Back to list of Stocks    See Also: Seasonal Analysis of QLIKGenetic Algorithms Stock Portfolio Generator, and Fourier Calculator

Fourier Analysis of QLIK (Qlik Technologies Inc.)


QLIK (Qlik Technologies Inc.) appears to have interesting cyclic behaviour every 25 weeks (1.2069*sine), 29 weeks (1.0295*cosine), and 20 weeks (.9361*cosine).

QLIK (Qlik Technologies Inc.) has an average price of 27.55 (topmost row, frequency = 0).



Click on the checkboxes shown on the right to see how the various frequencies contribute to the graph. Look for large magnitude coefficients (sine or cosine), as these are associated with frequencies which contribute most to the associated stock plot. If you find a large magnitude coefficient which dramatically changes the graph, look at the associated "Period" in weeks, as you may have found a significant recurring cycle for the stock of interest.

Right click on the graph above to see the menu of operations (download, full screen, etc.)

Fourier Analysis

Using data from 7/16/2010 to 8/22/2016 for QLIK (Qlik Technologies Inc.), this program was able to calculate the following Fourier Series:
Sequence #Cosine Coefficients Sine Coefficients FrequenciesPeriod
027.55381   0 
1.82419 -2.95192 (1*2π)/320320 weeks
2-1.62798 -.78386 (2*2π)/320160 weeks
3-4.16884 -.32541 (3*2π)/320107 weeks
41.47248 .60743 (4*2π)/32080 weeks
5-.66889 -.09898 (5*2π)/32064 weeks
6.90405 -1.51282 (6*2π)/32053 weeks
7.71983 -1.45738 (7*2π)/32046 weeks
8-.10324 -.63315 (8*2π)/32040 weeks
9-1.4256 .05892 (9*2π)/32036 weeks
10-.71817 -.63662 (10*2π)/32032 weeks
11-1.02947 -.91369 (11*2π)/32029 weeks
12-.00982 .07893 (12*2π)/32027 weeks
13-.71837 -1.20686 (13*2π)/32025 weeks
14.57173 .30534 (14*2π)/32023 weeks
15.1079 .16989 (15*2π)/32021 weeks
16-.93609 .00607 (16*2π)/32020 weeks
17.20444 -.48806 (17*2π)/32019 weeks
18.23156 -.39222 (18*2π)/32018 weeks
19.24713 -.74545 (19*2π)/32017 weeks
20-.46222 -.2424 (20*2π)/32016 weeks
21-.32328 -.58592 (21*2π)/32015 weeks
22-.51672 -.68046 (22*2π)/32015 weeks
23.01793 -.40757 (23*2π)/32014 weeks
24-.01914 .17643 (24*2π)/32013 weeks
25.19479 -.38303 (25*2π)/32013 weeks
26-.25141 -.04238 (26*2π)/32012 weeks
27.06905 -.17583 (27*2π)/32012 weeks
28.45667 -.58829 (28*2π)/32011 weeks
29-.15468 -.19998 (29*2π)/32011 weeks
30-.02225 -.58651 (30*2π)/32011 weeks
31-.16198 -.1442 (31*2π)/32010 weeks
32.05816 -.14702 (32*2π)/32010 weeks
33-.17915 .20022 (33*2π)/32010 weeks
34-.18403 -.37371 (34*2π)/3209 weeks
35-.14532 -.07357 (35*2π)/3209 weeks
36-.25133 -.10848 (36*2π)/3209 weeks
37-.06257 -.06697 (37*2π)/3209 weeks
38.16674 -.2516 (38*2π)/3208 weeks
39.27702 .06695 (39*2π)/3208 weeks
