Back to list of Stocks    See Also: Seasonal Analysis of PEPGenetic Algorithms Stock Portfolio Generator, and Fourier Calculator

Fourier Analysis of PEP (Pepsico, Inc. Common Stock)


PEP (Pepsico, Inc. Common Stock) appears to have interesting cyclic behaviour every 234 weeks (3.8293*sine), 156 weeks (3.1236*sine), and 212 weeks (2.8942*sine).

PEP (Pepsico, Inc. Common Stock) has an average price of 24.52 (topmost row, frequency = 0).



Click on the checkboxes shown on the right to see how the various frequencies contribute to the graph. Look for large magnitude coefficients (sine or cosine), as these are associated with frequencies which contribute most to the associated stock plot. If you find a large magnitude coefficient which dramatically changes the graph, look at the associated "Period" in weeks, as you may have found a significant recurring cycle for the stock of interest.

Right click on the graph above to see the menu of operations (download, full screen, etc.)

Fourier Analysis

Using data from 6/1/1972 to 3/13/2017 for PEP (Pepsico, Inc. Common Stock), this program was able to calculate the following Fourier Series:
Sequence #Cosine Coefficients Sine Coefficients FrequenciesPeriod
024.51622   0 
113.64307 -26.26382 (1*2π)/23372,337 weeks
24.80547 -12.36692 (2*2π)/23371,169 weeks
33.54018 -9.88331 (3*2π)/2337779 weeks
42.58189 -8.02314 (4*2π)/2337584 weeks
52.31104 -7.77738 (5*2π)/2337467 weeks
6-.08389 -6.89348 (6*2π)/2337390 weeks
7-.04808 -4.94413 (7*2π)/2337334 weeks
8-.12862 -3.78201 (8*2π)/2337292 weeks
9.97382 -4.03197 (9*2π)/2337260 weeks
10-.38468 -3.82933 (10*2π)/2337234 weeks
11-.10495 -2.89423 (11*2π)/2337212 weeks
12-.28779 -2.78583 (12*2π)/2337195 weeks
13.04661 -1.88079 (13*2π)/2337180 weeks
14.84718 -2.06854 (14*2π)/2337167 weeks
15.55253 -3.12364 (15*2π)/2337156 weeks
16-.56924 -2.3718 (16*2π)/2337146 weeks
17-.13959 -1.98387 (17*2π)/2337137 weeks
18-.33905 -1.56838 (18*2π)/2337130 weeks
19.34431 -1.40581 (19*2π)/2337123 weeks
20.33678 -1.71042 (20*2π)/2337117 weeks
21.34378 -1.96872 (21*2π)/2337111 weeks
22-.31722 -1.87321 (22*2π)/2337106 weeks
23-.09024 -1.22058 (23*2π)/2337102 weeks
24.31874 -1.41691 (24*2π)/233797 weeks
25.15714 -1.71411 (25*2π)/233793 weeks
26-.17019 -1.7098 (26*2π)/233790 weeks
27-.19505 -1.36818 (27*2π)/233787 weeks
28-.41335 -1.50768 (28*2π)/233783 weeks
29-.35545 -.83467 (29*2π)/233781 weeks
30.13895 -1.06323 (30*2π)/233778 weeks
31-.22794 -1.29175 (31*2π)/233775 weeks
32-.26507 -.85688 (32*2π)/233773 weeks
33-.12293 -1.02889 (33*2π)/233771 weeks
34-.31814 -.68162 (34*2π)/233769 weeks
35.13498 -.67386 (35*2π)/233767 weeks
36.12721 -.83994 (36*2π)/233765 weeks
37.03331 -.84832 (37*2π)/233763 weeks
38.23523 -.87012 (38*2π)/233762 weeks
39.00967 -1.16236 (39*2π)/233760 weeks
40-.19454 -.84631 (40*2π)/233758 weeks
41-.07803 -.8936 (41*2π)/233757 weeks
42-.08877 -.74704 (42*2π)/233756 weeks
43-.113 -.88971 (43*2π)/233754 weeks
44-.27532 -.66109 (44*2π)/233753 weeks
45-.00585 -.56941 (45*2π)/233752 weeks
46-.10928 -.57545 (46*2π)/233751 weeks
47.12764 -.56898 (47*2π)/233750 weeks
48.14881 -.75739 (48*2π)/233749 weeks
