Back to list of Stocks    See Also: Seasonal Analysis of PKIGenetic Algorithms Stock Portfolio Generator, and Fourier Calculator

Fourier Analysis of PKI (PerkinElmer, Inc. Common Stock)


PKI (PerkinElmer, Inc. Common Stock) appears to have interesting cyclic behaviour every 161 weeks (2.7359*sine), 136 weeks (1.9657*sine), and 148 weeks (1.0912*sine).

PKI (PerkinElmer, Inc. Common Stock) has an average price of 16.72 (topmost row, frequency = 0).



Click on the checkboxes shown on the right to see how the various frequencies contribute to the graph. Look for large magnitude coefficients (sine or cosine), as these are associated with frequencies which contribute most to the associated stock plot. If you find a large magnitude coefficient which dramatically changes the graph, look at the associated "Period" in weeks, as you may have found a significant recurring cycle for the stock of interest.

Right click on the graph above to see the menu of operations (download, full screen, etc.)

Fourier Analysis

Using data from 4/6/1983 to 3/13/2017 for PKI (PerkinElmer, Inc. Common Stock), this program was able to calculate the following Fourier Series:
Sequence #Cosine Coefficients Sine Coefficients FrequenciesPeriod
016.71999   0 
14.82781 -10.72125 (1*2π)/17711,771 weeks
25.32934 -5.64811 (2*2π)/1771886 weeks
3.78747 -6.2577 (3*2π)/1771590 weeks
42.95416 -5.00238 (4*2π)/1771443 weeks
5-2.48925 -4.31179 (5*2π)/1771354 weeks
61.23437 -1.61285 (6*2π)/1771295 weeks
7-1.23028 -3.82472 (7*2π)/1771253 weeks
8.82401 -.64034 (8*2π)/1771221 weeks
9-1.19857 -2.92343 (9*2π)/1771197 weeks
10.4256 .36414 (10*2π)/1771177 weeks
11.9883 -2.73594 (11*2π)/1771161 weeks
12-.50142 -1.09124 (12*2π)/1771148 weeks
13-.06748 -1.96575 (13*2π)/1771136 weeks
14-.33763 -.22132 (14*2π)/1771127 weeks
15.70826 -1.26937 (15*2π)/1771118 weeks
16.05506 -1.08183 (16*2π)/1771111 weeks
17-.33529 -.86387 (17*2π)/1771104 weeks
18.14892 -.70304 (18*2π)/177198 weeks
19-.16525 -1.09177 (19*2π)/177193 weeks
20.01627 -.48634 (20*2π)/177189 weeks
21-.10439 -.90701 (21*2π)/177184 weeks
22.10012 -.23069 (22*2π)/177181 weeks
23.50162 -1.05981 (23*2π)/177177 weeks
24.0154 -.76976 (24*2π)/177174 weeks
25-.01293 -1.2719 (25*2π)/177171 weeks
26-.89967 -.46175 (26*2π)/177168 weeks
27.36736 -.3915 (27*2π)/177166 weeks
28-.40709 -.69422 (28*2π)/177163 weeks
29-.00978 -.76714 (29*2π)/177161 weeks
30-.76903 -.33164 (30*2π)/177159 weeks
31.27884 -.1548 (31*2π)/177157 weeks
32-.42785 -.56928 (32*2π)/177155 weeks
33.12872 .04197 (33*2π)/177154 weeks
34.17905 -.52515 (34*2π)/177152 weeks
35.14542 -.0198 (35*2π)/177151 weeks
