Back to list of Stocks    See Also: Seasonal Analysis of PEPGenetic Algorithms Stock Portfolio Generator, and Fourier Calculator

Fourier Analysis of PEP (Pepsico, Inc. Common Stock)


PEP (Pepsico, Inc. Common Stock) appears to have interesting cyclic behaviour every 233 weeks (3.9156*sine), 155 weeks (2.9933*sine), and 212 weeks (2.9573*sine).

PEP (Pepsico, Inc. Common Stock) has an average price of 24.58 (topmost row, frequency = 0).



Click on the checkboxes shown on the right to see how the various frequencies contribute to the graph. Look for large magnitude coefficients (sine or cosine), as these are associated with frequencies which contribute most to the associated stock plot. If you find a large magnitude coefficient which dramatically changes the graph, look at the associated "Period" in weeks, as you may have found a significant recurring cycle for the stock of interest.

Right click on the graph above to see the menu of operations (download, full screen, etc.)

Fourier Analysis

Using data from 6/1/1972 to 1/17/2017 for PEP (Pepsico, Inc. Common Stock), this program was able to calculate the following Fourier Series:
Sequence #Cosine Coefficients Sine Coefficients FrequenciesPeriod
024.57522   0 
113.59469 -26.38437 (1*2π)/23292,329 weeks
24.67984 -12.3466 (2*2π)/23291,165 weeks
33.47794 -9.80368 (3*2π)/2329776 weeks
42.56402 -7.91653 (4*2π)/2329582 weeks
52.41501 -7.66864 (5*2π)/2329466 weeks
6.0315 -6.95871 (6*2π)/2329388 weeks
7-.03836 -5.01685 (7*2π)/2329333 weeks
8-.19851 -3.82445 (8*2π)/2329291 weeks
91.00688 -3.95206 (9*2π)/2329259 weeks
10-.32095 -3.91565 (10*2π)/2329233 weeks
11-.13916 -2.95727 (11*2π)/2329212 weeks
12-.32969 -2.87467 (12*2π)/2329194 weeks
13-.12891 -1.89302 (13*2π)/2329179 weeks
14.74906 -1.8784 (14*2π)/2329166 weeks
15.74056 -2.99333 (15*2π)/2329155 weeks
16-.48008 -2.50621 (16*2π)/2329146 weeks
17-.14806 -2.06396 (17*2π)/2329137 weeks
18-.44791 -1.67659 (18*2π)/2329129 weeks
19.19385 -1.32455 (19*2π)/2329123 weeks
20.30563 -1.57769 (20*2π)/2329116 weeks
21.44866 -1.83835 (21*2π)/2329111 weeks
22-.19864 -1.95689 (22*2π)/2329106 weeks
23-.17779 -1.26279 (23*2π)/2329101 weeks
24.29462 -1.28564 (24*2π)/232997 weeks
25.294 -1.60841 (25*2π)/232993 weeks
26.01848 -1.74564 (26*2π)/232990 weeks
27-.09044 -1.44677 (27*2π)/232986 weeks
28-.26276 -1.69298 (28*2π)/232983 weeks
29-.46607 -1.03824 (29*2π)/232980 weeks
30.08971 -1.03384 (30*2π)/232978 weeks
31-.12762 -1.39487 (31*2π)/232975 weeks
32-.3273 -1.01898 (32*2π)/232973 weeks
33-.13396 -1.13557 (33*2π)/232971 weeks
34-.47589 -.88873 (34*2π)/232969 weeks
35-.086 -.66417 (35*2π)/232967 weeks
36.0111 -.77428 (36*2π)/232965 weeks
37-.05847 -.80741 (37*2π)/232963 weeks
38.17203 -.70958 (38*2π)/232961 weeks
39.1596 -1.08618 (39*2π)/232960 weeks
40-.15192 -.92874 (40*2π)/232958 weeks
41-.03907 -.93565 (41*2π)/232957 weeks
42-.10144 -.80097 (42*2π)/232955 weeks
43-.03734 -.95396 (43*2π)/232954 weeks
44-.30702 -.8661 (44*2π)/232953 weeks
45-.13846 -.6449 (45*2π)/232952 weeks
46-.24589 -.67234 (46*2π)/232951 weeks
47-.05344 -.51146 (47*2π)/232950 weeks
48.12138 -.61479 (48*2π)/232949 weeks
49.01532 -.82371 (49*2π)/232948 weeks
50-.07627 -.84314 (50*2π)/232947 weeks
51-.35763 -.67106 (51*2π)/232946 weeks
52-.01041 -.47584 (52*2π)/232945 weeks