49-.08788 -.83252 (49*2π)/233748 weeks
50-.15897 -.73255 (50*2π)/233747 weeks
51-.2395 -.44982 (51*2π)/233746 weeks
52.14665 -.52271 (52*2π)/233745 weeks
53-.09656 -.62969 (53*2π)/233744 weeks
54-.02661 -.56428 (54*2π)/233743 weeks
55-.05944 -.53705 (55*2π)/233742 weeks
56-.05246 -.45075 (56*2π)/233742 weeks
57.12349 -.52102 (57*2π)/233741 weeks
58-.05622 -.53104 (58*2π)/233740 weeks
59.14141 -.47887 (59*2π)/233740 weeks
60.03678 -.70844 (60*2π)/233739 weeks
61-.16454 -.487 (61*2π)/233738 weeks
62.09365 -.39743 (62*2π)/233738 weeks
63.08049 -.54467 (63*2π)/233737 weeks
64.01757 -.64646 (64*2π)/233737 weeks
65-.1965 -.49343 (65*2π)/233736 weeks
66.00958 -.26787 (66*2π)/233735 weeks
67.15176 -.46128 (67*2π)/233735 weeks
68.05611 -.40081 (68*2π)/233734 weeks
69.25945 -.56227 (69*2π)/233734 weeks
70-.03031 -.6945 (70*2π)/233733 weeks
71-.04628 -.46914 (71*2π)/233733 weeks
72.05307 -.56378 (72*2π)/233732 weeks
73-.11708 -.60439 (73*2π)/233732 weeks
74-.15491 -.46513 (74*2π)/233732 weeks
75-.15795 -.27308 (75*2π)/233731 weeks
76.09183 -.34521 (76*2π)/233731 weeks
77.03876 -.33949 (77*2π)/233730 weeks
78.18828 -.42508 (78*2π)/233730 weeks
79.03907 -.63601 (79*2π)/233730 weeks
80-.08544 -.43194 (80*2π)/233729 weeks
81-.00638 -.472 (81*2π)/233729 weeks
82-.08282 -.4493 (82*2π)/233729 weeks
83-.01466 -.29253 (83*2π)/233728 weeks
84.10981 -.47887 (84*2π)/233728 weeks
85-.05756 -.48829 (85*2π)/233727 weeks
86-.03114 -.47173 (86*2π)/233727 weeks
87-.13543 -.3962 (87*2π)/233727 weeks
88-.01263 -.36754 (88*2π)/233727 weeks
89-.14041 -.41562 (89*2π)/233726 weeks
90-.03927 -.18552 (90*2π)/233726 weeks
91.106 -.40869 (91*2π)/233726 weeks
92-.11831 -.36161 (92*2π)/233725 weeks
93.05036 -.21622 (93*2π)/233725 weeks
94.12382 -.39919 (94*2π)/233725 weeks
95.01948 -.39764 (95*2π)/233725 weeks
96.04378 -.39106 (96*2π)/233724 weeks
97-.0027 -.45152 (97*2π)/233724 weeks
98-.05458 -.37107 (98*2π)/233724 weeks
99.00186 -.34612 (99*2π)/233724 weeks
100.02519 -.39982 (100*2π)/233723 weeks
101-.02225 -.38653 (101*2π)/233723 weeks
102-.0424 -.41986 (102*2π)/233723 weeks
103-.05296 -.33676 (103*2π)/233723 weeks
104-.01423 -.36727 (104*2π)/233722 weeks
105-.05136 -.3668 (105*2π)/233722 weeks
106-.01763 -.33951 (106*2π)/233722 weeks
107-.07608 -.40661 (107*2π)/233722 weeks
108-.09799 -.24126 (108*2π)/233722 weeks
109.05493 -.27668 (109*2π)/233721 weeks
110.10795 -.3742 (110*2π)/233721 weeks
111-.04943 -.54388 (111*2π)/233721 weeks
112-.17901 -.41926 (112*2π)/233721 weeks
113-.19345 -.27444 (113*2π)/233721 weeks
114-.0786 -.22539 (114*2π)/233721 weeks
115.01259 -.27558 (115*2π)/233720 weeks
116-.07904 -.37885 (116*2π)/233720 weeks
117-.07246 -.29277 (117*2π)/233720 weeks
118-.14439 -.35216 (118*2π)/233720 weeks
119-.15173 -.17545 (119*2π)/233720 weeks
120-.01875 -.2044 (120*2π)/233719 weeks
121-.03892 -.24904 (121*2π)/233719 weeks
122.00024 -.23761 (122*2π)/233719 weeks
123-.05947 -.33046 (123*2π)/233719 weeks
124-.09127 -.18333 (124*2π)/233719 weeks
125.01953 -.25177 (125*2π)/233719 weeks
126-.08599 -.2581 (126*2π)/233719 weeks
127.03079 -.18963 (127*2π)/233718 weeks
128-.07484 -.34562 (128*2π)/233718 weeks