36.1082 -.90638 (36*2π)/177149 weeks
37-.2633 -.28879 (37*2π)/177148 weeks
38-.10157 -.36766 (38*2π)/177147 weeks
39.17174 .17507 (39*2π)/177145 weeks
40.28322 -.83336 (40*2π)/177144 weeks
41-.21266 -.32991 (41*2π)/177143 weeks
42.09171 -.55747 (42*2π)/177142 weeks
43-.14108 -.30527 (43*2π)/177141 weeks
44-.00638 -.59351 (44*2π)/177140 weeks
45-.23684 -.17541 (45*2π)/177139 weeks
46-.0612 -.21405 (46*2π)/177139 weeks
47.22256 -.01311 (47*2π)/177138 weeks
48.22219 -.46686 (48*2π)/177137 weeks
49-.16972 -.21594 (49*2π)/177136 weeks
50.24426 -.4509 (50*2π)/177135 weeks
51-.2382 -.18391 (51*2π)/177135 weeks
52.2571 -.2809 (52*2π)/177134 weeks
53-.07389 -.23531 (53*2π)/177133 weeks
54.37344 -.40913 (54*2π)/177133 weeks
55-.09978 -.30291 (55*2π)/177132 weeks
56.20958 -.51487 (56*2π)/177132 weeks
57-.29187 -.24377 (57*2π)/177131 weeks
58.22707 -.33797 (58*2π)/177131 weeks
59-.13933 -.36155 (59*2π)/177130 weeks
60.14741 -.41713 (60*2π)/177130 weeks
61-.23072 -.47272 (61*2π)/177129 weeks
62.02042 -.17518 (62*2π)/177129 weeks
63-.19007 -.37481 (63*2π)/177128 weeks
64-.04499 -.11861 (64*2π)/177128 weeks
65-.09976 -.34806 (65*2π)/177127 weeks
66-.09406 -.10526 (66*2π)/177127 weeks
67.04127 -.31037 (67*2π)/177126 weeks
68-.0911 -.30801 (68*2π)/177126 weeks
69.04891 -.21259 (69*2π)/177126 weeks
70-.18076 -.29394 (70*2π)/177125 weeks
71-.08783 -.06879 (71*2π)/177125 weeks
72-.07673 -.17101 (72*2π)/177125 weeks
73-.00838 .02459 (73*2π)/177124 weeks
74.14899 -.22791 (74*2π)/177124 weeks
75.01231 -.08875 (75*2π)/177124 weeks
76.27555 -.33595 (76*2π)/177123 weeks
77-.09358 -.19278 (77*2π)/177123 weeks
78.21366 -.2623 (78*2π)/177123 weeks
79-.10099 -.31179 (79*2π)/177122 weeks
80.04265 -.26496 (80*2π)/177122 weeks
81-.15371 -.24862 (81*2π)/177122 weeks
82.05523 -.1807 (82*2π)/177122 weeks
83-.0594 -.2541 (83*2π)/177121 weeks
84-.00413 -.31647 (84*2π)/177121 weeks
85-.08891 -.20402 (85*2π)/177121 weeks
86-.03891 -.26827 (86*2π)/177121 weeks
87-.03216 -.15703 (87*2π)/177120 weeks
88.04186 -.34109 (88*2π)/177120 weeks
89-.11014 -.21799 (89*2π)/177120 weeks
90-.02388 -.27904 (90*2π)/177120 weeks
91-.10278 -.16773 (91*2π)/177119 weeks
92-.07455 -.24061 (92*2π)/177119 weeks
93-.10869 -.15716 (93*2π)/177119 weeks
94-.05542 -.15291 (94*2π)/177119 weeks
95-.14888 -.08835 (95*2π)/177119 weeks
96.00654 -.14829 (96*2π)/177118 weeks
97-.14559 -.1399 (97*2π)/177118 weeks
98.00371 .02109 (98*2π)/177118 weeks
99.05316 -.10231 (99*2π)/177118 weeks
100-.00937 -.16095 (100*2π)/177118 weeks
101.07412 -.13571 (101*2π)/177118 weeks
102-.09156 -.22542 (102*2π)/177117 weeks
103.05722 -.06564 (103*2π)/177117 weeks
