Back to list of Stocks    See Also: Seasonal Analysis of QUNRGenetic Algorithms Stock Portfolio Generator, and Fourier Calculator

Fourier Analysis of QUNR (Qunar Cayman Islands Limited)


QUNR (Qunar Cayman Islands Limited) appears to have interesting cyclic behaviour every 18 weeks (1.2899*sine), 16 weeks (.9678*cosine), and 13 weeks (.9496*cosine).

QUNR (Qunar Cayman Islands Limited) has an average price of 33.08 (topmost row, frequency = 0).



Click on the checkboxes shown on the right to see how the various frequencies contribute to the graph. Look for large magnitude coefficients (sine or cosine), as these are associated with frequencies which contribute most to the associated stock plot. If you find a large magnitude coefficient which dramatically changes the graph, look at the associated "Period" in weeks, as you may have found a significant recurring cycle for the stock of interest.

Right click on the graph above to see the menu of operations (download, full screen, etc.)

Fourier Analysis

Using data from 11/1/2013 to 2/27/2017 for QUNR (Qunar Cayman Islands Limited), this program was able to calculate the following Fourier Series:
Sequence #Cosine Coefficients Sine Coefficients FrequenciesPeriod
033.07829   0 
1-6.33462 -4.05983 (1*2π)/175175 weeks
22.32001 1.74998 (2*2π)/17588 weeks
3.0158 1.0324 (3*2π)/17558 weeks
4.64316 -2.96375 (4*2π)/17544 weeks
5-.90289 2.56557 (5*2π)/17535 weeks
6-.46132 -2.43644 (6*2π)/17529 weeks
7-.60663 1.00206 (7*2π)/17525 weeks
81.42731 -1.42279 (8*2π)/17522 weeks
9.16123 -.60648 (9*2π)/17519 weeks
10-.89408 1.28992 (10*2π)/17518 weeks
11.9678 -.1953 (11*2π)/17516 weeks
12-.10551 -.02033 (12*2π)/17515 weeks
13-.94961 -.66575 (13*2π)/17513 weeks
14.08795 .43682 (14*2π)/17513 weeks
15.00074 -.62078 (15*2π)/17512 weeks
16-.13166 -.0146 (16*2π)/17511 weeks
17.30074 -.19794 (17*2π)/17510 weeks
18-.85952 -.25995 (18*2π)/17510 weeks
19.89406 -.05411 (19*2π)/1759 weeks
20-.0472 -.53011 (20*2π)/1759 weeks
21.16518 .29334 (21*2π)/1758 weeks
22.25801 .33028 (22*2π)/1758 weeks
23-.11354 -.26991 (23*2π)/1758 weeks
24-.19145 .57872 (24*2π)/1757 weeks
25-.17714 -.19044 (25*2π)/1757 weeks
26-.30828 -.04224 (26*2π)/1757 weeks
27.29144 -.01873 (27*2π)/1756 weeks
28-.61293 -.46002 (28*2π)/1756 weeks
29.37268 .3796 (29*2π)/1756 weeks
30.20838 -.33195 (30*2π)/1756 weeks
31-.17725 -.02292 (31*2π)/1756 weeks
32-.1702 .14177 (32*2π)/1755 weeks
33.1529 -.0738 (33*2π)/1755 weeks
34.13081 -.01704 (34*2π)/1755 weeks
35-.00574 -.01781 (35*2π)/1755 weeks
36.15371 .18415 (36*2π)/1755 weeks
37-.07026 -.00147 (37*2π)/1755 weeks
38-.02595 .16296 (38*2π)/1755 weeks
