Back to list of Stocks    See Also: Seasonal Analysis of RBNGenetic Algorithms Stock Portfolio Generator, and Fourier Calculator

Fourier Analysis of RBN (Robbins & Myers, Inc. Common St)


RBN (Robbins & Myers, Inc. Common St) appears to have interesting cyclic behaviour every 191 weeks (2.8766*sine), 210 weeks (2.8466*sine), and 175 weeks (1.3989*cosine).

RBN (Robbins & Myers, Inc. Common St) has an average price of 8.74 (topmost row, frequency = 0).



Click on the checkboxes shown on the right to see how the various frequencies contribute to the graph. Look for large magnitude coefficients (sine or cosine), as these are associated with frequencies which contribute most to the associated stock plot. If you find a large magnitude coefficient which dramatically changes the graph, look at the associated "Period" in weeks, as you may have found a significant recurring cycle for the stock of interest.

Right click on the graph above to see the menu of operations (download, full screen, etc.)

Fourier Analysis

Using data from 6/1/1972 to 2/18/2013 for RBN (Robbins & Myers, Inc. Common St), this program was able to calculate the following Fourier Series:
Sequence #Cosine Coefficients Sine Coefficients FrequenciesPeriod
08.73794   0 
17.30127 -8.42154 (1*2π)/20972,097 weeks
23.80176 -4.61175 (2*2π)/20971,049 weeks
32.75572 -6.04777 (3*2π)/2097699 weeks
4.2464 -4.10503 (4*2π)/2097524 weeks
51.09 -2.21074 (5*2π)/2097419 weeks
61.16759 -2.21336 (6*2π)/2097350 weeks
71.6999 -1.6964 (7*2π)/2097300 weeks
81.95954 -3.30139 (8*2π)/2097262 weeks
9.52515 -3.25722 (9*2π)/2097233 weeks
10.38957 -2.8466 (10*2π)/2097210 weeks
11-.77079 -2.8766 (11*2π)/2097191 weeks
12-1.39885 -1.44496 (12*2π)/2097175 weeks
13-.40872 -.60839 (13*2π)/2097161 weeks
14.03736 -.73521 (14*2π)/2097150 weeks
15.33435 -.56708 (15*2π)/2097140 weeks
16.54502 -1.00076 (16*2π)/2097131 weeks
17.30383 -1.20913 (17*2π)/2097123 weeks
18.32116 -1.16752 (18*2π)/2097117 weeks
19.04543 -1.33132 (19*2π)/2097110 weeks
20-.36596 -.81868 (20*2π)/2097105 weeks
21.02588 -.61237 (21*2π)/2097100 weeks
22.04856 -.64003 (22*2π)/209795 weeks
23.26666 -.38281 (23*2π)/209791 weeks
24.59053 -.52789 (24*2π)/209787 weeks
25.63703 -.84996 (25*2π)/209784 weeks
26.63236 -1.15185 (26*2π)/209781 weeks
27.28335 -1.52431 (27*2π)/209778 weeks
28-.29724 -1.25705 (28*2π)/209775 weeks
29-.34537 -.93523 (29*2π)/209772 weeks
30-.39289 -.77567 (30*2π)/209770 weeks
31-.37208 -.49207 (31*2π)/209768 weeks
32-.1163 -.32844 (32*2π)/209766 weeks
33.04251 -.33903 (33*2π)/209764 weeks
34.2508 -.42823 (34*2π)/209762 weeks
35.17494 -.67456 (35*2π)/209760 weeks
36.07772 -.61573 (36*2π)/209758 weeks
