Back to list of Stocks    See Also: Seasonal Analysis of PGRXGenetic Algorithms Stock Portfolio Generator, and Fourier Calculator

Fourier Analysis of PGRX (PROSPECT GBL RS CMN)


PGRX (PROSPECT GBL RS CMN) appears to have interesting cyclic behaviour every 24 weeks (13.5817*sine), 29 weeks (11.9671*cosine), and 26 weeks (11.9505*cosine).

PGRX (PROSPECT GBL RS CMN) has an average price of 78.71 (topmost row, frequency = 0).



Click on the checkboxes shown on the right to see how the various frequencies contribute to the graph. Look for large magnitude coefficients (sine or cosine), as these are associated with frequencies which contribute most to the associated stock plot. If you find a large magnitude coefficient which dramatically changes the graph, look at the associated "Period" in weeks, as you may have found a significant recurring cycle for the stock of interest.

Right click on the graph above to see the menu of operations (download, full screen, etc.)

Fourier Analysis

Using data from 3/22/2011 to 3/20/2017 for PGRX (PROSPECT GBL RS CMN), this program was able to calculate the following Fourier Series:
Sequence #Cosine Coefficients Sine Coefficients FrequenciesPeriod
078.71284   0 
190.69931 106.3375 (1*2π)/314314 weeks
2-9.40375 98.78719 (2*2π)/314157 weeks
3-40.40517 40.68909 (3*2π)/314105 weeks
4-27.12012 7.10819 (4*2π)/31479 weeks
5-10.44995 -3.25676 (5*2π)/31463 weeks
63.45699 .10914 (6*2π)/31452 weeks
72.69294 11.7036 (7*2π)/31445 weeks
8-9.44716 10.1641 (8*2π)/31439 weeks
9-10.44764 -3.62849 (9*2π)/31435 weeks
101.80699 -9.79142 (10*2π)/31431 weeks
1111.96709 -2.99146 (11*2π)/31429 weeks
1211.95049 8.19722 (12*2π)/31426 weeks
132.41385 13.58172 (13*2π)/31424 weeks
14-5.69528 7.05925 (14*2π)/31422 weeks
15-1.88147 -1.36204 (15*2π)/31421 weeks
165.81055 .84686 (16*2π)/31420 weeks
174.77129 7.65703 (17*2π)/31418 weeks
18-.33359 8.26207 (18*2π)/31417 weeks
19-2.42724 6.60644 (19*2π)/31417 weeks
20-4.88769 4.72145 (20*2π)/31416 weeks
21-5.02847 -.15527 (21*2π)/31415 weeks
22-.5769 -2.36143 (22*2π)/31414 weeks
232.1814 .04119 (23*2π)/31414 weeks
241.74135 1.99337 (24*2π)/31413 weeks
25.91681 3.01504 (25*2π)/31413 weeks
26-1.37794 3.14388 (26*2π)/31412 weeks
27-2.40133 -.06742 (27*2π)/31412 weeks
28.78039 -1.92754 (28*2π)/31411 weeks
293.15357 .22611 (29*2π)/31411 weeks
302.52265 2.63658 (30*2π)/31410 weeks
31.50043 3.62576 (31*2π)/31410 weeks
32-2.06347 2.2543 (32*2π)/31410 weeks
33-1.48527 -1.55404 (33*2π)/31410 weeks
342.82309 -1.76455 (34*2π)/3149 weeks
353.56241 2.19832 (35*2π)/3149 weeks
36.47355 2.9955 (36*2π)/3149 weeks
37.12439 .74591 (37*2π)/3148 weeks
381.94508 1.05939 (38*2π)/3148 weeks
391.33822 2.79566 (39*2π)/3148 weeks
