Back to list of Stocks    See Also: Seasonal Analysis of NWTRGenetic Algorithms Stock Portfolio Generator, and Fourier Calculator

Fourier Analysis of NWTR (NEW WESTN ENERGY COR)


NWTR (NEW WESTN ENERGY COR) appears to have interesting cyclic behaviour every 15 weeks (.0287*sine), 18 weeks (.0262*sine), and 19 weeks (.0261*sine).

NWTR (NEW WESTN ENERGY COR) has an average price of .16 (topmost row, frequency = 0).



Click on the checkboxes shown on the right to see how the various frequencies contribute to the graph. Look for large magnitude coefficients (sine or cosine), as these are associated with frequencies which contribute most to the associated stock plot. If you find a large magnitude coefficient which dramatically changes the graph, look at the associated "Period" in weeks, as you may have found a significant recurring cycle for the stock of interest.

Right click on the graph above to see the menu of operations (download, full screen, etc.)

Fourier Analysis

Using data from 8/15/2012 to 1/9/2017 for NWTR (NEW WESTN ENERGY COR), this program was able to calculate the following Fourier Series:
Sequence #Cosine Coefficients Sine Coefficients FrequenciesPeriod
0.1626   0 
1.09096 .14505 (1*2π)/231231 weeks
2.06608 .09795 (2*2π)/231116 weeks
3.04717 .09841 (3*2π)/23177 weeks
4-.00925 .09342 (4*2π)/23158 weeks
5-.01895 .05752 (5*2π)/23146 weeks
6-.02536 .03656 (6*2π)/23139 weeks
7-.01316 .01862 (7*2π)/23133 weeks
8-.01299 .00937 (8*2π)/23129 weeks
9-.00014 .00188 (9*2π)/23126 weeks
10.01759 .00423 (10*2π)/23123 weeks
11.01822 .018 (11*2π)/23121 weeks
12.00913 .02611 (12*2π)/23119 weeks
13.00442 .02619 (13*2π)/23118 weeks
14.00124 .02163 (14*2π)/23117 weeks
15-.01163 .02871 (15*2π)/23115 weeks
16-.01481 .00873 (16*2π)/23114 weeks
17-.00997 .00237 (17*2π)/23114 weeks
18-.00311 -.00017 (18*2π)/23113 weeks
19-.00138 .00107 (19*2π)/23112 weeks
20.00336 -.00427 (20*2π)/23112 weeks
21.01142 .00134 (21*2π)/23111 weeks
22.00876 .00678 (22*2π)/23111 weeks
23.00779 .00985 (23*2π)/23110 weeks
24.00492 .00877 (24*2π)/23110 weeks
25.00392 .01088 (25*2π)/2319 weeks
26.00158 .0095 (26*2π)/2319 weeks
27-.00107 .00726 (27*2π)/2319 weeks
28.00117 .00498 (28*2π)/2318 weeks
29.00168 .00723 (29*2π)/2318 weeks
30-.00189 .00369 (30*2π)/2318 weeks
31.00118 .00277 (31*2π)/2317 weeks
32.00246 .00009 (32*2π)/2317 weeks
33.00594 .00394 (33*2π)/2317 weeks
34.00331 .00203 (34*2π)/2317 weeks
35.00595 .00752 (35*2π)/2317 weeks
36.00191 .00228 (36*2π)/2316 weeks
37.00647 .00638 (37*2π)/2316 weeks
38.00013 .0054 (38*2π)/2316 weeks
39.0035 .00454 (39*2π)/2316 weeks
