331 -.21651 (119*2π)/182915 weeks
120.06314 -.23004 (120*2π)/182915 weeks
121.05512 -.46416 (121*2π)/182915 weeks
122-.15985 -.43783 (122*2π)/182915 weeks
123-.08615 -.30481 (123*2π)/182915 weeks
124-.09577 -.36288 (124*2π)/182915 weeks
125-.09167 -.21986 (125*2π)/182915 weeks
126.09428 -.26554 (126*2π)/182915 weeks
127.08822 -.49018 (127*2π)/182914 weeks
128-.14494 -.52804 (128*2π)/182914 weeks
129-.15547 -.39401 (129*2π)/182914 weeks
130-.16834 -.35965 (130*2π)/182914 weeks
131-.15692 -.29655 (131*2π)/182914 weeks
132-.08345 -.24881 (132*2π)/182914 weeks
133.01134 -.28172 (133*2π)/182914 weeks
134.05758 -.44001 (134*2π)/182914 weeks
135-.11905 -.52733 (135*2π)/182914 weeks
136-.21739 -.39491 (136*2π)/182913 weeks
137-.22813 -.36819 (137*2π)/182913 weeks
138-.242 -.24021 (138*2π)/182913 weeks
139-.13761 -.3125 (139*2π)/182913 weeks
140-.24707 -.19122 (140*2π)/182913 weeks
141-.05087 -.21043 (141*2π)/182913 weeks
142-.1686 -.2228 (142*2π)/182913 weeks
143-.07053 -.21664 (143*2π)/182913 weeks
144-.13031 -.17769 (144*2π)/182913 weeks
145.01499 -.14695 (145*2π)/182913 weeks
146.05493 -.25639 (146*2π)/182913 weeks
147-.0237 -.3227 (147*2π)/182912 weeks
148-.10001 -.28401 (148*2π)/182912 weeks
149-.01824 -.18077 (149*2π)/182912 weeks
150.11205 -.30978 (150*2π)/182912 weeks
151-.0117 -.48216 (151*2π)/182912 weeks
152-.1714 -.39912 (152*2π)/182912 weeks
153-.11667 -.3368 (153*2π)/182912 weeks
154-.21366 -.37674 (154*2π)/182912 weeks
155-.29965 -.25418 (155*2π)/182912 weeks
156-.19548 -.12864 (156*2π)/182912 weeks
157-.18574 -.09034 (157*2π)/182912 weeks
158.03973 -.02978 (158*2π)/182912 weeks
159.02992 -.24087 (159*2π)/182912 weeks
160-.01915 -.19515 (160*2π)/182911 weeks
161.00636 -.17888 (161*2π)/182911 weeks
162.08467 -.23631 (162*2π)/182911 weeks
163.02289 -.33097 (163*2π)/182911 weeks
164-.04858 -.33427 (164*2π)/182911 weeks
165-.03353 -.27902 (165*2π)/182911 weeks
166-.00514 -.32498 (166*2π)/182911 weeks
167-.08681 -.38716 (167*2π)/182911 weeks
168-.23504 -.28957 (168*2π)/182911 weeks
169-.09613 -.14151 (169*2π)/182911 weeks
170-.02207 -.25811 (170*2π)/182911 weeks
171-.12081 -.29627 (171*2π)/182911 weeks
172-.05262 -.19063 (172*2π)/182911 weeks
173-.07789 -.33959 (173*2π)/182911 weeks
174-.1822 -.22751 (174*2π)/182911 weeks
175-.12044 -.12494 (175*2π)/182910 weeks
176.01824 -.19487 (176*2π)/182910 weeks
177-.04475 -.26496 (177*2π)/182910 weeks
178-.07753 -.28669 (178*2π)/182910 weeks
179-.11547 -.23859 (179*2π)/182910 weeks
180-.11309 -.21106 (180*2π)/182910 weeks
181-.06744 -.14461 (181*2π)/182910 weeks
182-.00561 -.21191 (182*2π)/182910 weeks
183.00284 -.25768 (183*2π)/182910 weeks
184-.10116 -.3873 (184*2π)/182910 weeks
185-.22367 -.21307 (185*2π)/182910 weeks
186-.17459 -.15289 (186*2π)/182910 weeks
187-.08754 -.04967 (187*2π)/182910 weeks
188.02824 -.13523 (188*2π)/182910 weeks
189.01399 -.22907 (189*2π)/182910 weeks
190-.0665 -.20873 (190*2π)/182910 weeks
