Back to list of Stocks    See Also: Seasonal Analysis of QRVOGenetic Algorithms Stock Portfolio Generator, and Best Months to Buy/Sell Stocks

# Fourier Analysis of QRVO (Qorvo)

QRVO (Qorvo) appears to have interesting cyclic behaviour every 13 weeks (2.5664*sine), 14 weeks (2.3702*sine), and 17 weeks (2.3205*sine).

QRVO (Qorvo) has an average price of 64.01 (topmost row, frequency = 0).

Click on the checkboxes shown on the right to see how the various frequencies contribute to the graph. Look for large magnitude coefficients (sine or cosine), as these are associated with frequencies which contribute most to the associated stock plot. If you find a large magnitude coefficient which dramatically changes the graph, look at the associated "Period" in weeks, as you may have found a significant recurring cycle for the stock of interest.

## Fourier Analysis

Using data from 1/2/2015 to 6/18/2018 for QRVO (Qorvo), this program was able to calculate the following Fourier Series:
Sequence #Cosine Coefficients Sine Coefficients FrequenciesPeriod
064.00726   0
110.75893 -8.73227 (1*2π)/182182 weeks
22.64332 3.55931 (2*2π)/18291 weeks
3-.48389 3.0223 (3*2π)/18261 weeks
4-2.2166 -1.81964 (4*2π)/18246 weeks
5-1.2985 .26561 (5*2π)/18236 weeks
6-.42689 -3.50662 (6*2π)/18230 weeks
7.97347 -1.74124 (7*2π)/18226 weeks
81.59325 .46524 (8*2π)/18223 weeks
9.57821 2.08506 (9*2π)/18220 weeks
10-.37299 -.28774 (10*2π)/18218 weeks
11.5266 -2.32052 (11*2π)/18217 weeks
12.31508 -.27932 (12*2π)/18215 weeks
13-.71332 -2.3702 (13*2π)/18214 weeks
14-.32132 -2.56641 (14*2π)/18213 weeks
15.17308 .2678 (15*2π)/18212 weeks
16.03901 .77629 (16*2π)/18211 weeks
17.07321 -.01805 (17*2π)/18211 weeks
18-.18217 .01082 (18*2π)/18210 weeks
19-.33788 .20413 (19*2π)/18210 weeks
20.38642 .07735 (20*2π)/1829 weeks
21-.69095 .71176 (21*2π)/1829 weeks
22.09152 .92231 (22*2π)/1828 weeks
23-.15903 -.35021 (23*2π)/1828 weeks
24-.80574 -1.07975 (24*2π)/1828 weeks
25-.1 -.50946 (25*2π)/1827 weeks
26.16045 -.58128 (26*2π)/1827 weeks
27.14836 -.33391 (27*2π)/1827 weeks
28-.43458 .19185 (28*2π)/1827 weeks
29.18225 -.46284 (29*2π)/1826 weeks
30-.01305 -.66079 (30*2π)/1826 weeks
31-.24075 -.58128 (31*2π)/1826 weeks
32.16672 .10773 (32*2π)/1826 weeks
33-.13792 -.07577 (33*2π)/1826 weeks
34.12139 .05188 (34*2π)/1825 weeks
35-.0049 -.63713 (35*2π)/1825 weeks
36.17622 -.38504 (36*2π)/1825 weeks
37-.44364 -.73142 (37*2π)/1825 weeks
38-.05656 -.74777 (38*2π)/1825 weeks
39-.14732 -.31105 (39*2π)/1825 weeks
40-.45406 .05846 (40*2π)/1825 weeks
41-.38267 .02948 (41*2π)/1824 weeks