37.06005 -.65064 (37*2π)/209757 weeks
38.01887 -.66584 (38*2π)/209755 weeks
39-.11455 -.66367 (39*2π)/209754 weeks
40-.15317 -.44748 (40*2π)/209752 weeks
41.05771 -.40495 (41*2π)/209751 weeks
42.02021 -.44083 (42*2π)/209750 weeks
43.16151 -.40879 (43*2π)/209749 weeks
44.23238 -.61455 (44*2π)/209748 weeks
45.13635 -.76459 (45*2π)/209747 weeks
46-.04631 -.85619 (46*2π)/209746 weeks
47-.32391 -.77984 (47*2π)/209745 weeks
48-.42727 -.55149 (48*2π)/209744 weeks
49-.37853 -.33665 (49*2π)/209743 weeks
50-.2006 -.16671 (50*2π)/209742 weeks
51-.03332 -.2204 (51*2π)/209741 weeks
52.06516 -.31537 (52*2π)/209740 weeks
53.08976 -.49789 (53*2π)/209740 weeks
54-.08049 -.59675 (54*2π)/209739 weeks
55-.21858 -.5003 (55*2π)/209738 weeks
56-.2748 -.46568 (56*2π)/209737 weeks
57-.39497 -.30462 (57*2π)/209737 weeks
58-.24165 -.10597 (58*2π)/209736 weeks
59-.04912 -.15074 (59*2π)/209736 weeks
60-.02619 -.26122 (60*2π)/209735 weeks
61-.08897 -.28401 (61*2π)/209734 weeks
62-.07459 -.26513 (62*2π)/209734 weeks
63-.11212 -.35696 (63*2π)/209733 weeks
64-.19137 -.27366 (64*2π)/209733 weeks
65-.21303 -.27648 (65*2π)/209732 weeks
66-.32784 -.10419 (66*2π)/209732 weeks
67-.1207 .06142 (67*2π)/209731 weeks
68-.00843 -.0273 (68*2π)/209731 weeks
69.03493 -.0146 (69*2π)/209730 weeks
70.1856 -.06922 (70*2π)/209730 weeks
71.16435 -.25211 (71*2π)/209730 weeks
72.06135 -.31858 (72*2π)/209729 weeks
73-.06821 -.29185 (73*2π)/209729 weeks
74-.06329 -.18821 (74*2π)/209728 weeks
75-.07895 -.15288 (75*2π)/209728 weeks
76-.00433 -.01523 (76*2π)/209728 weeks
77.17998 -.10105 (77*2π)/209727 weeks
78.14927 -.22464 (78*2π)/209727 weeks
79.17563 -.28532 (79*2π)/209727 weeks
80.04535 -.39231 (80*2π)/209726 weeks
81-.06058 -.29293 (81*2π)/209726 weeks
82-.04335 -.23324 (82*2π)/209726 weeks
83-.03038 -.24565 (83*2π)/209725 weeks
84-.06739 -.19477 (84*2π)/209725 weeks
85-.00101 -.20356 (85*2π)/209725 weeks
86-.02694 -.21363 (86*2π)/209724 weeks
87-.0229 -.18169 (87*2π)/209724 weeks
88-.01893 -.17442 (88*2π)/209724 weeks
89-.02804 -.1912 (89*2π)/209724 weeks
90-.03434 -.14391 (90*2π)/209723 weeks
91.04544 -.14256 (91*2π)/209723 weeks
92.01624 -.19741 (92*2π)/209723 weeks
93-.03842 -.14437 (93*2π)/209723 weeks
94.01417 -.06235 (94*2π)/209722 weeks
95.10211 -.1078 (95*2π)/209722 weeks
96.12163 -.10161 (96*2π)/209722 weeks
97.24028 -.17113 (97*2π)/209722 weeks
98.18326 -.30903 (98*2π)/209721 weeks
99.15207 -.3177 (99*2π)/209721 weeks
100.10501 -.42576 (100*2π)/209721 weeks
101-.07447 -.41192 (101*2π)/209721 weeks
102-.08314 -.26977 (102*2π)/209721 weeks
103-.04584 -.27165 (103*2π)/209720 weeks
104-.05799 -.21381 (104*2π)/209720 weeks
