Back to list of Stocks    See Also: Seasonal Analysis of ROKGenetic Algorithms Stock Portfolio Generator, and Fourier Calculator

# Fourier Analysis of ROK (Rockwell Automation, Inc. Commo)

ROK (Rockwell Automation, Inc. Commo) appears to have interesting cyclic behaviour every 153 weeks (4.3788*sine), 141 weeks (4.2189*sine), and 167 weeks (2.7769*cosine).

ROK (Rockwell Automation, Inc. Commo) has an average price of 29 (topmost row, frequency = 0).

Click on the checkboxes shown on the right to see how the various frequencies contribute to the graph. Look for large magnitude coefficients (sine or cosine), as these are associated with frequencies which contribute most to the associated stock plot. If you find a large magnitude coefficient which dramatically changes the graph, look at the associated "Period" in weeks, as you may have found a significant recurring cycle for the stock of interest.

## Fourier Analysis

Using data from 12/31/1981 to 3/20/2017 for ROK (Rockwell Automation, Inc. Commo), this program was able to calculate the following Fourier Series:
Sequence #Cosine Coefficients Sine Coefficients FrequenciesPeriod
029.00314   0
120.74658 -28.71705 (1*2π)/18381,838 weeks
26.10806 -17.75671 (2*2π)/1838919 weeks
36.24438 -13.43662 (3*2π)/1838613 weeks
4.11649 -15.20342 (4*2π)/1838460 weeks
5-3.16146 -6.71004 (5*2π)/1838368 weeks
61.39416 -4.45938 (6*2π)/1838306 weeks
71.24099 -6.74965 (7*2π)/1838263 weeks
8-1.35347 -5.28269 (8*2π)/1838230 weeks
9-1.26205 -2.27963 (9*2π)/1838204 weeks
101.2744 -.97423 (10*2π)/1838184 weeks
112.77686 -2.62046 (11*2π)/1838167 weeks
122.54939 -4.3788 (12*2π)/1838153 weeks
13.32255 -4.21893 (13*2π)/1838141 weeks
14.51794 -3.06849 (14*2π)/1838131 weeks
15.72627 -2.88923 (15*2π)/1838123 weeks
16.62802 -3.20824 (16*2π)/1838115 weeks
17-.4103 -2.71337 (17*2π)/1838108 weeks
18.63271 -1.80043 (18*2π)/1838102 weeks
19.92007 -2.3334 (19*2π)/183897 weeks
20.70612 -2.85451 (20*2π)/183892 weeks
21-.21049 -2.10408 (21*2π)/183888 weeks
22.65484 -1.48665 (22*2π)/183884 weeks
231.18069 -2.09137 (23*2π)/183880 weeks
24.75265 -3.02863 (24*2π)/183877 weeks
25-.2363 -2.5089 (25*2π)/183874 weeks
26.12331 -2.35536 (26*2π)/183871 weeks
27-.79305 -2.03017 (27*2π)/183868 weeks
28-.05269 -1.12419 (28*2π)/183866 weeks
29.41025 -1.82043 (29*2π)/183863 weeks
30-.40892 -2.27381 (30*2π)/183861 weeks
31-.90891 -1.19988 (31*2π)/183859 weeks
32-.11168 -.84722 (32*2π)/183857 weeks
33-.03041 -.73911 (33*2π)/183856 weeks
34.33188 -.52885 (34*2π)/183854 weeks
351.23589 -.97101 (35*2π)/183853 weeks
36.45064 -1.9947 (36*2π)/183851 weeks
37.0954 -1.61387 (37*2π)/183850 weeks
38-.26067 -1.41965 (38*2π)/183848 weeks
39-.14678 -.70069 (39*2π)/183847 weeks
40.66561 -.54598 (40*2π)/183846 weeks
411.08158 -1.2726 (41*2π)/183845 weeks
42.67302 -1.91594 (42*2π)/183844 weeks
43-.02154 -1.81422 (43*2π)/183843 weeks
44-.14776 -1.48359 (44*2π)/183842 weeks