53-.12156 -.67732 (53*2π)/232944 weeks
54-.09677 -.60739 (54*2π)/232943 weeks
55-.13602 -.60837 (55*2π)/232942 weeks
56-.21204 -.53151 (56*2π)/232942 weeks
57-.01941 -.45412 (57*2π)/232941 weeks
58-.15162 -.56356 (58*2π)/232940 weeks
59-.02936 -.37288 (59*2π)/232939 weeks
60.09494 -.60741 (60*2π)/232939 weeks
61-.20097 -.6211 (61*2π)/232938 weeks
62-.10599 -.37095 (62*2π)/232938 weeks
63-.00584 -.43114 (63*2π)/232937 weeks
64.08154 -.56078 (64*2π)/232936 weeks
65-.17351 -.66293 (65*2π)/232936 weeks
66-.25356 -.36586 (66*2π)/232935 weeks
67-.03367 -.3529 (67*2π)/232935 weeks
68-.15353 -.33486 (68*2π)/232934 weeks
69.13482 -.24313 (69*2π)/232934 weeks
70.1109 -.54346 (70*2π)/232933 weeks
71-.05746 -.44039 (71*2π)/232933 weeks
72.08795 -.40917 (72*2π)/232932 weeks
73.05759 -.58358 (73*2π)/232932 weeks
74-.04914 -.5928 (74*2π)/232931 weeks
75-.27168 -.50496 (75*2π)/232931 weeks
76-.10796 -.34468 (76*2π)/232931 weeks
77-.16887 -.33061 (77*2π)/232930 weeks
78-.01255 -.19496 (78*2π)/232930 weeks
79.14303 -.4168 (79*2π)/232929 weeks
80-.05664 -.42527 (80*2π)/232929 weeks
81.01431 -.40028 (81*2π)/232929 weeks
82-.03081 -.47836 (82*2π)/232928 weeks
83-.1684 -.33056 (83*2π)/232928 weeks
84.05096 -.2802 (84*2π)/232928 weeks
85.01369 -.40486 (85*2π)/232927 weeks
86.05575 -.39704 (86*2π)/232927 weeks
87-.06133 -.47129 (87*2π)/232927 weeks
88-.02402 -.35677 (88*2π)/232926 weeks
89-.03457 -.52653 (89*2π)/232926 weeks
90-.23811 -.34463 (90*2π)/232926 weeks
91.01473 -.27604 (91*2π)/232926 weeks
92-.10058 -.4667 (92*2π)/232925 weeks
93-.20724 -.26898 (93*2π)/232925 weeks
94-.03126 -.22635 (94*2π)/232925 weeks
95-.04642 -.28713 (95*2π)/232925 weeks
96-.03285 -.24702 (96*2π)/232924 weeks
97.03486 -.30652 (97*2π)/232924 weeks
98-.04006 -.34184 (98*2π)/232924 weeks
99-.06323 -.2872 (99*2π)/232924 weeks
100-.00044 -.26402 (100*2π)/232923 weeks
101-.01574 -.27945 (101*2π)/232923 weeks
102.03103 -.32397 (102*2π)/232923 weeks
103-.04291 -.3144 (103*2π)/232923 weeks
104-.00855 -.28376 (104*2π)/232922 weeks
105-.0121 -.31737 (105*2π)/232922 weeks
106-.02402 -.26194 (106*2π)/232922 weeks
107.05597 -.35059 (107*2π)/232922 weeks
108-.12048 -.36717 (108*2π)/232922 weeks
109-.12082 -.23361 (109*2π)/232921 weeks
110-.03712 -.09618 (110*2π)/232921 weeks
111.16337 -.22576 (111*2π)/232921 weeks
112.13169 -.35669 (112*2π)/232921 weeks
113-.00132 -.42191 (113*2π)/232921 weeks
114-.08005 -.35196 (114*2π)/232920 weeks
115-.05632 -.22564 (115*2π)/232920 weeks
116.04462 -.30757 (116*2π)/232920 weeks
117.00154 -.26861 (117*2π)/232920 weeks
118.09036 -.37415 (118*2π)/232920 weeks
119-.07768 -.41429 (119*2π)/232920 weeks
120-.08432 -.30999 (120*2π)/232919 weeks
121-.0654 -.32019 (121*2π)/232919 weeks
122-.08433 -.24691 (122*2π)/232919 weeks
123.03635 -.30672 (123*2π)/232919 weeks
124-.10545 -.3501 (124*2π)/232919 weeks
125-.05043 -.24361 (125*2π)/232919 weeks
126-.04403 -.35559 (126*2π)/232918 weeks
127-.122 -.21574 (127*2π)/232918 weeks
128.06634 -.33519 (128*2π)/232918 weeks
129-.18608 -.34645 (129*2π)/232918 weeks
130-.06188 -.24927 (130*2π)/232918 weeks
131-.152 -.25546 (131*2π)/232918 weeks
132-.04229 -.19677 (132*2π)/232918 weeks
133-.04263 -.31747 (133*2π)/232918 weeks
134-.14666 -.26947 (134*2π)/232917 weeks
135-.13131 -.2724 (135*2π)/232917 weeks