104.0001 -.22543 (104*2π)/177117 weeks
105.05167 -.10753 (105*2π)/177117 weeks
106-.09502 -.24657 (106*2π)/177117 weeks
107.06519 .00693 (107*2π)/177117 weeks
108.00361 -.33548 (108*2π)/177116 weeks
109-.07844 -.0674 (109*2π)/177116 weeks
110-.06247 -.26634 (110*2π)/177116 weeks
111-.05811 .04132 (111*2π)/177116 weeks
112.03313 -.29553 (112*2π)/177116 weeks
113-.1157 -.00308 (113*2π)/177116 weeks
114.09063 -.2861 (114*2π)/177116 weeks
115-.1247 -.06244 (115*2π)/177115 weeks
116.03285 -.22071 (116*2π)/177115 weeks
117-.1408 -.07031 (117*2π)/177115 weeks
118.0712 -.10462 (118*2π)/177115 weeks
119-.1058 -.10819 (119*2π)/177115 weeks
120.04971 -.15723 (120*2π)/177115 weeks
121-.05602 -.16085 (121*2π)/177115 weeks
122.02356 -.12241 (122*2π)/177115 weeks
123-.07536 -.1692 (123*2π)/177114 weeks
124.053 -.10227 (124*2π)/177114 weeks
125-.04976 -.11484 (125*2π)/177114 weeks
126.02832 -.11008 (126*2π)/177114 weeks
127.01264 -.20571 (127*2π)/177114 weeks
128-.06011 -.17837 (128*2π)/177114 weeks
129-.00315 -.08325 (129*2π)/177114 weeks
130-.02832 -.09859 (130*2π)/177114 weeks
131.02716 -.10549 (131*2π)/177114 weeks
132-.06399 -.11301 (132*2π)/177113 weeks
133.04122 -.09009 (133*2π)/177113 weeks
134-.03754 -.14501 (134*2π)/177113 weeks
135.03841 -.08923 (135*2π)/177113 weeks
136-.09048 -.19436 (136*2π)/177113 weeks
137.03272 -.06117 (137*2π)/177113 weeks
138-.01516 -.16191 (138*2π)/177113 weeks
139-.01442 -.10275 (139*2π)/177113 weeks
140-.05451 -.16669 (140*2π)/177113 weeks
141-.02887 -.08902 (141*2π)/177113 weeks
142-.03092 -.14296 (142*2π)/177112 weeks
143-.06475 -.04542 (143*2π)/177112 weeks
144.00778 -.11281 (144*2π)/177112 weeks
145-.00006 -.0216 (145*2π)/177112 weeks
146.07439 -.19194 (146*2π)/177112 weeks
147-.03067 -.09476 (147*2π)/177112 weeks
148.00741 -.1848 (148*2π)/177112 weeks
149-.04572 -.05045 (149*2π)/177112 weeks
150.07173 -.18204 (150*2π)/177112 weeks
151-.06621 -.09686 (151*2π)/177112 weeks
152.02451 -.18557 (152*2π)/177112 weeks
153-.15648 -.08084 (153*2π)/177112 weeks
154.04598 -.03816 (154*2π)/177112 weeks
155-.02714 -.12478 (155*2π)/177111 weeks
156-.02786 -.06222 (156*2π)/177111 weeks
157-.00124 -.1119 (157*2π)/177111 weeks
158-.02554 -.07201 (158*2π)/177111 weeks
159.02158 -.11909 (159*2π)/177111 weeks
160.02449 -.08534 (160*2π)/177111 weeks
161.03089 -.16358 (161*2π)/177111 weeks
162-.05277 -.09427 (162*2π)/177111 weeks
163.05041 -.1702 (163*2π)/177111 weeks
164-.0976 -.14753 (164*2π)/177111 weeks
165.03313 -.13429 (165*2π)/177111 weeks
166-.10355 -.16889 (166*2π)/177111 weeks
167.01366 -.038 (167*2π)/177111 weeks
168-.00622 -.15089 (168*2π)/177111 weeks