40-.20307 2.7431 (40*2π)/3148 weeks
41-1.28851 2.08606 (41*2π)/3148 weeks
42-2.35432 .19573 (42*2π)/3147 weeks
43-.90575 -2.87011 (43*2π)/3147 weeks
443.35555 -3.2719 (44*2π)/3147 weeks
456.27431 .45757 (45*2π)/3147 weeks
464.94359 5.33782 (46*2π)/3147 weeks
47-.21624 7.34877 (47*2π)/3147 weeks
48-4.9065 3.95184 (48*2π)/3147 weeks
49-4.57282 -1.39426 (49*2π)/3146 weeks
50-.94886 -3.8212 (50*2π)/3146 weeks
512.49514 -3.39618 (51*2π)/3146 weeks
525.11984 -1.07601 (52*2π)/3146 weeks
535.2426 2.99882 (53*2π)/3146 weeks
541.79979 5.37796 (54*2π)/3146 weeks
55-1.43956 3.92792 (55*2π)/3146 weeks
56-1.92624 1.47864 (56*2π)/3146 weeks
57-1.1215 .19184 (57*2π)/3146 weeks
58-.24038 -.30296 (58*2π)/3145 weeks
59.51492 -.34234 (59*2π)/3145 weeks
601.1288 -.18142 (60*2π)/3145 weeks
611.74296 .21888 (61*2π)/3145 weeks
622.1816 1.1343 (62*2π)/3145 weeks
631.76284 2.41766 (63*2π)/3145 weeks
64.359 3.10825 (64*2π)/3145 weeks
65-1.42864 2.56078 (65*2π)/3145 weeks
66-2.31227 .33974 (66*2π)/3145 weeks
67-.39704 -1.81761 (67*2π)/3145 weeks
682.40145 -.52029 (68*2π)/3145 weeks
691.6984 2.30281 (69*2π)/3145 weeks
70-.75285 2.13561 (70*2π)/3144 weeks
71-1.02009 .36742 (71*2π)/3144 weeks
72-.19574 -.02932 (72*2π)/3144 weeks
73-.09393 -.05235 (73*2π)/3144 weeks
74.2865 -.48587 (74*2π)/3144 weeks
751.11252 -.29081 (75*2π)/3144 weeks
761.3481 .52569 (76*2π)/3144 weeks
77.91261 1.17509 (77*2π)/3144 weeks
78-.00641 1.30041 (78*2π)/3144 weeks
79-.69451 .38936 (79*2π)/3144 weeks
80-.18468 -.71834 (80*2π)/3144 weeks
811.04204 -.93899 (81*2π)/3144 weeks
821.98891 -.0362 (82*2π)/3144 weeks
831.78662 1.28529 (83*2π)/3144 weeks
84.62558 1.78961 (84*2π)/3144 weeks
85-.14317 1.16045 (85*2π)/3144 weeks
86.05425 .71766 (86*2π)/3144 weeks
87-.06508 1.02312 (87*2π)/3144 weeks
88-.93576 .71786 (88*2π)/3144 weeks
89-1.10892 -.55525 (89*2π)/3144 weeks
90-.14458 -1.45217 (90*2π)/3143 weeks
91.99388 -1.38957 (91*2π)/3143 weeks
921.68397 -.75733 (92*2π)/3143 weeks
931.82487 -.08052 (93*2π)/3143 weeks
941.83739 .35756 (94*2π)/3143 weeks
951.86714 1.05123 (95*2π)/3143 weeks
961.14702 1.9856 (96*2π)/3143 weeks
97-.51853 2.01268 (97*2π)/3143 weeks
98-1.71051 .31653 (98*2π)/3143 weeks
99-.91339 -1.91773 (99*2π)/3143 weeks
1001.68723 -2.77356 (100*2π)/3143 weeks
1014.34949 -.90811 (101*2π)/3143 weeks
1024.27504 2.8716 (102*2π)/3143 weeks
103.71835 4.87134 (103*2π)/3143 weeks
104-2.5458 2.84756 (104*2π)/3143 weeks
105-2.50137 -.27793 (105*2π)/3143 weeks
106-.57954 -1.55051 (106*2π)/3143 weeks
107.89657 -.94654 (107*2π)/3143 weeks
108.9068 .05371 (108*2π)/3143 weeks
109.27806 -.13327 (109*2π)/3143 weeks
110.95285 -.95343 (110*2π)/3143 weeks
1112.40434 -.14112 (111*2π)/3143 weeks