191-.04554 -.20054 (191*2π)/182910 weeks
192.00567 -.18832 (192*2π)/182910 weeks
193-.04102 -.27834 (193*2π)/18299 weeks
194-.07642 -.18357 (194*2π)/18299 weeks
195-.01656 -.25251 (195*2π)/18299 weeks
196-.07935 -.28585 (196*2π)/18299 weeks
197-.14511 -.22433 (197*2π)/18299 weeks
198-.11638 -.13031 (198*2π)/18299 weeks
199-.05037 -.15856 (199*2π)/18299 weeks
200-.03355 -.16459 (200*2π)/18299 weeks
201-.03959 -.19604 (201*2π)/18299 weeks
202-.01363 -.19001 (202*2π)/18299 weeks
203-.04271 -.22903 (203*2π)/18299 weeks
204-.06669 -.24398 (204*2π)/18299 weeks
205-.08793 -.18752 (205*2π)/18299 weeks
206-.06062 -.14895 (206*2π)/18299 weeks
207.01522 -.18159 (207*2π)/18299 weeks
208-.03324 -.2767 (208*2π)/18299 weeks
209-.10979 -.23109 (209*2π)/18299 weeks
210-.09463 -.19817 (210*2π)/18299 weeks
211-.08405 -.18181 (211*2π)/18299 weeks
212-.0672 -.18967 (212*2π)/18299 weeks
213-.12951 -.19559 (213*2π)/18299 weeks
214-.10543 -.11509 (214*2π)/18299 weeks
215-.07273 -.06172 (215*2π)/18299 weeks
216.02241 -.13951 (216*2π)/18298 weeks
217-.05151 -.1512 (217*2π)/18298 weeks
218-.01455 -.08421 (218*2π)/18298 weeks
219.09579 -.11619 (219*2π)/18298 weeks
220.05714 -.26526 (220*2π)/18298 weeks
221-.01027 -.19779 (221*2π)/18298 weeks
222.03368 -.21581 (222*2π)/18298 weeks
223.02066 -.28994 (223*2π)/18298 weeks
224-.08796 -.28553 (224*2π)/18298 weeks
225-.09256 -.19693 (225*2π)/18298 weeks
226-.0807 -.19133 (226*2π)/18298 weeks
227-.02089 -.11212 (227*2π)/18298 weeks
228.05882 -.22391 (228*2π)/18298 weeks
229.00243 -.28033 (229*2π)/18298 weeks
230-.12087 -.25815 (230*2π)/18298 weeks
231-.01186 -.16669 (231*2π)/18298 weeks
232-.05911 -.3111 (232*2π)/18298 weeks
233-.12331 -.18371 (233*2π)/18298 weeks
234-.04347 -.1701 (234*2π)/18298 weeks
235.00368 -.24796 (235*2π)/18298 weeks
236-.13301 -.30031 (236*2π)/18298 weeks
237-.16903 -.13435 (237*2π)/18298 weeks
238-.01271 -.1146 (238*2π)/18298 weeks
239-.01441 -.20988 (239*2π)/18298 weeks
240-.03567 -.23537 (240*2π)/18298 weeks
241-.09347 -.23212 (241*2π)/18298 weeks
242-.05281 -.18176 (242*2π)/18298 weeks
243-.05167 -.25177 (243*2π)/18298 weeks
244-.15924 -.27197 (244*2π)/18297 weeks
245-.19553 -.13843 (245*2π)/18297 weeks
246-.09758 -.06645 (246*2π)/18297 weeks
247-.0098 -.1031 (247*2π)/18297 weeks
248-.01854 -.17486 (248*2π)/18297 weeks
249-.04649 -.18842 (249*2π)/18297 weeks
250-.08335 -.17383 (250*2π)/18297 weeks
251-.05791 -.07801 (251*2π)/18297 weeks
252.08609 -.12358 (252*2π)/18297 weeks
253.06374 -.27294 (253*2π)/18297 weeks
254.00422 -.30108 (254*2π)/18297 weeks
255-.06428 -.34819 (255*2π)/18297 weeks
256-.21273 -.29184 (256*2π)/18297 weeks
257-.1772 -.12715 (257*2π)/18297 weeks
258-.07644 -.12568 (258*2π)/18297 weeks
259-.03033 -.17051 (259*2π)/18297 weeks
260-.09593 -.2491 (260*2π)/18297 weeks
261-.1245 -.16934 (261*2π)/18297 weeks
262-.12186 -.18678 (262*2π)/18297 weeks
263-.14817 -.0984 (263*2π)/18297 weeks