39.10034 .12637 (39*2π)/1754 weeks
40-.05163 -.30244 (40*2π)/1754 weeks
41-.19928 .15708 (41*2π)/1754 weeks
42.18649 .40186 (42*2π)/1754 weeks
43-.25741 -.39108 (43*2π)/1754 weeks
44.05971 .22907 (44*2π)/1754 weeks
45.13155 -.26113 (45*2π)/1754 weeks
46-.25395 .11234 (46*2π)/1754 weeks
47-.07678 .13547 (47*2π)/1754 weeks
48.24551 -.25648 (48*2π)/1754 weeks
49-.50632 -.06914 (49*2π)/1754 weeks
50.18404 -.11981 (50*2π)/1754 weeks
51.06717 -.04504 (51*2π)/1753 weeks
52-.03103 .00005 (52*2π)/1753 weeks
53-.04157 -.00202 (53*2π)/1753 weeks
54-.06959 -.14383 (54*2π)/1753 weeks
55-.06688 -.08629 (55*2π)/1753 weeks
56-.0846 -.07587 (56*2π)/1753 weeks
57.11905 -.21008 (57*2π)/1753 weeks
58-.10481 -.17227 (58*2π)/1753 weeks
59.24206 .1146 (59*2π)/1753 weeks
60-.16273 -.07633 (60*2π)/1753 weeks
61.14408 .26445 (61*2π)/1753 weeks
62-.26983 -.32197 (62*2π)/1753 weeks
63-.12159 .24572 (63*2π)/1753 weeks
64-.10852 -.27548 (64*2π)/1753 weeks
65-.05141 -.23721 (65*2π)/1753 weeks
66.03007 -.06081 (66*2π)/1753 weeks
67.06801 -.13652 (67*2π)/1753 weeks
68.04533 -.00518 (68*2π)/1753 weeks
69.0312 -.05659 (69*2π)/1753 weeks
70.10888 .13259 (70*2π)/1753 weeks
71-.16423 -.12601 (71*2π)/1752 weeks
72.01323 .14253 (72*2π)/1752 weeks
73-.0855 -.11901 (73*2π)/1752 weeks
74-.05945 -.07589 (74*2π)/1752 weeks
75-.20479 -.29709 (75*2π)/1752 weeks
76.25147 .10493 (76*2π)/1752 weeks
77.13672 -.46482 (77*2π)/1752 weeks
78.09676 .26685 (78*2π)/1752 weeks
79.2337 -.12775 (79*2π)/1752 weeks
80.09472 .04976 (80*2π)/1752 weeks
81.06802 .33553 (81*2π)/1752 weeks
82.2797 -.28368 (82*2π)/1752 weeks
83-.35881 .18557 (83*2π)/1752 weeks
84.26859 .07372 (84*2π)/1752 weeks
85-.09212 .05118 (85*2π)/1752 weeks
86-.02486 -.11063 (86*2π)/1752 weeks
87.15685 -.13895 (87*2π)/1752 weeks
88.15685 .13895 (88*2π)/1752 weeks
89-.02486 .11063 (89*2π)/1752 weeks
90-.09212 -.05118 (90*2π)/1752 weeks
91.26859 -.07372 (91*2π)/1752 weeks
92-.35881 -.18557 (92*2π)/1752 weeks
93.2797 .28368 (93*2π)/1752 weeks
94.06802 -.33553 (94*2π)/1752 weeks
95.09472 -.04976 (95*2π)/1752 weeks
96.2337 .12775 (96*2π)/1752 weeks
97.09676 -.26685 (97*2π)/1752 weeks
98.13672 .46482 (98*2π)/1752 weeks
99.25147 -.10493 (99*2π)/1752 weeks
100-.20479 .29709 (100*2π)/1752 weeks
101-.05945 .07589 (101*2π)/1752 weeks
102-.0855 .11901 (102*2π)/1752 weeks
103.01323 -.14253 (103*2π)/1752 weeks
104-.16423 .12601 (104*2π)/1752 weeks
105.10888 -.13259 (105*2π)/1752 weeks
106.0312 .05659 (106*2π)/1752 weeks
107.04533 .00518 (107*2π)/1752 weeks
108.06801 .13652 (108*2π)/1752 weeks
109.03007 .06081 (109*2π)/1752 weeks
110-.05141 .23721 (110*2π)/1752 weeks