129-.05983 -.0948 (129*2π)/233718 weeks
130.06227 -.26475 (130*2π)/233718 weeks
131.0073 -.19451 (131*2π)/233718 weeks
132.04171 -.30352 (132*2π)/233718 weeks
133-.06924 -.25732 (133*2π)/233718 weeks
134.01914 -.1709 (134*2π)/233717 weeks
135.03795 -.23902 (135*2π)/233717 weeks
136.12078 -.22002 (136*2π)/233717 weeks
137.09108 -.41503 (137*2π)/233717 weeks
138-.07689 -.35993 (138*2π)/233717 weeks
139-.07487 -.28254 (139*2π)/233717 weeks
140-.01623 -.25398 (140*2π)/233717 weeks
141-.01077 -.30076 (141*2π)/233717 weeks
142-.04551 -.33533 (142*2π)/233716 weeks
143-.12892 -.29342 (143*2π)/233716 weeks
144-.07714 -.16989 (144*2π)/233716 weeks
145-.00614 -.23881 (145*2π)/233716 weeks
146-.00732 -.2324 (146*2π)/233716 weeks
147.01426 -.29007 (147*2π)/233716 weeks
148-.0714 -.32262 (148*2π)/233716 weeks
149-.07879 -.24575 (149*2π)/233716 weeks
150-.08719 -.2306 (150*2π)/233716 weeks
151-.00132 -.23482 (151*2π)/233715 weeks
152-.09618 -.28073 (152*2π)/233715 weeks
153-.0662 -.20042 (153*2π)/233715 weeks
154-.04013 -.22743 (154*2π)/233715 weeks
155-.07583 -.24695 (155*2π)/233715 weeks
156-.05243 -.19363 (156*2π)/233715 weeks
157-.07813 -.20719 (157*2π)/233715 weeks
158.01983 -.17274 (158*2π)/233715 weeks
159-.02911 -.28253 (159*2π)/233715 weeks
160-.06941 -.21329 (160*2π)/233715 weeks
161-.05666 -.2347 (161*2π)/233715 weeks
162-.05742 -.17093 (162*2π)/233714 weeks
163-.0008 -.22472 (163*2π)/233714 weeks
164-.05089 -.24731 (164*2π)/233714 weeks
165-.06487 -.2259 (165*2π)/233714 weeks
166-.09259 -.19898 (166*2π)/233714 weeks
167-.03747 -.15484 (167*2π)/233714 weeks
168-.00596 -.2069 (168*2π)/233714 weeks
169-.04754 -.21437 (169*2π)/233714 weeks
170-.01648 -.21905 (170*2π)/233714 weeks
171-.09864 -.22422 (171*2π)/233714 weeks
172-.03725 -.1356 (172*2π)/233714 weeks
173.01646 -.20061 (173*2π)/233714 weeks
174.00162 -.23253 (174*2π)/233713 weeks
175-.03919 -.32431 (175*2π)/233713 weeks
176-.19881 -.23957 (176*2π)/233713 weeks
177-.10707 -.10613 (177*2π)/233713 weeks
178-.05357 -.15113 (178*2π)/233713 weeks
179-.04774 -.16147 (179*2π)/233713 weeks
180-.04634 -.15889 (180*2π)/233713 weeks
181-.06768 -.19049 (181*2π)/233713 weeks
182-.06943 -.11387 (182*2π)/233713 weeks
183-.03099 -.13495 (183*2π)/233713 weeks
184-.00641 -.11095 (184*2π)/233713 weeks
185.02487 -.1956 (185*2π)/233713 weeks
186-.05471 -.15547 (186*2π)/233713 weeks
187.01461 -.15427 (187*2π)/233712 weeks
188-.03663 -.16156 (188*2π)/233712 weeks
189.03283 -.13901 (189*2π)/233712 weeks
190.01598 -.20432 (190*2π)/233712 weeks
191-.02097 -.2094 (191*2π)/233712 weeks
192-.04886 -.15787 (192*2π)/233712 weeks
193.01436 -.12862 (193*2π)/233712 weeks
194.04165 -.19941 (194*2π)/233712 weeks
195-.01072 -.17856 (195*2π)/233712 weeks
196.08211 -.20478 (196*2π)/233712 weeks
197-.04 -.27007 (197*2π)/233712 weeks
198-.00397 -.18455 (198*2π)/233712 weeks
199.01566 -.24506 (199*2π)/233712 weeks
200-.0409 -.28041 (200*2π)/233712 weeks
201-.10097 -.25678 (201*2π)/233712 weeks
202-.12252 -.17021 (202*2π)/233712 weeks
203-.04813 -.16435 (203*2π)/233712 weeks
204-.06948 -.18105 (204*2π)/233711 weeks
205-.07308 -.1662 (205*2π)/233711 weeks
206-.05752