264-.04838 -.0445 (264*2π)/18297 weeks
265.04358 -.11304 (265*2π)/18297 weeks
266.024 -.2251 (266*2π)/18297 weeks
267-.01779 -.22871 (267*2π)/18297 weeks
268-.08215 -.28546 (268*2π)/18297 weeks
269-.12656 -.18023 (269*2π)/18297 weeks
270-.0787 -.16645 (270*2π)/18297 weeks
271-.06291 -.168 (271*2π)/18297 weeks
272-.0673 -.20628 (272*2π)/18297 weeks
273-.08706 -.19984 (273*2π)/18297 weeks
274-.08064 -.19983 (274*2π)/18297 weeks
275-.0893 -.17765 (275*2π)/18297 weeks
276-.07148 -.22806 (276*2π)/18297 weeks
277-.14189 -.18108 (277*2π)/18297 weeks
278-.09301 -.18516 (278*2π)/18297 weeks
279-.12236 -.17128 (279*2π)/18297 weeks
280-.12439 -.18478 (280*2π)/18297 weeks
281-.13833 -.1444 (281*2π)/18297 weeks
282-.06472 -.12847 (282*2π)/18296 weeks
283-.13433 -.19154 (283*2π)/18296 weeks
284-.13111 -.08003 (284*2π)/18296 weeks
285-.04051 -.11488 (285*2π)/18296 weeks
286-.02038 -.16786 (286*2π)/18296 weeks
287-.08457 -.22482 (287*2π)/18296 weeks
288-.12715 -.13624 (288*2π)/18296 weeks
289-.06551 -.13463 (289*2π)/18296 weeks
290-.06077 -.17899 (290*2π)/18296 weeks
291-.08498 -.19419 (291*2π)/18296 weeks
292-.13005 -.1975 (292*2π)/18296 weeks
293-.10836 -.16467 (293*2π)/18296 weeks
294-.13001 -.17711 (294*2π)/18296 weeks
295-.14141 -.1586 (295*2π)/18296 weeks
296-.15002 -.14574 (296*2π)/18296 weeks
297-.16957 -.11009 (297*2π)/18296 weeks
298-.10406 -.07881 (298*2π)/18296 weeks
299-.11262 -.12087 (299*2π)/18296 weeks
300-.1031 -.08373 (300*2π)/18296 weeks
301-.108 -.10917 (301*2π)/18296 weeks
302-.09384 -.07834 (302*2π)/18296 weeks
303-.06882 -.08707 (303*2π)/18296 weeks
304-.04336 -.11981 (304*2π)/18296 weeks
305-.07865 -.14293 (305*2π)/18296 weeks
306-.09271 -.10779 (306*2π)/18296 weeks
307-.06834 -.11581 (307*2π)/18296 weeks
308-.07673 -.12556 (308*2π)/18296 weeks
309-.0485 -.13018 (309*2π)/18296 weeks
310-.12434 -.18383 (310*2π)/18296 weeks
311-.14688 -.06561 (311*2π)/18296 weeks
312-.06907 -.06002 (312*2π)/18296 weeks
313-.03449 -.11499 (313*2π)/18296 weeks
314-.07758 -.13115 (314*2π)/18296 weeks
315-.10014 -.12035 (315*2π)/18296 weeks
316-.08253 -.0819 (316*2π)/18296 weeks
317-.08051 -.10264 (317*2π)/18296 weeks
318-.07887 -.06711 (318*2π)/18296 weeks
319-.07044 -.08167 (319*2π)/18296 weeks
320-.04264 -.06369 (320*2π)/18296 weeks
321-.02596 -.09302 (321*2π)/18296 weeks
322-.03765 -.08654 (322*2π)/18296 weeks
323.0016 -.09436 (323*2π)/18296 weeks
324-.0014 -.13702 (324*2π)/18296 weeks
325-.02657 -.1668 (325*2π)/18296 weeks
326-.08655 -.12015 (326*2π)/18296 weeks
327.01178 -.10497 (327*2π)/18296 weeks
328-.02209 -.19291 (328*2π)/18296 weeks
329-.07391 -.16424 (329*2π)/18296 weeks
330-.07305 -.1179 (330*2π)/18296 weeks
331-.01784 -.13591 (331*2π)/18296 weeks
332-.05118 -.18175 (332*2π)/18296 weeks
333-.08087 -.13868 (333*2π)/18295 weeks
334-.03258 -.14345 (334*2π)/18295 weeks
335-.05669 -.19274 (335*2π)/18295 weeks
336-.09607 -.18004 (336*2π)/18295 weeks