1122.12803 1.89705 (112*2π)/3143 weeks
113.04819 2.70573 (113*2π)/3143 weeks
114-1.95498 1.34761 (114*2π)/3143 weeks
115-1.9247 -1.39698 (115*2π)/3143 weeks
116.69053 -2.84549 (116*2π)/3143 weeks
1173.20032 -1.27256 (117*2π)/3143 weeks
1183.17428 1.41028 (118*2π)/3143 weeks
1191.30431 2.72747 (119*2π)/3143 weeks
120-.51928 2.24665 (120*2π)/3143 weeks
121-1.28547 .89628 (121*2π)/3143 weeks
122-.94177 -.43548 (122*2π)/3143 weeks
123.25776 -.97568 (123*2π)/3143 weeks
1241.24365 -.27071 (124*2π)/3143 weeks
1251.06985 .82412 (125*2π)/3143 weeks
126.06824 1.1211 (126*2π)/3142 weeks
127-.60786 .41511 (127*2π)/3142 weeks
128-.31061 -.38905 (128*2π)/3142 weeks
129.28453 -.32824 (129*2π)/3142 weeks
130.04311 .00064 (130*2π)/3142 weeks
131-.41415 -.70253 (131*2π)/3142 weeks
132.50206 -1.82709 (132*2π)/3142 weeks
1332.44832 -1.3659 (133*2π)/3142 weeks
1343.07509 .9453 (134*2π)/3142 weeks
1351.18909 2.8141 (135*2π)/3142 weeks
136-1.52448 1.99731 (136*2π)/3142 weeks
137-1.96788 -.85287 (137*2π)/3142 weeks
138.31888 -2.30411 (138*2π)/3142 weeks
1392.29051 -1.04781 (139*2π)/3142 weeks
1402.20224 .91877 (140*2π)/3142 weeks
141.74651 1.78635 (141*2π)/3142 weeks
142-.62574 1.20124 (142*2π)/3142 weeks
143-.90686 -.12815 (143*2π)/3142 weeks
144.0126 -.82962 (144*2π)/3142 weeks
145.54386 -.29804 (145*2π)/3142 weeks
146-.0136 -.17472 (146*2π)/3142 weeks
147-.00694 -1.23002 (147*2π)/3142 weeks
1481.61704 -1.61382 (148*2π)/3142 weeks
1492.76463 .14908 (149*2π)/3142 weeks
1501.45848 2.10073 (150*2π)/3142 weeks
151-1.03201 1.63482 (151*2π)/3142 weeks
152-1.51301 -1.01963 (152*2π)/3142 weeks
153.9488 -2.37154 (153*2π)/3142 weeks
1543.02465 -.43028 (154*2π)/3142 weeks
1551.90811 2.10628 (155*2π)/3142 weeks
156-.65921 2.07451 (156*2π)/3142 weeks
157-1.78541   (157*2π)/3142 weeks
158-.65921 -2.07451 (158*2π)/3142 weeks
1591.90811 -2.10628 (159*2π)/3142 weeks
1603.02465 .43028 (160*2π)/3142 weeks
161.9488 2.37154 (161*2π)/3142 weeks
162-1.51301 1.01963 (162*2π)/3142 weeks
163-1.03201 -1.63482 (163*2π)/3142 weeks
1641.45848 -2.10073 (164*2π)/3142 weeks
1652.76463 -.14908 (165*2π)/3142 weeks
1661.61704 1.61382 (166*2π)/3142 weeks
167-.00694 1.23002 (167*2π)/3142 weeks
168-.0136 .17472 (168*2π)/3142 weeks
169.54386 .29804 (169*2π)/3142 weeks
170.0126 .82962 (170*2π)/3142 weeks
171-.90686 .12815 (171*2π)/3142 weeks
172-.62574 -1.20124 (172*2π)/3142 weeks
173.74651 -1.78635 (173*2π)/3142 weeks
1742.20224 -.91877 (174*2π)/3142 weeks
1752.29051 1.04781 (175*2π)/3142 weeks
176.31888 2.30411 (176*2π)/3142 weeks
177-1.96788 .85287 (177*2π)/3142 weeks
178-1.52448 -1.99731 (178*2π)/3142 weeks
1791.18909 -2.8141 (179*2π)/3142 weeks
1803.07509 -.9453 (180*2π)/3142 weeks