40.15705 -.10793 (40*2π)/3208 weeks
41.07684 -.30429 (41*2π)/3208 weeks
42-.05616 -.33969 (42*2π)/3208 weeks
43-.21032 .0755 (43*2π)/3207 weeks
44.06485 .15816 (44*2π)/3207 weeks
45-.16884 -.00298 (45*2π)/3207 weeks
46-.33104 .17339 (46*2π)/3207 weeks
47.00047 -.26929 (47*2π)/3207 weeks
48-.0161 -.073 (48*2π)/3207 weeks
49-.12677 -.01363 (49*2π)/3207 weeks
50-.18696 -.23178 (50*2π)/3206 weeks
51.09432 -.28055 (51*2π)/3206 weeks
52-.04643 -.04682 (52*2π)/3206 weeks
53-.02246 -.02925 (53*2π)/3206 weeks
54-.20614 .03337 (54*2π)/3206 weeks
55-.32211 -.17518 (55*2π)/3206 weeks
56-.07019 -.31961 (56*2π)/3206 weeks
57.03485 -.14329 (57*2π)/3206 weeks
58-.21103 .05839 (58*2π)/3206 weeks
59-.13356 -.08314 (59*2π)/3205 weeks
60-.06395 -.1151 (60*2π)/3205 weeks
61.04256 -.11258 (61*2π)/3205 weeks
62.16433 -.25272 (62*2π)/3205 weeks
63.03697 -.1016 (63*2π)/3205 weeks
64.03266 -.13626 (64*2π)/3205 weeks
65.02459 -.15231 (65*2π)/3205 weeks
66-.14078 .03477 (66*2π)/3205 weeks
67-.19505 -.03176 (67*2π)/3205 weeks
68-.06622 -.05232 (68*2π)/3205 weeks
69-.10621 -.12674 (69*2π)/3205 weeks
70.2306 .05627 (70*2π)/3205 weeks
71.03796 .02823 (71*2π)/3205 weeks
72-.04551 .1865 (72*2π)/3204 weeks
73.04875 -.0414 (73*2π)/3204 weeks
74-.09745 .05198 (74*2π)/3204 weeks
75-.11413 -.15192 (75*2π)/3204 weeks
76.02892 .02523 (76*2π)/3204 weeks
77-.21297 -.15124 (77*2π)/3204 weeks
78-.27415 -.18464 (78*2π)/3204 weeks
79-.05857 .09504 (79*2π)/3204 weeks
80-.12394 .18694 (80*2π)/3204 weeks
81-.23106 -.02942 (81*2π)/3204 weeks
82-.08493 -.1578 (82*2π)/3204 weeks
83.02843 -.06603 (83*2π)/3204 weeks
84-.17451 -.17082 (84*2π)/3204 weeks
85-.08787 -.10961 (85*2π)/3204 weeks
86-.18744 -.00875 (86*2π)/3204 weeks
87-.06826 -.0479 (87*2π)/3204 weeks
88.05326 -.07314 (88*2π)/3204 weeks
89-.07372 .04954 (89*2π)/3204 weeks
90-.03656 -.06391 (90*2π)/3204 weeks
91-.08208 -.14071 (91*2π)/3204 weeks
92-.09351 -.2349 (92*2π)/3203 weeks
93.01756 -.02597 (93*2π)/3203 weeks
94-.05387 -.17197 (94*2π)/3203 weeks
95-.11298 -.01203 (95*2π)/3203 weeks
96-.02338 -.15508 (96*2π)/3203 weeks
97-.10958 -.11129 (97*2π)/3203 weeks
98-.00562 -.06257 (98*2π)/3203 weeks
99-.06936 -.10349 (99*2π)/3203 weeks
100-.02826 -.1262 (100*2π)/3203 weeks
101-.07464 -.05345 (101*2π)/3203 weeks
102.08548 .06658 (102*2π)/3203 weeks
103.04769 -.03461 (103*2π)/3203 weeks
104-.00167 .12409 (104*2π)/3203 weeks
105.03214 .04498 (105*2π)/3203 weeks
106-.02867 -.10334 (106*2π)/3203 weeks
107-.16647 .08041 (107*2π)/3203 weeks
108-.14383 -.05615 (108*2π)/3203 weeks
109.00975 .02942 (109*2π)/3203 weeks
110-.0494 .03966 (110*2π)/3203 weeks
111.03372 -.05001 (111*2π)/3203 weeks
112-.12365 -.05157 (112*2π)/3203 weeks