42-.23048 -.3151 (42*2π)/1824 weeks
43-.18346 .36592 (43*2π)/1824 weeks
44.15529 -.41687 (44*2π)/1824 weeks
45.52115 -.09906 (45*2π)/1824 weeks
46.33779 -.10343 (46*2π)/1824 weeks
47-.04931 .31538 (47*2π)/1824 weeks
48.07797 -.42298 (48*2π)/1824 weeks
49.05738 -.46751 (49*2π)/1824 weeks
50-.00515 -.0425 (50*2π)/1824 weeks
51-.08455 -.15681 (51*2π)/1824 weeks
52.21299 -.19419 (52*2π)/1824 weeks
53.31724 .04627 (53*2π)/1823 weeks
54-.03711 -.0621 (54*2π)/1823 weeks
55-.4298 -.66692 (55*2π)/1823 weeks
56-.1762 -.33506 (56*2π)/1823 weeks
57-.04875 -.19558 (57*2π)/1823 weeks
58-.08649 .32639 (58*2π)/1823 weeks
59-.12547 .07632 (59*2π)/1823 weeks
60-.20857 .0217 (60*2π)/1823 weeks
61-.05979 -.30265 (61*2π)/1823 weeks
62.2187 -.15057 (62*2π)/1823 weeks
63.14452 -.01589 (63*2π)/1823 weeks
64-.32149 .25464 (64*2π)/1823 weeks
65-.14364 .27144 (65*2π)/1823 weeks
66-.23988 .42195 (66*2π)/1823 weeks
67-.10097 .38392 (67*2π)/1823 weeks
68.02214 .04701 (68*2π)/1823 weeks
69.30603 .03627 (69*2π)/1823 weeks
70.01483 .30791 (70*2π)/1823 weeks
71.13889 .3192 (71*2π)/1823 weeks
72-.20201 -.02123 (72*2π)/1823 weeks
73-.34545 -.42557 (73*2π)/1822 weeks
74-.3062 .08773 (74*2π)/1822 weeks
75-.17271 .06327 (75*2π)/1822 weeks
76-.31732 .39013 (76*2π)/1822 weeks
77-.47671 -.45239 (77*2π)/1822 weeks
78-.06607 -.07594 (78*2π)/1822 weeks
79.09151 -.19552 (79*2π)/1822 weeks
80-.24803 -.08454 (80*2π)/1822 weeks
81-.18018 -.11451 (81*2π)/1822 weeks
82.03653 -.10555 (82*2π)/1822 weeks
83.21826 -.00165 (83*2π)/1822 weeks
84-.08736 .18017 (84*2π)/1822 weeks
85-.20436 .05072 (85*2π)/1822 weeks
86.11197 -.16168 (86*2π)/1822 weeks
87-.12123 .54393 (87*2π)/1822 weeks
88-.1175 -.03016 (88*2π)/1822 weeks
89-.06698 -.47894 (89*2π)/1822 weeks
90.11496 -.43752 (90*2π)/1822 weeks
91.11011   (91*2π)/1822 weeks
92.11496 .43752 (92*2π)/1822 weeks
93-.06698 .47894 (93*2π)/1822 weeks
94-.1175 .03016 (94*2π)/1822 weeks
95-.12123 -.54393 (95*2π)/1822 weeks
96.11197 .16168 (96*2π)/1822 weeks
97-.20436 -.05072 (97*2π)/1822 weeks
98-.08736 -.18017 (98*2π)/1822 weeks
99.21826 .00165 (99*2π)/1822 weeks
100.03653 .10555 (100*2π)/1822 weeks
101-.18018 .11451 (101*2π)/1822 weeks
102-.24803 .08454 (102*2π)/1822 weeks
103.09151 .19552 (103*2π)/1822 weeks
104-.06607 .07594 (104*2π)/1822 weeks
105-.47671 .45239 (105*2π)/1822 weeks
106-.31732 -.39013 (106*2π)/1822 weeks
107-.17271 -.06327 (107*2π)/1822 weeks
108-.3062 -.08773 (108*2π)/1822 weeks
109-.34545 .42557 (109*2π)/1822 weeks
110-.20201 .02123 (110*2π)/1822 weeks
111.13889 -.3192 (111*2π)/1822 weeks
112.01483 -.30791 (112*2π)/1822 weeks