169-.03066 -.08076 (169*2π)/177110 weeks
170-.01399 -.11963 (170*2π)/177110 weeks
171.00541 -.10842 (171*2π)/177110 weeks
172-.019 -.13415 (172*2π)/177110 weeks
173-.02174 -.18468 (173*2π)/177110 weeks
174-.04713 -.13527 (174*2π)/177110 weeks
175-.04948 -.14709 (175*2π)/177110 weeks
176-.07486 -.14558 (176*2π)/177110 weeks
177-.07344 -.12314 (177*2π)/177110 weeks
178-.05686 -.07251 (178*2π)/177110 weeks
179-.03184 -.15169 (179*2π)/177110 weeks
180-.10717 -.11311 (180*2π)/177110 weeks
181-.07798 -.16045 (181*2π)/177110 weeks
182-.16516 -.06268 (182*2π)/177110 weeks
183-.08655 -.0212 (183*2π)/177110 weeks
184-.08342 -.05751 (184*2π)/177110 weeks
185-.06138 -.06631 (185*2π)/177110 weeks
186-.052 -.02302 (186*2π)/177110 weeks
187-.03443 -.06526 (187*2π)/17719 weeks
188-.06308 -.03428 (188*2π)/17719 weeks
189.0015 -.04881 (189*2π)/17719 weeks
190.00068 -.07475 (190*2π)/17719 weeks
191-.0328 -.074 (191*2π)/17719 weeks
192-.03985 -.08752 (192*2π)/17719 weeks
193-.07403 -.05569 (193*2π)/17719 weeks
194-.02718 -.05415 (194*2π)/17719 weeks
195-.00882 -.05038 (195*2π)/17719 weeks
196.00054 -.05645 (196*2π)/17719 weeks
197.0157 -.08739 (197*2π)/17719 weeks
198-.0735 -.09145 (198*2π)/17719 weeks
199-.0669 -.03766 (199*2π)/17719 weeks
200-.0266 -.06076 (200*2π)/17719 weeks
201.01709 -.03347 (201*2π)/17719 weeks
202-.01386 -.1077 (202*2π)/17719 weeks
203-.01434 -.0782 (203*2π)/17719 weeks
204-.01915 -.09602 (204*2π)/17719 weeks
205.0234 -.08091 (205*2π)/17719 weeks
206-.06681 -.095 (206*2π)/17719 weeks
207-.02713 -.0662 (207*2π)/17719 weeks
208-.02637 -.10297 (208*2π)/17719 weeks
209-.02151 -.10366 (209*2π)/17718 weeks
210-.09306 -.06267 (210*2π)/17718 weeks
211.01683 -.03147 (211*2π)/17718 weeks
212-.05089 -.08366 (212*2π)/17718 weeks
213.01374 -.05936 (213*2π)/17718 weeks
214-.09051 -.1013 (214*2π)/17718 weeks
215.04052 -.00241 (215*2π)/17718 weeks
216-.04721 -.15324 (216*2π)/17718 weeks
217-.04699 -.00782 (217*2π)/17718 weeks
218-.0079 -.12353 (218*2π)/17718 weeks
219-.04574 -.0035 (219*2π)/17718 weeks
220.0307 -.10116 (220*2π)/17718 weeks
221-.02309 -.05843 (221*2π)/17718 weeks
222.00737 -.13472 (222*2π)/17718 weeks
223-.10594 -.05334 (223*2π)/17718 weeks
224.008 -.06624 (224*2π)/17718 weeks
225-.05539 -.03425 (225*2π)/17718 weeks
226.02205 -.09123 (226*2π)/17718 weeks
227-.04707 -.0477 (227*2π)/17718 weeks
228.02178 -.10386 (228*2π)/17718 weeks
229-.08361 -.09129 (229*2π)/17718 weeks
230-.01541 -.06914 (230*2π)/17718 weeks
231-.06217 -.06201 (231*2π)/17718 weeks
232.00871 -.06588 (232*2π)/17718 weeks
233-.0506 -.10786 (233*2π)/17718 weeks
234-.0353 -.07718 (234*2π)/17718 weeks