45-.15915 -1.42354 (45*2π)/183841 weeks
46-.28763 -1.11606 (46*2π)/183840 weeks
47.03669 -.92362 (47*2π)/183839 weeks
48.18367 -1.15479 (48*2π)/183838 weeks
49.03529 -1.26467 (49*2π)/183838 weeks
50-.01733 -1.18633 (50*2π)/183837 weeks
51-.16202 -1.00184 (51*2π)/183836 weeks
52.14836 -1.13446 (52*2π)/183835 weeks
53-.27113 -1.19146 (53*2π)/183835 weeks
54-.10925 -.90426 (54*2π)/183834 weeks
55.0755 -1.01376 (55*2π)/183833 weeks
56-.18023 -1.23097 (56*2π)/183833 weeks
57-.44504 -.81707 (57*2π)/183832 weeks
58-.09373 -.66869 (58*2π)/183832 weeks
59-.04928 -.68052 (59*2π)/183831 weeks
60.10512 -.72747 (60*2π)/183831 weeks
61.25892 -.96442 (61*2π)/183830 weeks
62-.16636 -1.31603 (62*2π)/183830 weeks
63-.3587 -.76316 (63*2π)/183829 weeks
64-.07665 -.75935 (64*2π)/183829 weeks
65-.14892 -.8802 (65*2π)/183828 weeks
66-.23492 -.81117 (66*2π)/183828 weeks
67-.13158 -.72853 (67*2π)/183827 weeks
68-.23825 -.73387 (68*2π)/183827 weeks
69-.11045 -.59391 (69*2π)/183827 weeks
70-.13852 -.71377 (70*2π)/183826 weeks
71-.17024 -.4915 (71*2π)/183826 weeks
72.01636 -.66765 (72*2π)/183826 weeks
73-.17649 -.67114 (73*2π)/183825 weeks
74-.17732 -.49862 (74*2π)/183825 weeks
75.03525 -.3863 (75*2π)/183825 weeks
76.19237 -.58071 (76*2π)/183824 weeks
77.00348 -.68593 (77*2π)/183824 weeks
78.03581 -.57833 (78*2π)/183824 weeks
79.17021 -.67901 (79*2π)/183823 weeks
80-.00764 -.79917 (80*2π)/183823 weeks
81.01518 -.68609 (81*2π)/183823 weeks
82-.01808 -.80796 (82*2π)/183822 weeks
83-.18533 -.80477 (83*2π)/183822 weeks
84-.20628 -.56699 (84*2π)/183822 weeks
85-.03807 -.63827 (85*2π)/183822 weeks
86-.09581 -.67665 (86*2π)/183821 weeks
87-.05948 -.79947 (87*2π)/183821 weeks
88-.36224 -.78447 (88*2π)/183821 weeks
89-.49433 -.44228 (89*2π)/183821 weeks
90-.12181 -.26815 (90*2π)/183820 weeks
91-.08113 -.46683 (91*2π)/183820 weeks
92-.11352 -.43254 (92*2π)/183820 weeks
93-.03447 -.43033 (93*2π)/183820 weeks
94-.05766 -.55802 (94*2π)/183820 weeks
95-.2258 -.57292 (95*2π)/183819 weeks
96-.33928 -.36121 (96*2π)/183819 weeks
97-.15259 -.07559 (97*2π)/183819 weeks
98.21988 -.18422 (98*2π)/183819 weeks
99.25502 -.54503 (99*2π)/183819 weeks
100-.06075 -.60863 (100*2π)/183818 weeks
101-.10879 -.30564 (101*2π)/183818 weeks
102.18226 -.36976 (102*2π)/183818 weeks
103.09509 -.5648 (103*2π)/183818 weeks
104-.01847 -.51735 (104*2π)/183818 weeks
105.07874 -.44379 (105*2π)/183818 weeks
106.16242 -.54242 (106*2π)/183817 weeks
107.02229 -.75198 (107*2π)/183817 weeks
108-.12648 -.61982 (108*2π)/183817 weeks
109-.20688 -.57837 (109*2π)/183817 weeks
110-.13357 -.28742 (110*2π)/183817 weeks
111.179 -.50575 (111*2π)/183817 weeks
112-.07167 -.79977 (112*2π)/183816 weeks
113-.40582 -.56756 (113*2π)/183816 weeks
114-.25139 -.21906 (114*2π)/183816 weeks
115.03708 -.29339 (115*2π)/183816 weeks
116.05975 -.444 (116*2π)/183816 weeks
117-.05249 -.5416 (117*2π)/183816 weeks
118-.08672 -.4733 (118*2π)/183816 weeks