113-.09325 -.04753 (113*2π)/3203 weeks
114-.02679 -.07081 (114*2π)/3203 weeks
115-.06722 .16239 (115*2π)/3203 weeks
116-.09845 .04159 (116*2π)/3203 weeks
117-.15609 -.00571 (117*2π)/3203 weeks
118.00991 -.15157 (118*2π)/3203 weeks
119.05088 -.09923 (119*2π)/3203 weeks
120-.14055 -.0258 (120*2π)/3203 weeks
121-.13743 .10739 (121*2π)/3203 weeks
122-.11744 -.03746 (122*2π)/3203 weeks
123-.04128 -.11083 (123*2π)/3203 weeks
124-.17731 -.08665 (124*2π)/3203 weeks
125.03068 -.10469 (125*2π)/3203 weeks
126.07454 .04382 (126*2π)/3203 weeks
127-.10425 -.00644 (127*2π)/3203 weeks
128-.02163 -.08922 (128*2π)/3203 weeks
129-.14244 -.01789 (129*2π)/3202 weeks
130-.05231 -.07352 (130*2π)/3202 weeks
131-.06149 -.02467 (131*2π)/3202 weeks
132.0097 -.0263 (132*2π)/3202 weeks
133.01609 .10496 (133*2π)/3202 weeks
134-.02444 .0282 (134*2π)/3202 weeks
135-.10964 -.07843 (135*2π)/3202 weeks
136-.12618 .0097 (136*2π)/3202 weeks
137.05488 .00996 (137*2π)/3202 weeks
138-.06066 -.03789 (138*2π)/3202 weeks
139.07277 .13995 (139*2π)/3202 weeks
140-.07882 -.09324 (140*2π)/3202 weeks
141-.14037 -.04001 (141*2π)/3202 weeks
142-.06279 -.0457 (142*2π)/3202 weeks
143-.04475 .05377 (143*2π)/3202 weeks
144-.05211 .05086 (144*2π)/3202 weeks
145.05302 .03323 (145*2π)/3202 weeks
146-.19783 -.0174 (146*2π)/3202 weeks
147-.04766 -.06462 (147*2π)/3202 weeks
148.04136 -.0289 (148*2π)/3202 weeks
149-.07265 .03704 (149*2π)/3202 weeks
150-.06646 -.01725 (150*2π)/3202 weeks
151-.14705 .03056 (151*2π)/3202 weeks
152.03679 -.00929 (152*2π)/3202 weeks
153-.18625 .04502 (153*2π)/3202 weeks
154-.04676 -.04335 (154*2π)/3202 weeks
155-.16512 .07145 (155*2π)/3202 weeks
156.00442 .01878 (156*2π)/3202 weeks
157-.02125 .1505 (157*2π)/3202 weeks
158-.0202 -.05581 (158*2π)/3202 weeks
159-.11385 .02257 (159*2π)/3202 weeks
160-.06925   (160*2π)/3202 weeks
161-.11385 -.02257 (161*2π)/3202 weeks
162-.0202 .05581 (162*2π)/3202 weeks
163-.02125 -.1505 (163*2π)/3202 weeks
164.00442 -.01878 (164*2π)/3202 weeks
165-.16512 -.07145 (165*2π)/3202 weeks
166-.04676 .04335 (166*2π)/3202 weeks
167-.18625 -.04502 (167*2π)/3202 weeks
168.03679 .00929 (168*2π)/3202 weeks
169-.14705 -.03056 (169*2π)/3202 weeks
170-.06646 .01725 (170*2π)/3202 weeks
171-.07265 -.03704 (171*2π)/3202 weeks
172.04136 .0289 (172*2π)/3202 weeks
173-.04766 .06462 (173*2π)/3202 weeks
174-.19783 .0174 (174*2π)/3202 weeks
175.05302 -.03323 (175*2π)/3202 weeks
176-.05211 -.05086 (176*2π)/3202 weeks
177-.04475 -.05377 (177*2π)/3202 weeks
178-.06279 .0457 (178*2π)/3202 weeks
179-.14037 .04001 (179*2π)/3202 weeks
180-.07882 .09324 (180*2π)/3202 weeks
181.07277 -.13995 (181*2π)/3202 weeks
182-.06066 .03789 (182*2π)/3202 weeks