235-.07139 -.06004 (235*2π)/17718 weeks
236-.00535 -.07433 (236*2π)/17718 weeks
237-.10075 -.10494 (237*2π)/17717 weeks
238-.03575 -.00303 (238*2π)/17717 weeks
239-.05816 -.0761 (239*2π)/17717 weeks
240-.03664 -.02127 (240*2π)/17717 weeks
241.01011 -.06929 (241*2π)/17717 weeks
242-.0623 -.04461 (242*2π)/17717 weeks
243-.00964 -.04507 (243*2π)/17717 weeks
244-.01821 -.0299 (244*2π)/17717 weeks
245.02753 -.11039 (245*2π)/17717 weeks
246-.09077 -.07406 (246*2π)/17717 weeks
247-.03738 -.09615 (247*2π)/17717 weeks
248-.08533 -.05572 (248*2π)/17717 weeks
249-.01785 -.02465 (249*2π)/17717 weeks
250-.02849 -.055 (250*2π)/17717 weeks
251.00792 -.03359 (251*2π)/17717 weeks
252-.00467 -.08416 (252*2π)/17717 weeks
253-.0441 -.07102 (253*2π)/17717 weeks
254-.03823 -.0592 (254*2π)/17717 weeks
255-.02819 -.03029 (255*2π)/17717 weeks
256.00996 -.06542 (256*2π)/17717 weeks
257-.02576 -.08466 (257*2π)/17717 weeks
258-.01017 -.06055 (258*2π)/17717 weeks
259-.05796 -.082 (259*2π)/17717 weeks
260-.02042 -.01925 (260*2π)/17717 weeks
261-.02164 -.10002 (261*2π)/17717 weeks
262-.06202 -.03738 (262*2π)/17717 weeks
263-.02107 -.08725 (263*2π)/17717 weeks
264-.0509 -.05547 (264*2π)/17717 weeks
265.00223 -.0628 (265*2π)/17717 weeks
266-.08226 -.06666 (266*2π)/17717 weeks
267-.02244 -.04714 (267*2π)/17717 weeks
268-.08334 -.02949 (268*2π)/17717 weeks
269-.01191 -.02514 (269*2π)/17717 weeks
270-.03843 -.0543 (270*2π)/17717 weeks
271-.01486 -.02434 (271*2π)/17717 weeks
272-.00265 -.07255 (272*2π)/17717 weeks
273-.04041 -.06309 (273*2π)/17716 weeks
274-.04439 -.06479 (274*2π)/17716 weeks
275-.04672 -.00928 (275*2π)/17716 weeks
276-.00561 -.0565 (276*2π)/17716 weeks
277-.03513 -.0574 (277*2π)/17716 weeks
278-.03214 -.05927 (278*2π)/17716 weeks
279-.04325 -.04276 (279*2π)/17716 weeks
280-.01294 -.06254 (280*2π)/17716 weeks
281-.047 -.04064 (281*2π)/17716 weeks
282-.02971 -.04207 (282*2π)/17716 weeks
283-.0344 -.02453 (283*2π)/17716 weeks
284-.02283 -.00782 (284*2π)/17716 weeks
285-.00985 -.03473 (285*2π)/17716 weeks
286-.00704 -.04656 (286*2π)/17716 weeks
287-.03692 -.05072 (287*2π)/17716 weeks
288.03157 -.01287 (288*2π)/17716 weeks
289-.03156 -.10388 (289*2π)/17716 weeks
290-.02169 -.00126 (290*2π)/17716 weeks
291-.00484 -.09306 (291*2π)/17716 weeks
292-.0104 -.02384 (292*2π)/17716 weeks
293.0092 -.11102 (293*2π)/17716 weeks
294-.03559 -.0699 (294*2π)/17716 weeks
295-.03824 -.11411 (295*2π)/17716 weeks
296-.08969 -.03347 (296*2π)/17716 weeks
297.00761 -.08118 (297*2π)/17716 weeks
298-.09624 -.04139 (298*2π)/17716 weeks
299.00438 -.04215 (299*2π)/17716 weeks
300-.08037 -.0509 (300*2π)/17716 weeks