119-.0225 -.50803 (119*2π)/183815 weeks
120-.20069 -.57619 (120*2π)/183815 weeks
121-.27027 -.35449 (121*2π)/183815 weeks
122-.04678 -.28293 (122*2π)/183815 weeks
123-.02621 -.47541 (123*2π)/183815 weeks
124-.11881 -.41881 (124*2π)/183815 weeks
125-.06213 -.46277 (125*2π)/183815 weeks
126-.23375 -.46139 (126*2π)/183815 weeks
127-.2448 -.25046 (127*2π)/183814 weeks
128-.01888 -.18542 (128*2π)/183814 weeks
129.05318 -.3905 (129*2π)/183814 weeks
130-.01154 -.41365 (130*2π)/183814 weeks
131-.04127 -.45348 (131*2π)/183814 weeks
132-.11013 -.46698 (132*2π)/183814 weeks
133-.17933 -.40153 (133*2π)/183814 weeks
134-.17758 -.28312 (134*2π)/183814 weeks
135.00128 -.21024 (135*2π)/183814 weeks
136.10933 -.37131 (136*2π)/183814 weeks
137.01436 -.44358 (137*2π)/183813 weeks
138.00135 -.49834 (138*2π)/183813 weeks
139-.14683 -.49093 (139*2π)/183813 weeks
140-.04101 -.45603 (140*2π)/183813 weeks
141-.22139 -.51365 (141*2π)/183813 weeks
142-.13668 -.35703 (142*2π)/183813 weeks
143-.20128 -.4422 (143*2π)/183813 weeks
144-.16059 -.37165 (144*2π)/183813 weeks
145-.25072 -.40354 (145*2π)/183813 weeks
146-.23907 -.24991 (146*2π)/183813 weeks
147-.12732 -.21318 (147*2π)/183813 weeks
148-.07983 -.28762 (148*2π)/183812 weeks
149-.14299 -.35346 (149*2π)/183812 weeks
150-.21375 -.2238 (150*2π)/183812 weeks
151-.03921 -.13174 (151*2π)/183812 weeks
152.09012 -.30235 (152*2π)/183812 weeks
153-.02586 -.41093 (153*2π)/183812 weeks
154-.02384 -.35371 (154*2π)/183812 weeks
155-.03724 -.47371 (155*2π)/183812 weeks
156-.19474 -.51669 (156*2π)/183812 weeks
157-.25323 -.38828 (157*2π)/183812 weeks
158-.33603 -.35701 (158*2π)/183812 weeks
159-.25668 -.11185 (159*2π)/183812 weeks
160-.11227 -.21918 (160*2π)/183811 weeks
161-.15471 -.21446 (161*2π)/183811 weeks
162-.15759 -.17017 (162*2π)/183811 weeks
163-.05172 -.13166 (163*2π)/183811 weeks
164-.00779 -.22543 (164*2π)/183811 weeks
165-.04123 -.28922 (165*2π)/183811 weeks
166-.05876 -.24376 (166*2π)/183811 weeks
167.00557 -.25359 (167*2π)/183811 weeks
168.00724 -.36392 (168*2π)/183811 weeks
169-.17834 -.4064 (169*2π)/183811 weeks
170-.17903 -.20937 (170*2π)/183811 weeks
171-.05544 -.2394 (171*2π)/183811 weeks
172-.10927 -.33088 (172*2π)/183811 weeks
173-.10327 -.20236 (173*2π)/183811 weeks
174-.04157 -.3433 (174*2π)/183811 weeks
175-.18439 -.31732 (175*2π)/183811 weeks
176-.2065 -.19241 (176*2π)/183810 weeks
177-.05274 -.17005 (177*2π)/183810 weeks
178-.05989 -.24956 (178*2π)/183810 weeks
179-.0714 -.29399 (179*2π)/183810 weeks
180-.12457 -.27476 (180*2π)/183810 weeks
181-.1416 -.25278 (181*2π)/183810 weeks
182-.13049 -.16493 (182*2π)/183810 weeks
183-.0463 -.19178 (183*2π)/183810 weeks
184-.00469 -.22501 (184*2π)/183810 weeks
185-.0472 -.39789 (185*2π)/183810 weeks
186-.2227 -.2899 (186*2π)/183810 weeks
187-.21524 -.21915 (187*2π)/183810 weeks
188-.16954 -.08176 (188*2π)/183810 weeks
189-.03132 -.11628 (189*2π)/183810 weeks