183.05488 -.00996 (183*2π)/3202 weeks
184-.12618 -.0097 (184*2π)/3202 weeks
185-.10964 .07843 (185*2π)/3202 weeks
186-.02444 -.0282 (186*2π)/3202 weeks
187.01609 -.10496 (187*2π)/3202 weeks
188.0097 .0263 (188*2π)/3202 weeks
189-.06149 .02467 (189*2π)/3202 weeks
190-.05231 .07352 (190*2π)/3202 weeks
191-.14244 .01789 (191*2π)/3202 weeks
192-.02163 .08922 (192*2π)/3202 weeks
193-.10425 .00644 (193*2π)/3202 weeks
194.07454 -.04382 (194*2π)/3202 weeks
195.03068 .10469 (195*2π)/3202 weeks
196-.17731 .08665 (196*2π)/3202 weeks
197-.04128 .11083 (197*2π)/3202 weeks
198-.11744 .03746 (198*2π)/3202 weeks
199-.13743 -.10739 (199*2π)/3202 weeks
200-.14055 .0258 (200*2π)/3202 weeks
201.05088 .09923 (201*2π)/3202 weeks
202.00991 .15157 (202*2π)/3202 weeks
203-.15609 .00571 (203*2π)/3202 weeks
204-.09845 -.04159 (204*2π)/3202 weeks
205-.06722 -.16239 (205*2π)/3202 weeks
206-.02679 .07081 (206*2π)/3202 weeks
207-.09325 .04753 (207*2π)/3202 weeks
208-.12365 .05157 (208*2π)/3202 weeks
209.03372 .05001 (209*2π)/3202 weeks
210-.0494 -.03966 (210*2π)/3202 weeks
211.00975 -.02942 (211*2π)/3202 weeks
212-.14383 .05615 (212*2π)/3202 weeks
213-.16647 -.08041 (213*2π)/3202 weeks
214-.02867 .10334 (214*2π)/3201 weeks
215.03214 -.04498 (215*2π)/3201 weeks
216-.00167 -.12409 (216*2π)/3201 weeks
217.04769 .03461 (217*2π)/3201 weeks
218.08548 -.06658 (218*2π)/3201 weeks
219-.07464 .05345 (219*2π)/3201 weeks
220-.02826 .1262 (220*2π)/3201 weeks
221-.06936 .10349 (221*2π)/3201 weeks
222-.00562 .06257 (222*2π)/3201 weeks
223-.10958 .11129 (223*2π)/3201 weeks
224-.02338 .15508 (224*2π)/3201 weeks
225-.11298 .01203 (225*2π)/3201 weeks
226-.05387 .17197 (226*2π)/3201 weeks
227.01756 .02597 (227*2π)/3201 weeks
228-.09351 .2349 (228*2π)/3201 weeks
229-.08208 .14071 (229*2π)/3201 weeks
230-.03656 .06391 (230*2π)/3201 weeks
231-.07372 -.04954 (231*2π)/3201 weeks
232.05326 .07314 (232*2π)/3201 weeks
233-.06826 .0479 (233*2π)/3201 weeks
234-.18744 .00875 (234*2π)/3201 weeks
235-.08787 .10961 (235*2π)/3201 weeks
236-.17451 .17082 (236*2π)/3201 weeks
237.02843 .06603 (237*2π)/3201 weeks
238-.08493 .1578 (238*2π)/3201 weeks
239-.23106 .02942 (239*2π)/3201 weeks
240-.12394 -.18694 (240*2π)/3201 weeks
241-.05857 -.09504 (241*2π)/3201 weeks
242-.27415 .18464 (242*2π)/3201 weeks
243-.21297 .15124 (243*2π)/3201 weeks
244.02892 -.02523 (244*2π)/3201 weeks
245-.11413 .15192 (245*2π)/3201 weeks
246-.09745 -.05198 (246*2π)/3201 weeks
247.04875 .0414 (247*2π)/3201 weeks
248-.04551 -.1865 (248*2π)/3201 weeks
249.03796 -.02823 (249*2π)/3201 weeks
250.2306 -.05627 (250*2π)/3201 weeks
251-.10621 .12674 (251*2π)/3201 weeks
252-.06622 .05232 (252*2π)/3201 weeks
253-.19505 .03176 (253*2π)/3201 weeks