1812.44832 1.3659 (181*2π)/3142 weeks
182.50206 1.82709 (182*2π)/3142 weeks
183-.41415 .70253 (183*2π)/3142 weeks
184.04311 -.00064 (184*2π)/3142 weeks
185.28453 .32824 (185*2π)/3142 weeks
186-.31061 .38905 (186*2π)/3142 weeks
187-.60786 -.41511 (187*2π)/3142 weeks
188.06824 -1.1211 (188*2π)/3142 weeks
1891.06985 -.82412 (189*2π)/3142 weeks
1901.24365 .27071 (190*2π)/3142 weeks
191.25776 .97568 (191*2π)/3142 weeks
192-.94177 .43548 (192*2π)/3142 weeks
193-1.28547 -.89628 (193*2π)/3142 weeks
194-.51928 -2.24665 (194*2π)/3142 weeks
1951.30431 -2.72747 (195*2π)/3142 weeks
1963.17428 -1.41028 (196*2π)/3142 weeks
1973.20032 1.27256 (197*2π)/3142 weeks
198.69053 2.84549 (198*2π)/3142 weeks
199-1.9247 1.39698 (199*2π)/3142 weeks
200-1.95498 -1.34761 (200*2π)/3142 weeks
201.04819 -2.70573 (201*2π)/3142 weeks
2022.12803 -1.89705 (202*2π)/3142 weeks
2032.40434 .14112 (203*2π)/3142 weeks
204.95285 .95343 (204*2π)/3142 weeks
205.27806 .13327 (205*2π)/3142 weeks
206.9068 -.05371 (206*2π)/3142 weeks
207.89657 .94654 (207*2π)/3142 weeks
208-.57954 1.55051 (208*2π)/3142 weeks
209-2.50137 .27793 (209*2π)/3142 weeks
210-2.5458 -2.84756 (210*2π)/3141 weeks
211.71835 -4.87134 (211*2π)/3141 weeks
2124.27504 -2.8716 (212*2π)/3141 weeks
2134.34949 .90811 (213*2π)/3141 weeks
2141.68723 2.77356 (214*2π)/3141 weeks
215-.91339 1.91773 (215*2π)/3141 weeks
216-1.71051 -.31653 (216*2π)/3141 weeks
217-.51853 -2.01268 (217*2π)/3141 weeks
2181.14702 -1.9856 (218*2π)/3141 weeks
2191.86714 -1.05123 (219*2π)/3141 weeks
2201.83739 -.35756 (220*2π)/3141 weeks
2211.82487 .08052 (221*2π)/3141 weeks
2221.68397 .75733 (222*2π)/3141 weeks
223.99388 1.38957 (223*2π)/3141 weeks
224-.14458 1.45217 (224*2π)/3141 weeks
225-1.10892 .55525 (225*2π)/3141 weeks
226-.93576 -.71786 (226*2π)/3141 weeks
227-.06508 -1.02312 (227*2π)/3141 weeks
228.05425 -.71766 (228*2π)/3141 weeks
229-.14317 -1.16045 (229*2π)/3141 weeks
230.62558 -1.78961 (230*2π)/3141 weeks
2311.78662 -1.28529 (231*2π)/3141 weeks
2321.98891 .0362 (232*2π)/3141 weeks
2331.04204 .93899 (233*2π)/3141 weeks
234-.18468 .71834 (234*2π)/3141 weeks
235-.69451 -.38936 (235*2π)/3141 weeks
236-.00641 -1.30041 (236*2π)/3141 weeks
237.91261 -1.17509 (237*2π)/3141 weeks
2381.3481 -.52569 (238*2π)/3141 weeks
2391.11252 .29081 (239*2π)/3141 weeks
240.2865 .48587 (240*2π)/3141 weeks
241-.09393 .05235 (241*2π)/3141 weeks
242-.19574 .02932 (242*2π)/3141 weeks
243-1.02009 -.36742 (243*2π)/3141 weeks
244-.75285 -2.13561 (244*2π)/3141 weeks
2451.6984 -2.30281 (245*2π)/3141 weeks
2462.40145 .52029 (246*2π)/3141 weeks
247-.39704 1.81761 (247*2π)/3141 weeks
248-2.31227 -.33974 (248*2π)/3141 weeks
249-1.42864 -2.56078 (249*2π)/3141 weeks
250.359 -3.10825 (250*2π)/3141 weeks