190-.00695 -.20874 (190*2π)/183810 weeks
191-.08419 -.21121 (191*2π)/183810 weeks
192-.06755 -.20043 (192*2π)/183810 weeks
193-.01489 -.17652 (193*2π)/183810 weeks
194-.04008 -.27563 (194*2π)/18389 weeks
195-.08983 -.19039 (195*2π)/18389 weeks
196-.02007 -.24899 (196*2π)/18389 weeks
197-.07486 -.29467 (197*2π)/18389 weeks
198-.14922 -.24446 (198*2π)/18389 weeks
199-.13222 -.14619 (199*2π)/18389 weeks
200-.06353 -.16612 (200*2π)/18389 weeks
201-.0435 -.17079 (201*2π)/18389 weeks
202-.0462 -.20303 (202*2π)/18389 weeks
203-.01913 -.1977 (203*2π)/18389 weeks
204-.04679 -.23812 (204*2π)/18389 weeks
205-.07072 -.25346 (205*2π)/18389 weeks
206-.08994 -.19697 (206*2π)/18389 weeks
207-.05959 -.1611 (207*2π)/18389 weeks
208.01346 -.20042 (208*2π)/18389 weeks
209-.0438 -.29122 (209*2π)/18389 weeks
210-.11535 -.2369 (210*2π)/18389 weeks
211-.09432 -.20516 (211*2π)/18389 weeks
212-.08044 -.191 (212*2π)/18389 weeks
213-.06506 -.20104 (213*2π)/18389 weeks
214-.12359 -.19532 (214*2π)/18389 weeks
215-.07976 -.12107 (215*2π)/18389 weeks
216-.0337 -.0856 (216*2π)/18389 weeks
217.04065 -.18673 (217*2π)/18388 weeks
218-.03504 -.18262 (218*2π)/18388 weeks
219.02045 -.13488 (219*2π)/18388 weeks
220.10807 -.20608 (220*2π)/18388 weeks
221.01877 -.33482 (221*2π)/18388 weeks
222-.02914 -.24573 (222*2π)/18388 weeks
223.00332 -.27995 (223*2π)/18388 weeks
224-.04203 -.33723 (224*2π)/18388 weeks
225-.13815 -.28419 (225*2π)/18388 weeks
226-.10014 -.20001 (226*2π)/18388 weeks
227-.07874 -.20745 (227*2π)/18388 weeks
228.00112 -.17244 (228*2π)/18388 weeks
229.01162 -.31103 (229*2π)/18388 weeks
230-.078 -.31979 (230*2π)/18388 weeks
231-.16545 -.24008 (231*2π)/18388 weeks
232-.02806 -.21252 (232*2π)/18388 weeks
233-.13977 -.31143 (233*2π)/18388 weeks
234-.12433 -.16397 (234*2π)/18388 weeks
235-.04934 -.20947 (235*2π)/18388 weeks
236-.06681 -.29011 (236*2π)/18388 weeks
237-.1987 -.24189 (237*2π)/18388 weeks
238-.11313 -.09618 (238*2π)/18388 weeks
239.01569 -.19293 (239*2π)/18388 weeks
240-.06539 -.26808 (240*2π)/18388 weeks
241-.10156 -.25698 (241*2π)/18388 weeks
242-.13638 -.21338 (242*2π)/18388 weeks
243-.07478 -.19939 (243*2π)/18388 weeks
244-.12563 -.24471 (244*2π)/18388 weeks
245-.1954 -.175 (245*2π)/18388 weeks
246-.10333 -.06945 (246*2π)/18387 weeks
247.01173 -.12155 (247*2π)/18387 weeks
248.01594 -.22103 (248*2π)/18387 weeks
249-.06056 -.25398 (249*2π)/18387 weeks
250-.08714 -.22821 (250*2π)/18387 weeks
251-.08887 -.19405 (251*2π)/18387 weeks
252-.01119 -.17522 (252*2π)/18387 weeks
253.00556 -.3181 (253*2π)/18387 weeks
254-.15008 -.35638 (254*2π)/18387 weeks
255-.19861 -.27807 (255*2π)/18387 weeks
256-.24392 -.21979 (256*2π)/18387 weeks
257-.2328 -.07501 (257*2π)/18387 weeks
258-.05729 -.05447 (258*2π)/18387 weeks
259-.02842 -.17017 (259*2π)/18387 weeks
260-.07244 -.21704 (260*2π)/18387 weeks
261-.16119 -.18631 (261*2π)/18387 weeks
262-.08965 -.1184 (262*2π)/18387 weeks