136-.22189 -.14576 (136*2π)/232917 weeks
137-.03196 -.06296 (137*2π)/232917 weeks
138.00959 -.18078 (138*2π)/232917 weeks
139-.02462 -.2349 (139*2π)/232917 weeks
140-.07442 -.1984 (140*2π)/232917 weeks
141-.05435 -.16265 (141*2π)/232917 weeks
142.01676 -.14981 (142*2π)/232916 weeks
143.05817 -.25477 (143*2π)/232916 weeks
144-.07143 -.27865 (144*2π)/232916 weeks
145-.05627 -.22762 (145*2π)/232916 weeks
146-.09392 -.21203 (146*2π)/232916 weeks
147-.06406 -.13627 (147*2π)/232916 weeks
148.02008 -.17803 (148*2π)/232916 weeks
149-.00689 -.19909 (149*2π)/232916 weeks
150-.02666 -.25403 (150*2π)/232916 weeks
151-.05281 -.15279 (151*2π)/232915 weeks
152.02533 -.21604 (152*2π)/232915 weeks
153-.03343 -.22694 (153*2π)/232915 weeks
154-.03663 -.1926 (154*2π)/232915 weeks
155.00963 -.22137 (155*2π)/232915 weeks
156-.03073 -.2106 (156*2π)/232915 weeks
157-.01516 -.27588 (157*2π)/232915 weeks
158-.11135 -.19326 (158*2π)/232915 weeks
159-.01132 -.16589 (159*2π)/232915 weeks
160-.03741 -.20414 (160*2π)/232915 weeks
161.00454 -.20125 (161*2π)/232914 weeks
162-.06181 -.24304 (162*2π)/232914 weeks
163-.0634 -.17278 (163*2π)/232914 weeks
164-.02388 -.17308 (164*2π)/232914 weeks
165-.00705 -.17245 (165*2π)/232914 weeks
166.01138 -.23063 (166*2π)/232914 weeks
167-.05661 -.2376 (167*2π)/232914 weeks
168-.05649 -.18349 (168*2π)/232914 weeks
169-.04308 -.20687 (169*2π)/232914 weeks
170-.04841 -.14405 (170*2π)/232914 weeks
171.02799 -.21343 (171*2π)/232914 weeks
172-.06462 -.24782 (172*2π)/232914 weeks
173-.08884 -.19196 (173*2π)/232913 weeks
174-.12451 -.14724 (174*2π)/232913 weeks
175-.01568 -.02882 (175*2π)/232913 weeks
176.10289 -.16528 (176*2π)/232913 weeks
177.01094 -.22597 (177*2π)/232913 weeks
178-.00549 -.21005 (178*2π)/232913 weeks
179-.00897 -.20059 (179*2π)/232913 weeks
180-.03127 -.19133 (180*2π)/232913 weeks
181.03557 -.18206 (181*2π)/232913 weeks
182.00072 -.23666 (182*2π)/232913 weeks
183.00441 -.23804 (183*2π)/232913 weeks
184-.06633 -.26449 (184*2π)/232913 weeks
185-.0401 -.17002 (185*2π)/232913 weeks
186-.01843 -.2429 (186*2π)/232913 weeks
187-.0517 -.19538 (187*2π)/232912 weeks
188-.01615 -.24785 (188*2π)/232912 weeks
189-.09145 -.23069 (189*2π)/232912 weeks
190-.08061 -.18764 (190*2π)/232912 weeks
191-.03516 -.16453 (191*2π)/232912 weeks
192-.00942 -.22631 (192*2π)/232912 weeks
193-.07927 -.25559 (193*2π)/232912 weeks
194-.07879 -.18976 (194*2π)/232912 weeks
195-.06979 -.26254 (195*2π)/232912 weeks
196-.1647 -.16262 (196*2π)/232912 weeks
197-.05202 -.16593 (197*2π)/232912 weeks
198-.11266 -.20095 (198*2π)/232912 weeks
199-.14471 -.14472 (199*2π)/232912 weeks
200-.11136 -.08889 (200*2π)/232912 weeks
201-.03473 -.06783 (201*2π)/232912 weeks
202-.00953 -.15092 (202*2π)/232912 weeks
203-.04716 -.13711 (203*2π)/232911 weeks
204-.03033 -.13316 (204*2π)/232911 weeks
205-.00511 -.14032 (205*2π)/232911 weeks
206-.02463 -.16525 (206*2π)/232911 weeks
207-.00245 -.17516 (207*2π)/232911 weeks
208-.02527 -.19689 (208*2π)/232911 weeks
209-.06123 -.19033 (209*2π)/232911 weeks
210-.0397 -.16724 (210*2π)/232911 weeks
211-.05879 -.19815 (211*2π)/232911 weeks
212-.07578 -.15598 (212*2π)/232911 weeks
213-.02133 -.14721 (213*2π)/232911 weeks
214-.03053 -.22678 (214*2π)/232911 weeks
215-.11941 -.18125 (215*2π)/2329