301.03684 -.01498 (301*2π)/17716 weeks
302-.04838 -.10179 (302*2π)/17716 weeks
303-.01298 -.04433 (303*2π)/17716 weeks
304-.07354 -.08081 (304*2π)/17716 weeks
305-.02905 .0066 (305*2π)/17716 weeks
306-.04335 -.0699 (306*2π)/17716 weeks
307-.008 -.01573 (307*2π)/17716 weeks
308-.00316 -.07424 (308*2π)/17716 weeks
309-.0401 -.04657 (309*2π)/17716 weeks
310-.00224 -.06325 (310*2π)/17716 weeks
311-.03259 -.06979 (311*2π)/17716 weeks
312-.03956 -.07683 (312*2π)/17716 weeks
313-.06889 -.03809 (313*2π)/17716 weeks
314-.02829 -.01733 (314*2π)/17716 weeks
315-.02035 -.05671 (315*2π)/17716 weeks
316-.02987 -.04707 (316*2π)/17716 weeks
317-.0438 -.05294 (317*2π)/17716 weeks
318-.0347 -.04367 (318*2π)/17716 weeks
319-.01681 -.03238 (319*2π)/17716 weeks
320-.05161 -.08962 (320*2π)/17716 weeks
321-.03644 -.03379 (321*2π)/17716 weeks
322-.07464 -.05933 (322*2π)/17716 weeks
323-.00991 .00026 (323*2π)/17715 weeks
324-.03588 -.05396 (324*2π)/17715 weeks
325-.02495 .00262 (325*2π)/17715 weeks
326-.02219 -.03465 (326*2π)/17715 weeks
327-.02484 -.00286 (327*2π)/17715 weeks
328.00392 -.0794 (328*2π)/17715 weeks
329-.0817 -.02603 (329*2π)/17715 weeks
330.00328 -.04006 (330*2π)/17715 weeks
331-.05624 -.03345 (331*2π)/17715 weeks
332.02534 -.02476 (332*2π)/17715 weeks
333-.04027 -.06973 (333*2π)/17715 weeks
334-.0104 -.02839 (334*2π)/17715 weeks
335-.03979 -.03302 (335*2π)/17715 weeks
336.00593 -.04034 (336*2π)/17715 weeks
337-.04331 -.05529 (337*2π)/17715 weeks
338-.02511 -.04135 (338*2π)/17715 weeks
339-.0343 -.01592 (339*2π)/17715 weeks
340-.0032 -.05126 (340*2π)/17715 weeks
341-.04168 -.06171 (341*2π)/17715 weeks
342-.06632 -.02327 (342*2π)/17715 weeks
343-.03228 -.01116 (343*2π)/17715 weeks
344-.02273 -.041 (344*2π)/17715 weeks
345-.03108 -.00723 (345*2π)/17715 weeks
346-.00753 -.032 (346*2π)/17715 weeks
347-.03255 -.01415 (347*2π)/17715 weeks
348.00856 -.02845 (348*2π)/17715 weeks
349-.01592 -.02211 (349*2π)/17715 weeks
350-.00507 -.03156 (350*2π)/17715 weeks
351-.02856 .0025 (351*2π)/17715 weeks
352.05791 -.02926 (352*2π)/17715 weeks
353-.00185 -.06344 (353*2π)/17715 weeks
354.03965 -.0469 (354*2π)/17715 weeks
355-.02157 -.06898 (355*2π)/17715 weeks
356.03418 -.04484 (356*2π)/17715 weeks
357-.04867 -.08449 (357*2π)/17715 weeks
358.02075 -.02509 (358*2π)/17715 weeks
359-.03917 -.0853 (359*2π)/17715 weeks
360.01828 -.03604 (360*2π)/17715 weeks
361-.03863 -.10357 (361*2π)/17715 weeks
362-.01115 -.02388 (362*2π)/17715 weeks
363-.05643 -.09643 (363*2π)/17715 weeks
364-.00799 -.00021 (364*2π)/17715 weeks
365-.04788 -.09895 (365*2π)/17715 weeks
366-.04679 .00573 (366*2π)/17715 weeks