263-.08989 -.14821 (263*2π)/18387 weeks
264-.02852 -.10814 (264*2π)/18387 weeks
265.0277 -.20147 (265*2π)/18387 weeks
266-.04464 -.29678 (266*2π)/18387 weeks
267-.16174 -.28155 (267*2π)/18387 weeks
268-.16645 -.20567 (268*2π)/18387 weeks
269-.20288 -.16469 (269*2π)/18387 weeks
270-.10218 -.09507 (270*2π)/18387 weeks
271-.0816 -.15998 (271*2π)/18387 weeks
272-.09687 -.17032 (272*2π)/18387 weeks
273-.13268 -.17204 (273*2π)/18387 weeks
274-.12221 -.14539 (274*2π)/18387 weeks
275-.11176 -.15032 (275*2π)/18387 weeks
276-.10036 -.13467 (276*2π)/18387 weeks
277-.12894 -.15764 (277*2π)/18387 weeks
278-.0972 -.08282 (278*2π)/18387 weeks
279-.08037 -.14579 (279*2π)/18387 weeks
280-.08179 -.11205 (280*2π)/18387 weeks
281-.08387 -.12809 (281*2π)/18387 weeks
282-.04783 -.12118 (282*2π)/18387 weeks
283-.03804 -.18013 (283*2π)/18386 weeks
284-.10819 -.12661 (284*2π)/18386 weeks
285-.00474 -.13594 (285*2π)/18386 weeks
286-.06556 -.22982 (286*2π)/18386 weeks
287-.11963 -.20152 (287*2π)/18386 weeks
288-.14373 -.12773 (288*2π)/18386 weeks
289-.04888 -.10014 (289*2π)/18386 weeks
290-.06875 -.17486 (290*2π)/18386 weeks
291-.11483 -.15625 (291*2π)/18386 weeks
292-.10834 -.11909 (292*2π)/18386 weeks
293-.0903 -.09418 (293*2π)/18386 weeks
294-.0477 -.12515 (294*2π)/18386 weeks
295-.06291 -.11107 (295*2π)/18386 weeks
296-.03644 -.11606 (296*2π)/18386 weeks
297-.02582 -.12765 (297*2π)/18386 weeks
298-.00707 -.1401 (298*2π)/18386 weeks
299-.01046 -.20581 (299*2π)/18386 weeks
300-.06641 -.18104 (300*2π)/18386 weeks
301-.03482 -.18567 (301*2π)/18386 weeks
302-.07286 -.18447 (302*2π)/18386 weeks
303-.05297 -.19842 (303*2π)/18386 weeks
304-.08702 -.20773 (304*2π)/18386 weeks
305-.11389 -.19759 (305*2π)/18386 weeks
306-.10724 -.15014 (306*2π)/18386 weeks
307-.06965 -.15714 (307*2π)/18386 weeks
308-.09349 -.17952 (308*2π)/18386 weeks
309-.09832 -.1605 (309*2π)/18386 weeks
310-.0959 -.16728 (310*2π)/18386 weeks
311-.09962 -.10673 (311*2π)/18386 weeks
312-.00137 -.16197 (312*2π)/18386 weeks
313-.08408 -.23028 (313*2π)/18386 weeks
314-.13644 -.19399 (314*2π)/18386 weeks
315-.10799 -.13717 (315*2π)/18386 weeks
316-.08278 -.15044 (316*2π)/18386 weeks
317-.07241 -.18274 (317*2π)/18386 weeks
318-.10772 -.17382 (318*2π)/18386 weeks
319-.08911 -.18039 (319*2π)/18386 weeks
320-.12732 -.18057 (320*2π)/18386 weeks
321-.12791 -.1893 (321*2π)/18386 weeks
322-.15899 -.16453 (322*2π)/18386 weeks
323-.1425 -.14273 (323*2π)/18386 weeks
324-.16162 -.15013 (324*2π)/18386 weeks
325-.16796 -.10188 (325*2π)/18386 weeks
326-.13577 -.08006 (326*2π)/18386 weeks
327-.08284 -.08765 (327*2π)/18386 weeks
328-.1341 -.15594 (328*2π)/18386 weeks
329-.14962 -.05486 (329*2π)/18386 weeks
330-.06609 -.07132 (330*2π)/18386 weeks
331-.06974 -.11579 (331*2π)/18386 weeks
332-.12016 -.12211 (332*2π)/18386 weeks
333-.1025 -.06499 (333*2π)/18386 weeks
334-.05378 -.09307 (334*2π)/18386 weeks
335-.09541 -.11608 (335*2π)/18385 weeks
