Back to list of Stocks    See Also: Seasonal Analysis of RIHTGenetic Algorithms Stock Portfolio Generator, and Fourier Calculator

Fourier Analysis of RIHT (RIGHTSCORP)


RIHT (RIGHTSCORP) appears to have interesting cyclic behaviour every 14 weeks (.0391*sine), 15 weeks (.0277*cosine), and 16 weeks (.0255*cosine).

RIHT (RIGHTSCORP) has an average price of .24 (topmost row, frequency = 0).



Click on the checkboxes shown on the right to see how the various frequencies contribute to the graph. Look for large magnitude coefficients (sine or cosine), as these are associated with frequencies which contribute most to the associated stock plot. If you find a large magnitude coefficient which dramatically changes the graph, look at the associated "Period" in weeks, as you may have found a significant recurring cycle for the stock of interest.

Right click on the graph above to see the menu of operations (download, full screen, etc.)

Fourier Analysis

Using data from 7/30/2013 to 7/10/2017 for RIHT (RIGHTSCORP), this program was able to calculate the following Fourier Series:
Sequence #Cosine Coefficients Sine Coefficients FrequenciesPeriod
0.2421   0 
1.17331 .22324 (1*2π)/207207 weeks
2.03446 .1763 (2*2π)/207104 weeks
3-.01007 .07376 (3*2π)/20769 weeks
4.02471 .05108 (4*2π)/20752 weeks
5.0069 .04123 (5*2π)/20741 weeks
6.03101 .024 (6*2π)/20735 weeks
7.02795 .03291 (7*2π)/20730 weeks
8.0339 .04261 (8*2π)/20726 weeks
9.00775 .04181 (9*2π)/20723 weeks
10.01125 .02068 (10*2π)/20721 weeks
11.01071 .02313 (11*2π)/20719 weeks
12.01663 .01261 (12*2π)/20717 weeks
13.02546 .02052 (13*2π)/20716 weeks
14.02768 .02422 (14*2π)/20715 weeks
15.01476 .03911 (15*2π)/20714 weeks
16.00417 .01775 (16*2π)/20713 weeks
17.01636 .02128 (17*2π)/20712 weeks
18.01052 .01601 (18*2π)/20712 weeks
19.01615 .01906 (19*2π)/20711 weeks
20.01573 .01864 (20*2π)/20710 weeks
21.00977 .02289 (21*2π)/20710 weeks
22.0052 .01848 (22*2π)/2079 weeks
23.00573 .01292 (23*2π)/2079 weeks
24.00696 .0083 (24*2π)/2079 weeks
25.01288 .00386 (25*2π)/2078 weeks
26.01992 .01253 (26*2π)/2078 weeks
27.01457 .01741 (27*2π)/2078 weeks
28.00902 .01575 (28*2π)/2077 weeks
29.00989 .01313 (29*2π)/2077 weeks
30.00948 .01377 (30*2π)/2077 weeks
31.00776 .00813 (31*2π)/2077 weeks
32.01415 .01442 (32*2π)/2076 weeks
33.00541 .01548 (33*2π)/2076 weeks
34.00371 .00812 (34*2π)/2076 weeks
35.00669 .00468 (35*2π)/2076 weeks
36.01201 .00335 (36*2π)/2076 weeks
37.01536 .00635 (37*2π)/2076 weeks
38.01525 .01148 (38*2π)/2075 weeks
39.01234 .0151 (39*2π)/2075 weeks
40.00508 .01453 (40*2π)/2075 weeks
41.00545 .00948 (41*2π)/2075 weeks
42.00432 .01075 (42*2π)/2075 weeks
43.00573 .00751 (43*2π)/2075 weeks
44.00466 .00847 (44*2π)/2075 weeks
45.00362 .00359 (45*2π)/2075 weeks
46.00614 .00338 (46*2π)/2075 weeks
47.0088 .00409 (47*2π)/2074 weeks
48.00456 .00449 (48*2π)/2074 weeks
49.01043 -.00053 (49*2π)/2074 weeks