113.30603 -.03627 (113*2π)/1822 weeks
114.02214 -.04701 (114*2π)/1822 weeks
115-.10097 -.38392 (115*2π)/1822 weeks
116-.23988 -.42195 (116*2π)/1822 weeks
117-.14364 -.27144 (117*2π)/1822 weeks
118-.32149 -.25464 (118*2π)/1822 weeks
119.14452 .01589 (119*2π)/1822 weeks
120.2187 .15057 (120*2π)/1822 weeks
121-.05979 .30265 (121*2π)/1822 weeks
122-.20857 -.0217 (122*2π)/1821 weeks
123-.12547 -.07632 (123*2π)/1821 weeks
124-.08649 -.32639 (124*2π)/1821 weeks
125-.04875 .19558 (125*2π)/1821 weeks
126-.1762 .33506 (126*2π)/1821 weeks
127-.4298 .66692 (127*2π)/1821 weeks
128-.03711 .0621 (128*2π)/1821 weeks
129.31724 -.04627 (129*2π)/1821 weeks
130.21299 .19419 (130*2π)/1821 weeks
131-.08455 .15681 (131*2π)/1821 weeks
132-.00515 .0425 (132*2π)/1821 weeks
133.05738 .46751 (133*2π)/1821 weeks
134.07797 .42298 (134*2π)/1821 weeks
135-.04931 -.31538 (135*2π)/1821 weeks
136.33779 .10343 (136*2π)/1821 weeks
137.52115 .09906 (137*2π)/1821 weeks
138.15529 .41687 (138*2π)/1821 weeks
139-.18346 -.36592 (139*2π)/1821 weeks
140-.23048 .3151 (140*2π)/1821 weeks
141-.38267 -.02948 (141*2π)/1821 weeks
142-.45406 -.05846 (142*2π)/1821 weeks
143-.14732 .31105 (143*2π)/1821 weeks
144-.05656 .74777 (144*2π)/1821 weeks
145-.44364 .73142 (145*2π)/1821 weeks
146.17622 .38504 (146*2π)/1821 weeks
147-.0049 .63713 (147*2π)/1821 weeks
148.12139 -.05188 (148*2π)/1821 weeks
149-.13792 .07577 (149*2π)/1821 weeks
150.16672 -.10773 (150*2π)/1821 weeks
151-.24075 .58128 (151*2π)/1821 weeks
152-.01305 .66079 (152*2π)/1821 weeks
153.18225 .46284 (153*2π)/1821 weeks
154-.43458 -.19185 (154*2π)/1821 weeks
155.14836 .33391 (155*2π)/1821 weeks
156.16045 .58128 (156*2π)/1821 weeks
157-.1 .50946 (157*2π)/1821 weeks
158-.80574 1.07975 (158*2π)/1821 weeks
159-.15903 .35021 (159*2π)/1821 weeks
160.09152 -.92231 (160*2π)/1821 weeks
161-.69095 -.71176 (161*2π)/1821 weeks
162.38642 -.07735 (162*2π)/1821 weeks
163-.33788 -.20413 (163*2π)/1821 weeks
164-.18217 -.01082 (164*2π)/1821 weeks
165.07321 .01805 (165*2π)/1821 weeks
166.03901 -.77629 (166*2π)/1821 weeks
167.17308 -.2678 (167*2π)/1821 weeks
168-.32132 2.56641 (168*2π)/1821 weeks
169-.71332 2.3702 (169*2π)/1821 weeks
170.31508 .27932 (170*2π)/1821 weeks
171.5266 2.32052 (171*2π)/1821 weeks
172-.37299 .28774 (172*2π)/1821 weeks
173.57821 -2.08506 (173*2π)/1821 weeks
1741.59325 -.46524 (174*2π)/1821 weeks
175.97347 1.74124 (175*2π)/1821 weeks
176-.42689 3.50662 (176*2π)/1821 weeks
177-1.2985 -.26561 (177*2π)/1821 weeks
178-2.2166 1.81964 (178*2π)/1821 weeks
179-.48389 -3.0223 (179*2π)/1821 weeks
1802.64332 -3.55931 (180*2π)/1821 weeks