111-.10852 .27548 (111*2π)/1752 weeks
112-.12159 -.24572 (112*2π)/1752 weeks
113-.26983 .32197 (113*2π)/1752 weeks
114.14408 -.26445 (114*2π)/1752 weeks
115-.16273 .07633 (115*2π)/1752 weeks
116.24206 -.1146 (116*2π)/1752 weeks
117-.10481 .17227 (117*2π)/1751 weeks
118.11905 .21008 (118*2π)/1751 weeks
119-.0846 .07587 (119*2π)/1751 weeks
120-.06688 .08629 (120*2π)/1751 weeks
121-.06959 .14383 (121*2π)/1751 weeks
122-.04157 .00202 (122*2π)/1751 weeks
123-.03103 -.00005 (123*2π)/1751 weeks
124.06717 .04504 (124*2π)/1751 weeks
125.18404 .11981 (125*2π)/1751 weeks
126-.50632 .06914 (126*2π)/1751 weeks
127.24551 .25648 (127*2π)/1751 weeks
128-.07678 -.13547 (128*2π)/1751 weeks
129-.25395 -.11234 (129*2π)/1751 weeks
130.13155 .26113 (130*2π)/1751 weeks
131.05971 -.22907 (131*2π)/1751 weeks
132-.25741 .39108 (132*2π)/1751 weeks
133.18649 -.40186 (133*2π)/1751 weeks
134-.19928 -.15708 (134*2π)/1751 weeks
135-.05163 .30244 (135*2π)/1751 weeks
136.10034 -.12637 (136*2π)/1751 weeks
137-.02595 -.16296 (137*2π)/1751 weeks
138-.07026 .00147 (138*2π)/1751 weeks
139.15371 -.18415 (139*2π)/1751 weeks
140-.00574 .01781 (140*2π)/1751 weeks
141.13081 .01704 (141*2π)/1751 weeks
142.1529 .0738 (142*2π)/1751 weeks
143-.1702 -.14177 (143*2π)/1751 weeks
144-.17725 .02292 (144*2π)/1751 weeks
145.20838 .33195 (145*2π)/1751 weeks
146.37268 -.3796 (146*2π)/1751 weeks
147-.61293 .46002 (147*2π)/1751 weeks
148.29144 .01873 (148*2π)/1751 weeks
149-.30828 .04224 (149*2π)/1751 weeks
150-.17714 .19044 (150*2π)/1751 weeks
151-.19145 -.57872 (151*2π)/1751 weeks
152-.11354 .26991 (152*2π)/1751 weeks
153.25801 -.33028 (153*2π)/1751 weeks
154.16518 -.29334 (154*2π)/1751 weeks
155-.0472 .53011 (155*2π)/1751 weeks
156.89406 .05411 (156*2π)/1751 weeks
157-.85952 .25995 (157*2π)/1751 weeks
158.30074 .19794 (158*2π)/1751 weeks
159-.13166 .0146 (159*2π)/1751 weeks
160.00074 .62078 (160*2π)/1751 weeks
161.08795 -.43682 (161*2π)/1751 weeks
162-.94961 .66575 (162*2π)/1751 weeks
163-.10551 .02033 (163*2π)/1751 weeks
164.9678 .1953 (164*2π)/1751 weeks
165-.89408 -1.28992 (165*2π)/1751 weeks
166.16123 .60648 (166*2π)/1751 weeks
1671.42731 1.42279 (167*2π)/1751 weeks
168-.60663 -1.00206 (168*2π)/1751 weeks
169-.46132 2.43644 (169*2π)/1751 weeks
170-.90289 -2.56557 (170*2π)/1751 weeks
171.64316 2.96375 (171*2π)/1751 weeks
172.0158 -1.0324 (172*2π)/1751 weeks
1732.32001 -1.74998 (173*2π)/1751 weeks

Problems, Comments, Suggestions? Click here to contact Greg Thatcher

Please read my Disclaimer





Copyright (c) 2013 Thatcher Development Software, LLC. All rights reserved. No claim to original U.S. Gov't works.