50.01147 .00693 (50*2π)/2074 weeks
51.0061 .00665 (51*2π)/2074 weeks
52.00512 .00463 (52*2π)/2074 weeks
53.00465 .00193 (53*2π)/2074 weeks
54.00544 .00014 (54*2π)/2074 weeks
55.00813 -.00312 (55*2π)/2074 weeks
56.01501 -.00021 (56*2π)/2074 weeks
57.01023 .0035 (57*2π)/2074 weeks
58.01173 .00187 (58*2π)/2074 weeks
59.01377 .00067 (59*2π)/2074 weeks
60.01354 .00509 (60*2π)/2073 weeks
61.01158 .00493 (61*2π)/2073 weeks
62.01248 .00567 (62*2π)/2073 weeks
63.01072 .00557 (63*2π)/2073 weeks
64.00968 .0054 (64*2π)/2073 weeks
65.00859 .00588 (65*2π)/2073 weeks
66.00917 .00511 (66*2π)/2073 weeks
67.00574 .00513 (67*2π)/2073 weeks
68.00528 .00225 (68*2π)/2073 weeks
69.00786 -.00074 (69*2π)/2073 weeks
70.01067 .00214 (70*2π)/2073 weeks
71.00755 .00319 (71*2π)/2073 weeks
72.00665 .00021 (72*2π)/2073 weeks
73.00853 .00005 (73*2π)/2073 weeks
74.01053 -.0015 (74*2π)/2073 weeks
75.01089 -.00074 (75*2π)/2073 weeks
76.01382 -.00066 (76*2π)/2073 weeks
77.01397 .00201 (77*2π)/2073 weeks
78.013 .00383 (78*2π)/2073 weeks
79.00965 .00329 (79*2π)/2073 weeks
80.01097 .00228 (80*2π)/2073 weeks
81.01201 .00256 (81*2π)/2073 weeks
82.01177 .00408 (82*2π)/2073 weeks
83.01127 .00239 (83*2π)/2072 weeks
84.01186 .00419 (84*2π)/2072 weeks
85.01161 .00419 (85*2π)/2072 weeks
86.01019 .0043 (86*2π)/2072 weeks
87.00989 .00514 (87*2π)/2072 weeks
88.01021 .00487 (88*2π)/2072 weeks
89.0083 .00675 (89*2π)/2072 weeks
90.00714 .00699 (90*2π)/2072 weeks
91.00277 .00614 (91*2π)/2072 weeks
92.00156 .00065 (92*2π)/2072 weeks
93.00424 -.00159 (93*2π)/2072 weeks
94.00721 -.00346 (94*2π)/2072 weeks
95.00774 -.00089 (95*2π)/2072 weeks
96.00886 -.00221 (96*2π)/2072 weeks
97.00906 .00025 (97*2π)/2072 weeks
98.00809 -.00216 (98*2π)/2072 weeks
99.01036 -.0016 (99*2π)/2072 weeks
100.01246 .00066 (100*2π)/2072 weeks
101.00926 .00205 (101*2π)/2072 weeks
102.00797 .00181 (102*2π)/2072 weeks
103.00728 .00135 (103*2π)/2072 weeks
104.00728 -.00135 (104*2π)/2072 weeks
105.00797 -.00181 (105*2π)/2072 weeks
106.00926 -.00205 (106*2π)/2072 weeks
107.01246 -.00066 (107*2π)/2072 weeks
108.01036 .0016 (108*2π)/2072 weeks
109.00809 .00216 (109*2π)/2072 weeks
110.00906 -.00025 (110*2π)/2072 weeks
111.00886 .00221 (111*2π)/2072 weeks
112.00774 .00089 (112*2π)/2072 weeks
113.00721 .00346 (113*2π)/2072 weeks
114.00424 .00159 (114*2π)/2072 weeks
115.00156 -.00065 (115*2π)/2072 weeks
116.00277 -.00614 (116*2π)/2072 weeks
117.00714 -.00699 (117*2π)/2072 weeks
118.0083 -.00675 (118*2π)/2072 weeks
119.01021 -.00487 (119*2π)/2072 weeks
120.00989 -.00514 (120*2π)/2072 weeks
121.01019 -.0043 (121*2π)/2072 weeks
122.01161 -.00419 (122*2π)/2072 weeks
123.01186 -.00419 (123*2π)/2072 weeks
124.01127 -.00239 (124*2π)/2072 weeks
125.01177 -.00408 (125*2π)/2072 weeks
126.01201 -.00256 (126*2π)/2072 weeks
127.01097 -.00228 (127*2π)/2072 weeks
128.00965 -.00329 (128*2π)/2072 weeks
129.013 -.00383 (129*2π)/2072 weeks