367.00845 -.06803 (367*2π)/17715 weeks
368-.03237 -.02802 (368*2π)/17715 weeks
369-.01438 -.07668 (369*2π)/17715 weeks
370-.05145 -.02297 (370*2π)/17715 weeks
371.00554 -.08107 (371*2π)/17715 weeks
372-.06742 -.0386 (372*2π)/17715 weeks
373-.03642 -.05775 (373*2π)/17715 weeks
374-.0621 -.02343 (374*2π)/17715 weeks
375-.01812 -.025 (375*2π)/17715 weeks
376-.03061 -.03232 (376*2π)/17715 weeks
377-.0228 -.01782 (377*2π)/17715 weeks
378-.00217 -.01847 (378*2π)/17715 weeks
379-.01047 -.04976 (379*2π)/17715 weeks
380-.00962 -.02599 (380*2π)/17715 weeks
381-.03464 -.07888 (381*2π)/17715 weeks
382-.01741 -.02322 (382*2π)/17715 weeks
383-.02111 -.05387 (383*2π)/17715 weeks
384-.01415 -.02444 (384*2π)/17715 weeks
385-.01771 -.06327 (385*2π)/17715 weeks
386-.0332 -.01619 (386*2π)/17715 weeks
387.00016 -.03531 (387*2π)/17715 weeks
388-.01741 -.04213 (388*2π)/17715 weeks
389.00486 -.09185 (389*2π)/17715 weeks
390-.04902 -.06256 (390*2π)/17715 weeks
391-.04752 -.05839 (391*2π)/17715 weeks
392-.04002 -.03969 (392*2π)/17715 weeks
393-.01919 -.05449 (393*2π)/17715 weeks
394-.03181 -.03864 (394*2π)/17714 weeks
395-.02149 -.05191 (395*2π)/17714 weeks
396-.0358 -.05002 (396*2π)/17714 weeks
397-.00824 -.06709 (397*2π)/17714 weeks
398-.0609 -.07757 (398*2π)/17714 weeks
399-.08097 -.03654 (399*2π)/17714 weeks
400-.05383 -.01918 (400*2π)/17714 weeks
401-.04924 -.03315 (401*2π)/17714 weeks
402-.07342 .00426 (402*2π)/17714 weeks
403-.00229 .00073 (403*2π)/17714 weeks
404-.02782 -.03134 (404*2π)/17714 weeks
405-.04491 -.01251 (405*2π)/17714 weeks
406.00162 -.03241 (406*2π)/17714 weeks
407-.041 -.0118 (407*2π)/17714 weeks
408.01448 .00554 (408*2π)/17714 weeks
409-.03568 -.04165 (409*2π)/17714 weeks
410-.00221 -.00713 (410*2π)/17714 weeks
411-.00347 -.04886 (411*2π)/17714 weeks
412.00414 -.04057 (412*2π)/17714 weeks
413-.02474 -.07307 (413*2π)/17714 weeks
414-.00884 -.04222 (414*2π)/17714 weeks
415-.01974 -.06919 (415*2π)/17714 weeks
416-.01136 -.06541 (416*2π)/17714 weeks
417-.07236 -.07848 (417*2π)/17714 weeks
418-.06145 -.01281 (418*2π)/17714 weeks
419-.0516 -.03834 (419*2π)/17714 weeks
420-.02896 -.01081 (420*2π)/17714 weeks
421-.04209 -.04825 (421*2π)/17714 weeks
422-.01742 -.01223 (422*2π)/17714 weeks
423-.04588 -.04656 (423*2π)/17714 weeks
424-.00995 -.02327 (424*2π)/17714 weeks
425-.0452 -.05395 (425*2π)/17714 weeks
426-.04361 -.01805 (426*2π)/17714 weeks
427-.02731 -.06944 (427*2π)/17714 weeks
428-.06814 -.02572 (428*2π)/17714 weeks
429-.02754 -.04364 (429*2π)/17714 weeks
430-.05486 -.02677 (430*2π)/17714 weeks
431-.02463 -.05188 (431*2π)/17714 weeks
432-.05 -.00584 (432*2π)/17714 weeks
433-.02409