336-.08455 -.06564 (336*2π)/18385 weeks
337-.03222 -.08486 (337*2π)/18385 weeks
338-.02496 -.11452 (338*2π)/18385 weeks
339-.05024 -.18338 (339*2π)/18385 weeks
340-.13227 -.15391 (340*2π)/18385 weeks
341-.09942 -.09659 (341*2π)/18385 weeks
342-.0795 -.12197 (342*2π)/18385 weeks
343-.12482 -.09944 (343*2π)/18385 weeks
344-.05348 -.04407 (344*2π)/18385 weeks
345-.01694 -.13097 (345*2π)/18385 weeks
346-.08183 -.12481 (346*2π)/18385 weeks
347-.05016 -.11523 (347*2π)/18385 weeks
348-.04086 -.12574 (348*2π)/18385 weeks
349-.03812 -.1575 (349*2π)/18385 weeks
350-.07615 -.16038 (350*2π)/18385 weeks
351-.07887 -.13316 (351*2π)/18385 weeks
352-.05309 -.17574 (352*2π)/18385 weeks
353-.10965 -.18986 (353*2π)/18385 weeks
354-.14277 -.13958 (354*2π)/18385 weeks
355-.10312 -.1216 (355*2π)/18385 weeks
356-.11997 -.15431 (356*2π)/18385 weeks
357-.13145 -.10075 (357*2π)/18385 weeks
358-.12646 -.0897 (358*2π)/18385 weeks
359-.10167 -.0799 (359*2π)/18385 weeks
360-.07991 -.07449 (360*2π)/18385 weeks
361-.07146 -.11698 (361*2π)/18385 weeks
362-.10219 -.08867 (362*2π)/18385 weeks
363-.06801 -.06865 (363*2π)/18385 weeks
364-.01718 -.08506 (364*2π)/18385 weeks
365-.03274 -.15723 (365*2π)/18385 weeks
366-.10631 -.13552 (366*2π)/18385 weeks
367-.04631 -.08386 (367*2π)/18385 weeks
368-.04205 -.17966 (368*2π)/18385 weeks
369-.08515 -.15678 (369*2π)/18385 weeks
370-.10676 -.15213 (370*2π)/18385 weeks
371-.10398 -.13508 (371*2π)/18385 weeks
372-.1186 -.12262 (372*2π)/18385 weeks
373-.08013 -.10294 (373*2π)/18385 weeks
374-.11071 -.15078 (374*2π)/18385 weeks
375-.11594 -.10203 (375*2π)/18385 weeks
376-.08873 -.10526 (376*2π)/18385 weeks
377-.08861 -.09614 (377*2π)/18385 weeks
378-.08582 -.09963 (378*2π)/18385 weeks
379-.06585 -.0903 (379*2π)/18385 weeks
380-.03541 -.138 (380*2π)/18385 weeks
381-.07608 -.20424 (381*2π)/18385 weeks
382-.17961 -.17979 (382*2π)/18385 weeks
383-.19259 -.09388 (383*2π)/18385 weeks
384-.14094 -.03555 (384*2π)/18385 weeks
385-.11077 -.05647 (385*2π)/18385 weeks
386-.07396 -.04574 (386*2π)/18385 weeks
387-.07467 -.09963 (387*2π)/18385 weeks
388-.11575 -.09032 (388*2π)/18385 weeks
389-.08971 -.03289 (389*2π)/18385 weeks
390-.02806 -.05422 (390*2π)/18385 weeks
391-.0428 -.10166 (391*2π)/18385 weeks
392-.02843 -.08833 (392*2π)/18385 weeks
393-.03006 -.14913 (393*2π)/18385 weeks
394-.06789 -.15794 (394*2π)/18385 weeks
395-.13589 -.15778 (395*2π)/18385 weeks
396-.12533 -.05979 (396*2π)/18385 weeks
397-.04751 -.06867 (397*2π)/18385 weeks
398-.05269 -.13112 (398*2π)/18385 weeks
399-.08217 -.12752 (399*2π)/18385 weeks
400-.07715 -.14169 (400*2π)/18385 weeks
401-.11814 -.15127 (401*2π)/18385 weeks
402-.1274 -.10408 (402*2π)/18385 weeks
403-.14118 -.10349 (403*2π)/18385 weeks
404-.12117 -.02528 (404*2π)/18385 weeks
405-.0531 -.06237 (405*2π)/18385 weeks
406-.04165 -.08217 (406*2π)/18385 weeks
407-.05966 -.13511 (407*2π)/18385 weeks
408-.07232