105.01804 -.21693 (105*2π)/209720 weeks
106.02449 -.27751 (106*2π)/209720 weeks
107.03137 -.32629 (107*2π)/209720 weeks
108-.05276 -.41383 (108*2π)/209719 weeks
109-.20296 -.34285 (109*2π)/209719 weeks
110-.18515 -.24227 (110*2π)/209719 weeks
111-.21841 -.24083 (111*2π)/209719 weeks
112-.23811 -.09945 (112*2π)/209719 weeks
113-.08188 -.02966 (113*2π)/209719 weeks
114-.03861 -.11852 (114*2π)/209718 weeks
115-.02796 -.11244 (115*2π)/209718 weeks
116.02135 -.20275 (116*2π)/209718 weeks
117-.10448 -.26083 (117*2π)/209718 weeks
118-.14589 -.15956 (118*2π)/209718 weeks
119-.13086 -.15129 (119*2π)/209718 weeks
120-.14812 -.08666 (120*2π)/209717 weeks
121-.08451 -.02455 (121*2π)/209717 weeks
122-.00825 -.04645 (122*2π)/209717 weeks
123.01623 -.09254 (123*2π)/209717 weeks
124.02351 -.12074 (124*2π)/209717 weeks
125.02711 -.16594 (125*2π)/209717 weeks
126-.0326 -.1936 (126*2π)/209717 weeks
127-.05619 -.14717 (127*2π)/209717 weeks
128-.04039 -.16041 (128*2π)/209716 weeks
129-.0592 -.14678 (129*2π)/209716 weeks
130-.04396 -.13622 (130*2π)/209716 weeks
131-.05033 -.14324 (131*2π)/209716 weeks
132-.05974 -.14569 (132*2π)/209716 weeks
133-.08597 -.13717 (133*2π)/209716 weeks
134-.06284 -.08547 (134*2π)/209716 weeks
135-.02055 -.12369 (135*2π)/209716 weeks
136-.07621 -.13254 (136*2π)/209715 weeks
137-.07366 -.10973 (137*2π)/209715 weeks
138-.09338 -.10413 (138*2π)/209715 weeks
139-.08214 -.03319 (139*2π)/209715 weeks
140.01503 -.02712 (140*2π)/209715 weeks
141-.00246 -.10093 (141*2π)/209715 weeks
142-.01786 -.06318 (142*2π)/209715 weeks
143.03337 -.11221 (143*2π)/209715 weeks
144-.03408 -.16577 (144*2π)/209715 weeks
145-.08913 -.07106 (145*2π)/209714 weeks
146-.01553 -.03203 (146*2π)/209714 weeks
147-.01841 -.05057 (147*2π)/209714 weeks
148.02561 -.03028 (148*2π)/209714 weeks
149.08011 -.05813 (149*2π)/209714 weeks
150.08636 -.10846 (150*2π)/209714 weeks
151.07091 -.13833 (151*2π)/209714 weeks
152.05472 -.19219 (152*2π)/209714 weeks
153-.01602 -.19112 (153*2π)/209714 weeks
154-.02767 -.15891 (154*2π)/209714 weeks
155-.04493 -.12819 (155*2π)/209714 weeks
156-.02924 -.09564 (156*2π)/209713 weeks
157.02843 -.11031 (157*2π)/209713 weeks
158.01052 -.16977 (158*2π)/209713 weeks
159-.02006 -.13952 (159*2π)/209713 weeks
160-.0128 -.15417 (160*2π)/209713 weeks
161-.05126 -.15646 (161*2π)/209713 weeks
162-.06389 -.12446 (162*2π)/209713 weeks
163-.04554 -.09738 (163*2π)/209713 weeks
164-.04387 -.09636 (164*2π)/209713 weeks
165-.02241 -.06563 (165*2π)/209713 weeks
166.01845 -.08786 (166*2π)/209713 weeks
167.00392 -.13301 (167*2π)/209713 weeks
168-.03708 -.09762 (168*2π)/209712 weeks
169.01825 -.07755 (169*2π)/209712 weeks