337-.14634 -.15643 (337*2π)/18295 weeks
338-.11471 -.07617 (338*2π)/18295 weeks
339-.04439 -.10935 (339*2π)/18295 weeks
340-.07012 -.13924 (340*2π)/18295 weeks
341-.06596 -.09992 (341*2π)/18295 weeks
342-.00665 -.15279 (342*2π)/18295 weeks
343-.08879 -.2044 (343*2π)/18295 weeks
344-.10598 -.12909 (344*2π)/18295 weeks
345-.07572 -.15728 (345*2π)/18295 weeks
346-.09011 -.16196 (346*2π)/18295 weeks
347-.11478 -.16499 (347*2π)/18295 weeks
348-.12738 -.12575 (348*2π)/18295 weeks
349-.10278 -.11551 (349*2π)/18295 weeks
350-.12236 -.15268 (350*2π)/18295 weeks
351-.15096 -.10058 (351*2π)/18295 weeks
352-.11178 -.05799 (352*2π)/18295 weeks
353-.07512 -.09247 (353*2π)/18295 weeks
354-.10858 -.09809 (354*2π)/18295 weeks
355-.06912 -.0589 (355*2π)/18295 weeks
356-.06097 -.07386 (356*2π)/18295 weeks
357-.04287 -.0947 (357*2π)/18295 weeks
358-.03807 -.11034 (358*2π)/18295 weeks
359-.06723 -.13886 (359*2π)/18295 weeks
360-.06555 -.09569 (360*2π)/18295 weeks
361-.03116 -.11706 (361*2π)/18295 weeks
362-.02633 -.16111 (362*2π)/18295 weeks
363-.0949 -.18394 (363*2π)/18295 weeks
364-.12077 -.11195 (364*2π)/18295 weeks
365-.0436 -.12163 (365*2π)/18295 weeks
366-.10943 -.19014 (366*2π)/18295 weeks
367-.12245 -.12788 (367*2π)/18295 weeks
368-.12655 -.11291 (368*2π)/18295 weeks
369-.10751 -.10244 (369*2π)/18295 weeks
370-.10808 -.08983 (370*2π)/18295 weeks
371-.06946 -.09964 (371*2π)/18295 weeks
372-.12101 -.1211 (372*2π)/18295 weeks
373-.09206 -.07691 (373*2π)/18295 weeks
374-.07177 -.0994 (374*2π)/18295 weeks
375-.07201 -.09311 (375*2π)/18295 weeks
376-.07347 -.10098 (376*2π)/18295 weeks
377-.05721 -.10615 (377*2π)/18295 weeks
378-.06326 -.15891 (378*2π)/18295 weeks
379-.1327 -.18115 (379*2π)/18295 weeks
380-.19923 -.1012 (380*2π)/18295 weeks
381-.15432 -.02449 (381*2π)/18295 weeks
382-.08025 -.00884 (382*2π)/18295 weeks
383-.06519 -.05117 (383*2π)/18295 weeks
384-.03527 -.05862 (384*2π)/18295 weeks
385-.06176 -.10729 (385*2π)/18295 weeks
386-.09427 -.07991 (386*2π)/18295 weeks
387-.04817 -.03926 (387*2π)/18295 weeks
388-.0032 -.08475 (388*2π)/18295 weeks
389-.03774 -.12381 (389*2π)/18295 weeks
390-.02419 -.11237 (390*2π)/18295 weeks
391-.0458 -.16696 (391*2π)/18295 weeks
392-.08577 -.15825 (392*2π)/18295 weeks
393-.1453 -.13766 (393*2π)/18295 weeks
394-.10708 -.04678 (394*2π)/18295 weeks
395-.03414 -.07776 (395*2π)/18295 weeks
396-.05512 -.13797 (396*2π)/18295 weeks
397-.08421 -.12683 (397*2π)/18295 weeks
398-.0808 -.14005 (398*2π)/18295 weeks
399-.12145 -.14213 (399*2π)/18295 weeks
400-.12309 -.09383 (400*2π)/18295 weeks
401-.13482 -.09324 (401*2π)/18295 weeks
402-.10773 -.01904 (402*2π)/18295 weeks
403-.04326 -.06289 (403*2π)/18295 weeks
404-.03478 -.08293 (404*2π)/18295 weeks
405-.05495 -.13451 (405*2π)/18295 weeks
406-.06681 -.10413 (406*2π)/18295 weeks
407-.06742 -.12926 (407*2π)/18294 weeks
408-.06885 -.13398 (408*2π)/18294 weeks
409-.09982 -.16636