2511.76284 -2.41766 (251*2π)/3141 weeks
2522.1816 -1.1343 (252*2π)/3141 weeks
2531.74296 -.21888 (253*2π)/3141 weeks
2541.1288 .18142 (254*2π)/3141 weeks
255.51492 .34234 (255*2π)/3141 weeks
256-.24038 .30296 (256*2π)/3141 weeks
257-1.1215 -.19184 (257*2π)/3141 weeks
258-1.92624 -1.47864 (258*2π)/3141 weeks
259-1.43956 -3.92792 (259*2π)/3141 weeks
2601.79979 -5.37796 (260*2π)/3141 weeks
2615.2426 -2.99882 (261*2π)/3141 weeks
2625.11984 1.07601 (262*2π)/3141 weeks
2632.49514 3.39618 (263*2π)/3141 weeks
264-.94886 3.8212 (264*2π)/3141 weeks
265-4.57282 1.39426 (265*2π)/3141 weeks
266-4.9065 -3.95184 (266*2π)/3141 weeks
267-.21624 -7.34877 (267*2π)/3141 weeks
2684.94359 -5.33782 (268*2π)/3141 weeks
2696.27431 -.45757 (269*2π)/3141 weeks
2703.35555 3.2719 (270*2π)/3141 weeks
271-.90575 2.87011 (271*2π)/3141 weeks
272-2.35432 -.19573 (272*2π)/3141 weeks
273-1.28851 -2.08606 (273*2π)/3141 weeks
274-.20307 -2.7431 (274*2π)/3141 weeks
2751.33822 -2.79566 (275*2π)/3141 weeks
2761.94508 -1.05939 (276*2π)/3141 weeks
277.12439 -.74591 (277*2π)/3141 weeks
278.47355 -2.9955 (278*2π)/3141 weeks
2793.56241 -2.19832 (279*2π)/3141 weeks
2802.82309 1.76455 (280*2π)/3141 weeks
281-1.48527 1.55404 (281*2π)/3141 weeks
282-2.06347 -2.2543 (282*2π)/3141 weeks
283.50043 -3.62576 (283*2π)/3141 weeks
2842.52265 -2.63658 (284*2π)/3141 weeks
2853.15357 -.22611 (285*2π)/3141 weeks
286.78039 1.92754 (286*2π)/3141 weeks
287-2.40133 .06742 (287*2π)/3141 weeks
288-1.37794 -3.14388 (288*2π)/3141 weeks
289.91681 -3.01504 (289*2π)/3141 weeks
2901.74135 -1.99337 (290*2π)/3141 weeks
2912.1814 -.04119 (291*2π)/3141 weeks
292-.5769 2.36143 (292*2π)/3141 weeks
293-5.02847 .15527 (293*2π)/3141 weeks
294-4.88769 -4.72145 (294*2π)/3141 weeks
295-2.42724 -6.60644 (295*2π)/3141 weeks
296-.33359 -8.26207 (296*2π)/3141 weeks
2974.77129 -7.65703 (297*2π)/3141 weeks
2985.81055 -.84686 (298*2π)/3141 weeks
299-1.88147 1.36204 (299*2π)/3141 weeks
300-5.69528 -7.05925 (300*2π)/3141 weeks
3012.41385 -13.58172 (301*2π)/3141 weeks
30211.95049 -8.19722 (302*2π)/3141 weeks
30311.96709 2.99146 (303*2π)/3141 weeks
3041.80699 9.79142 (304*2π)/3141 weeks
305-10.44764 3.62849 (305*2π)/3141 weeks
306-9.44716 -10.1641 (306*2π)/3141 weeks
3072.69294 -11.7036 (307*2π)/3141 weeks
3083.45699 -.10914 (308*2π)/3141 weeks
309-10.44995 3.25676 (309*2π)/3141 weeks
310-27.12012 -7.10819 (310*2π)/3141 weeks
311-40.40517 -40.68909 (311*2π)/3141 weeks
312-9.40375 -98.78719 (312*2π)/3141 weeks

Problems, Comments, Suggestions? Click here to contact Greg Thatcher

Please read my Disclaimer





Copyright (c) 2013 Thatcher Development Software, LLC. All rights reserved. No claim to original U.S. Gov't works.