170.02885 -.11714 (170*2π)/209712 weeks
171.03402 -.12891 (171*2π)/209712 weeks
172.02127 -.16755 (172*2π)/209712 weeks
173-.02437 -.17084 (173*2π)/209712 weeks
174-.02286 -.15431 (174*2π)/209712 weeks
175-.05832 -.15577 (175*2π)/209712 weeks
176-.04816 -.10156 (176*2π)/209712 weeks
177-.00975 -.12863 (177*2π)/209712 weeks
178-.03384 -.14817 (178*2π)/209712 weeks
179-.04589 -.13086 (179*2π)/209712 weeks
180-.04101 -.12416 (180*2π)/209712 weeks
181-.0451 -.13913 (181*2π)/209712 weeks
182-.07526 -.14154 (182*2π)/209712 weeks
183-.09765 -.10255 (183*2π)/209711 weeks
184-.06627 -.05701 (184*2π)/209711 weeks
185-.02938 -.05717 (185*2π)/209711 weeks
186-.0155 -.09548 (186*2π)/209711 weeks
187-.02481 -.10336 (187*2π)/209711 weeks
188-.02385 -.11835 (188*2π)/209711 weeks
189-.06654 -.11042 (189*2π)/209711 weeks
190-.05783 -.07147 (190*2π)/209711 weeks
191-.0284 -.07848 (191*2π)/209711 weeks
192-.03485 -.08475 (192*2π)/209711 weeks
193-.00879 -.06456 (193*2π)/209711 weeks
194.01252 -.11628 (194*2π)/209711 weeks
195-.04219 -.12034 (195*2π)/209711 weeks
196-.02307 -.10968 (196*2π)/209711 weeks
197-.05683 -.13467 (197*2π)/209711 weeks
198-.08021 -.07348 (198*2π)/209711 weeks
199-.01308 -.06036 (199*2π)/209711 weeks
200-.00469 -.11586 (200*2π)/209710 weeks
201-.0363 -.12828 (201*2π)/209710 weeks
202-.06808 -.1302 (202*2π)/209710 weeks
203-.08304 -.10357 (203*2π)/209710 weeks
204-.07802 -.0942 (204*2π)/209710 weeks
205-.10281 -.07277 (205*2π)/209710 weeks
206-.07473 -.03049 (206*2π)/209710 weeks
207-.05152 -.04626 (207*2π)/209710 weeks
208-.04393 -.0348 (208*2π)/209710 weeks
209-.01627 -.05385 (209*2π)/209710 weeks
210-.03519 -.07831 (210*2π)/209710 weeks
211-.06439 -.07486 (211*2π)/209710 weeks
212-.07861 -.04584 (212*2π)/209710 weeks
213-.06613 -.00828 (213*2π)/209710 weeks
214-.03288 .00905 (214*2π)/209710 weeks
215-.01767 .01733 (215*2π)/209710 weeks
216.04193 .03088 (216*2π)/209710 weeks
217.09251 -.04256 (217*2π)/209710 weeks
218.06166 -.08658 (218*2π)/209710 weeks
219.05613 -.11 (219*2π)/209710 weeks
220.00652 -.14335 (220*2π)/209710 weeks
221-.04572 -.1134 (221*2π)/20979 weeks
222-.03888 -.06885 (222*2π)/20979 weeks
223-.01933 -.0659 (223*2π)/20979 weeks
224-.01534 -.04066 (224*2π)/20979 weeks
225.03029 -.04429 (225*2π)/20979 weeks
226.04795 -.08311 (226*2π)/20979 weeks
227.04091 -.12576 (227*2π)/20979 weeks
228.00067 -.14972 (228*2π)/20979 weeks
229-.04583 -.13529 (229*2π)/20979 weeks
230-.05059 -.09704 (230*2π)/20979 weeks
231-.04794 -.10264 (231*2π)/20979 weeks
232-.07106 -.06967 (232*2π)/20979 weeks
233-.02458 -.03304 (233*2π)/20979 weeks
234.0086 -.071 (234*2π)/20979 weeks