130.01397 -.00201 (130*2π)/2072 weeks
131.01382 .00066 (131*2π)/2072 weeks
132.01089 .00074 (132*2π)/2072 weeks
133.01053 .0015 (133*2π)/2072 weeks
134.00853 -.00005 (134*2π)/2072 weeks
135.00665 -.00021 (135*2π)/2072 weeks
136.00755 -.00319 (136*2π)/2072 weeks
137.01067 -.00214 (137*2π)/2072 weeks
138.00786 .00074 (138*2π)/2072 weeks
139.00528 -.00225 (139*2π)/2071 weeks
140.00574 -.00513 (140*2π)/2071 weeks
141.00917 -.00511 (141*2π)/2071 weeks
142.00859 -.00588 (142*2π)/2071 weeks
143.00968 -.0054 (143*2π)/2071 weeks
144.01072 -.00557 (144*2π)/2071 weeks
145.01248 -.00567 (145*2π)/2071 weeks
146.01158 -.00493 (146*2π)/2071 weeks
147.01354 -.00509 (147*2π)/2071 weeks
148.01377 -.00067 (148*2π)/2071 weeks
149.01173 -.00187 (149*2π)/2071 weeks
150.01023 -.0035 (150*2π)/2071 weeks
151.01501 .00021 (151*2π)/2071 weeks
152.00813 .00312 (152*2π)/2071 weeks
153.00544 -.00014 (153*2π)/2071 weeks
154.00465 -.00193 (154*2π)/2071 weeks
155.00512 -.00463 (155*2π)/2071 weeks
156.0061 -.00665 (156*2π)/2071 weeks
157.01147 -.00693 (157*2π)/2071 weeks
158.01043 .00053 (158*2π)/2071 weeks
159.00456 -.00449 (159*2π)/2071 weeks
160.0088 -.00409 (160*2π)/2071 weeks
161.00614 -.00338 (161*2π)/2071 weeks
162.00362 -.00359 (162*2π)/2071 weeks
163.00466 -.00847 (163*2π)/2071 weeks
164.00573 -.00751 (164*2π)/2071 weeks
165.00432 -.01075 (165*2π)/2071 weeks
166.00545 -.00948 (166*2π)/2071 weeks
167.00508 -.01453 (167*2π)/2071 weeks
168.01234 -.0151 (168*2π)/2071 weeks
169.01525 -.01148 (169*2π)/2071 weeks
170.01536 -.00635 (170*2π)/2071 weeks
171.01201 -.00335 (171*2π)/2071 weeks
172.00669 -.00468 (172*2π)/2071 weeks
173.00371 -.00812 (173*2π)/2071 weeks
174.00541 -.01548 (174*2π)/2071 weeks
175.01415 -.01442 (175*2π)/2071 weeks
176.00776 -.00813 (176*2π)/2071 weeks
177.00948 -.01377 (177*2π)/2071 weeks
178.00989 -.01313 (178*2π)/2071 weeks
179.00902 -.01575 (179*2π)/2071 weeks
180.01457 -.01741 (180*2π)/2071 weeks
181.01992 -.01253 (181*2π)/2071 weeks
182.01288 -.00386 (182*2π)/2071 weeks
183.00696 -.0083 (183*2π)/2071 weeks
184.00573 -.01292 (184*2π)/2071 weeks
185.0052 -.01848 (185*2π)/2071 weeks
186.00977 -.02289 (186*2π)/2071 weeks
187.01573 -.01864 (187*2π)/2071 weeks
188.01615 -.01906 (188*2π)/2071 weeks
189.01052 -.01601 (189*2π)/2071 weeks
190.01636 -.02128 (190*2π)/2071 weeks
191.00417 -.01775 (191*2π)/2071 weeks
192.01476 -.03911 (192*2π)/2071 weeks
193.02768 -.02422 (193*2π)/2071 weeks
194.02546 -.02052 (194*2π)/2071 weeks
195.01663 -.01261 (195*2π)/2071 weeks
196.01071 -.02313 (196*2π)/2071 weeks
197.01125 -.02068 (197*2π)/2071 weeks
198.00775 -.04181 (198*2π)/2071 weeks
199.0339 -.04261 (199*2π)/2071 weeks
200.02795 -.03291 (200*2π)/2071 weeks
201.03101 -.024 (201*2π)/2071 weeks
202.0069 -.04123 (202*2π)/2071 weeks
203.02471 -.05108 (203*2π)/2071 weeks
204-.01007 -.07376 (204*2π)/2071 weeks
205.03446 -.1763 (205*2π)/2071 weeks



Back to list of Stocks