254-.14078 -.03477 (254*2π)/3201 weeks
255.02459 .15231 (255*2π)/3201 weeks
256.03266 .13626 (256*2π)/3201 weeks
257.03697 .1016 (257*2π)/3201 weeks
258.16433 .25272 (258*2π)/3201 weeks
259.04256 .11258 (259*2π)/3201 weeks
260-.06395 .1151 (260*2π)/3201 weeks
261-.13356 .08314 (261*2π)/3201 weeks
262-.21103 -.05839 (262*2π)/3201 weeks
263.03485 .14329 (263*2π)/3201 weeks
264-.07019 .31961 (264*2π)/3201 weeks
265-.32211 .17518 (265*2π)/3201 weeks
266-.20614 -.03337 (266*2π)/3201 weeks
267-.02246 .02925 (267*2π)/3201 weeks
268-.04643 .04682 (268*2π)/3201 weeks
269.09432 .28055 (269*2π)/3201 weeks
270-.18696 .23178 (270*2π)/3201 weeks
271-.12677 .01363 (271*2π)/3201 weeks
272-.0161 .073 (272*2π)/3201 weeks
273.00047 .26929 (273*2π)/3201 weeks
274-.33104 -.17339 (274*2π)/3201 weeks
275-.16884 .00298 (275*2π)/3201 weeks
276.06485 -.15816 (276*2π)/3201 weeks
277-.21032 -.0755 (277*2π)/3201 weeks
278-.05616 .33969 (278*2π)/3201 weeks
279.07684 .30429 (279*2π)/3201 weeks
280.15705 .10793 (280*2π)/3201 weeks
281.27702 -.06695 (281*2π)/3201 weeks
282.16674 .2516 (282*2π)/3201 weeks
283-.06257 .06697 (283*2π)/3201 weeks
284-.25133 .10848 (284*2π)/3201 weeks
285-.14532 .07357 (285*2π)/3201 weeks
286-.18403 .37371 (286*2π)/3201 weeks
287-.17915 -.20022 (287*2π)/3201 weeks
288.05816 .14702 (288*2π)/3201 weeks
289-.16198 .1442 (289*2π)/3201 weeks
290-.02225 .58651 (290*2π)/3201 weeks
291-.15468 .19998 (291*2π)/3201 weeks
292.45667 .58829 (292*2π)/3201 weeks
293.06905 .17583 (293*2π)/3201 weeks
294-.25141 .04238 (294*2π)/3201 weeks
295.19479 .38303 (295*2π)/3201 weeks
296-.01914 -.17643 (296*2π)/3201 weeks
297.01793 .40757 (297*2π)/3201 weeks
298-.51672 .68046 (298*2π)/3201 weeks
299-.32328 .58592 (299*2π)/3201 weeks
300-.46222 .2424 (300*2π)/3201 weeks
301.24713 .74545 (301*2π)/3201 weeks
302.23156 .39222 (302*2π)/3201 weeks
303.20444 .48806 (303*2π)/3201 weeks
304-.93609 -.00607 (304*2π)/3201 weeks
305.1079 -.16989 (305*2π)/3201 weeks
306.57173 -.30534 (306*2π)/3201 weeks
307-.71837 1.20686 (307*2π)/3201 weeks
308-.00982 -.07893 (308*2π)/3201 weeks
309-1.02947 .91369 (309*2π)/3201 weeks
310-.71817 .63662 (310*2π)/3201 weeks
311-1.4256 -.05892 (311*2π)/3201 weeks
312-.10324 .63315 (312*2π)/3201 weeks
313.71983 1.45738 (313*2π)/3201 weeks
314.90405 1.51282 (314*2π)/3201 weeks
315-.66889 .09898 (315*2π)/3201 weeks
3161.47248 -.60743 (316*2π)/3201 weeks
317-4.16884 .32541 (317*2π)/3201 weeks
318-1.62798 .78386 (318*2π)/3201 weeks

Problems, Comments, Suggestions? Click here to contact Greg Thatcher

Please read my Disclaimer





Copyright (c) 2013 Thatcher Development Software, LLC. All rights reserved. No claim to original U.S. Gov't works.