235-.02023 -.10103 (235*2π)/20979 weeks
236-.04746 -.08253 (236*2π)/20979 weeks
237-.03834 -.04929 (237*2π)/20979 weeks
238-.02184 -.04817 (238*2π)/20979 weeks
239-.01535 -.03745 (239*2π)/20979 weeks
240.01584 -.02216 (240*2π)/20979 weeks
241.06813 -.04423 (241*2π)/20979 weeks
242.07613 -.12775 (242*2π)/20979 weeks
243.00961 -.14842 (243*2π)/20979 weeks
244.0028 -.12051 (244*2π)/20979 weeks
245-.0056 -.14218 (245*2π)/20979 weeks
246-.0496 -.13335 (246*2π)/20979 weeks
247-.02869 -.0864 (247*2π)/20978 weeks
248.00898 -.11983 (248*2π)/20978 weeks
249-.02114 -.14348 (249*2π)/20978 weeks
250-.05129 -.15097 (250*2π)/20978 weeks
251-.08014 -.13521 (251*2π)/20978 weeks
252-.08055 -.1111 (252*2π)/20978 weeks
253-.07822 -.1082 (253*2π)/20978 weeks
254-.09928 -.08722 (254*2π)/20978 weeks
255-.07306 -.06594 (255*2π)/20978 weeks
256-.07325 -.08585 (256*2π)/20978 weeks
257-.09497 -.07556 (257*2π)/20978 weeks
258-.09277 -.05156 (258*2π)/20978 weeks
259-.08106 -.05373 (259*2π)/20978 weeks
260-.10377 -.03815 (260*2π)/20978 weeks
261-.08285 .00553 (261*2π)/20978 weeks
262-.04654 -.00087 (262*2π)/20978 weeks
263-.04692 -.01149 (263*2π)/20978 weeks
264-.04323 .01 (264*2π)/20978 weeks
265-.00748 .01885 (265*2π)/20978 weeks
266.01709 -.01212 (266*2π)/20978 weeks
267.00065 -.02575 (267*2π)/20978 weeks
268.02453 -.00744 (268*2π)/20978 weeks
269.04051 -.03387 (269*2π)/20978 weeks
270.04719 -.04393 (270*2π)/20978 weeks
271.06608 -.08991 (271*2π)/20978 weeks
272.03665 -.12718 (272*2π)/20978 weeks
273.00553 -.13569 (273*2π)/20978 weeks
274-.04516 -.1445 (274*2π)/20978 weeks
275-.08298 -.08865 (275*2π)/20978 weeks
276-.04482 -.06347 (276*2π)/20978 weeks
277-.04528 -.06249 (277*2π)/20978 weeks
278-.0229 -.04492 (278*2π)/20978 weeks
279-.00794 -.07294 (279*2π)/20978 weeks
280-.02279 -.08873 (280*2π)/20977 weeks
281-.03711 -.09894 (281*2π)/20977 weeks
282-.06691 -.08287 (282*2π)/20977 weeks
283-.05654 -.04615 (283*2π)/20977 weeks
284-.04196 -.06372 (284*2π)/20977 weeks
285-.06031 -.04274 (285*2π)/20977 weeks
286-.01721 -.04434 (286*2π)/20977 weeks
287-.05486 -.08515 (287*2π)/20977 weeks
288-.08021 -.02845 (288*2π)/20977 weeks
289-.03362 -.01234 (289*2π)/20977 weeks
290-.03777 -.02334 (290*2π)/20977 weeks
291-.02666 .00381 (291*2π)/20977 weeks
292.01874 -.01268 (292*2π)/20977 weeks
293.01395 -.04595 (293*2π)/20977 weeks
294.01148 -.05129 (294*2π)/20977 weeks
295-.00045 -.06299 (295*2π)/20977 weeks
296-.01042 -.04869 (296*2π)/20977 weeks
297.00455 -.05127 (297*2π)/20977 weeks
298.00302 -.06705 (298*2π)/20977 weeks
299.00153 -.0511 (299*2π)/20977 weeks
300.03032 -.07645 (300*2π)/20977 weeks
301-.00587 -.11346 (301*2π)/20977 weeks
302-.0329