40.00265 .00335 (40*2π)/2316 weeks
41.00213 .00663 (41*2π)/2316 weeks
42  .00291 (42*2π)/2316 weeks
43.00144 .00057 (43*2π)/2315 weeks
44.00437 .00354 (44*2π)/2315 weeks
45.00109 .00026 (45*2π)/2315 weeks
46.0069 .00187 (46*2π)/2315 weeks
47.00605 .0026 (47*2π)/2315 weeks
48.00535 .00685 (48*2π)/2315 weeks
49.00448 .00627 (49*2π)/2315 weeks
50.00155 .00646 (50*2π)/2315 weeks
51-.00002 .00654 (51*2π)/2315 weeks
52-.00075 .00434 (52*2π)/2314 weeks
53-.00153 -.00015 (53*2π)/2314 weeks
54.00239 .00089 (54*2π)/2314 weeks
55.00335 .00076 (55*2π)/2314 weeks
56.00361 .00317 (56*2π)/2314 weeks
57.00216 .00218 (57*2π)/2314 weeks
58.00356 .00194 (58*2π)/2314 weeks
59.00209 .00408 (59*2π)/2314 weeks
60.00249 .0003 (60*2π)/2314 weeks
61.00404 .00338 (61*2π)/2314 weeks
62.00441 .00324 (62*2π)/2314 weeks
63.00159 .0046 (63*2π)/2314 weeks
64.00141 .00493 (64*2π)/2314 weeks
65-.00041 .00339 (65*2π)/2314 weeks
66-.0021 .00012 (66*2π)/2314 weeks
67.00227 -.00067 (67*2π)/2313 weeks
68.00275 -.00051 (68*2π)/2313 weeks
69.00411 -.00105 (69*2π)/2313 weeks
70.00614 .0031 (70*2π)/2313 weeks
71.00489 .0046 (71*2π)/2313 weeks
72.00102 .00495 (72*2π)/2313 weeks
73.00056 .00369 (73*2π)/2313 weeks
74.00013 .00317 (74*2π)/2313 weeks
75-.00037 .00194 (75*2π)/2313 weeks
76-.00037 .0007 (76*2π)/2313 weeks
77.00024 .00156 (77*2π)/2313 weeks
78-.00104 -.00025 (78*2π)/2313 weeks
79-.00125 -.00197 (79*2π)/2313 weeks
80.00157 -.00404 (80*2π)/2313 weeks
81.00405 -.00319 (81*2π)/2313 weeks
82.00577 -.00296 (82*2π)/2313 weeks
83.00788 -.00033 (83*2π)/2313 weeks
84.00692 .00446 (84*2π)/2313 weeks
85.00363 .00569 (85*2π)/2313 weeks
86-.00047 .00402 (86*2π)/2313 weeks
87-.00068 .00175 (87*2π)/2313 weeks
88-.00191 -.00036 (88*2π)/2313 weeks
89.0009 -.00379 (89*2π)/2313 weeks
90.00314 -.00354 (90*2π)/2313 weeks
91.00664 -.00172 (91*2π)/2313 weeks
92.0041 .0004 (92*2π)/2313 weeks
93.00544 -.0006 (93*2π)/2312 weeks
94.00584 .00056 (94*2π)/2312 weeks
95.00628 .00275 (95*2π)/2312 weeks
96.00515 .00398 (96*2π)/2312 weeks
97.00219 .00488 (97*2π)/2312 weeks
98.00105 .00375 (98*2π)/2312 weeks
99-.00118 .00276 (99*2π)/2312 weeks
100-.0011 -.00152 (100*2π)/2312 weeks
101.00233 -.00222 (101*2π)/2312 weeks
102.00307 -.00134 (102*2π)/2312 weeks
103.00431 -.00153 (103*2π)/2312 weeks
104.00619 -.00067 (104*2π)/2312 weeks
105.00737 .00374 (105*2π)/2312 weeks
106.00252 .00472 (106*2π)/2312 weeks
107.00228 .00377 (107*2π)/2312 weeks
108.00057 .00413 (108*2π)/2312 weeks
109-.00157 .0017 (109*2π)/2312 weeks
110-.00045 -.0005 (110*2π)/2312 weeks
111.00226 -.00024 (111*2π)/2312 weeks
112.00091 -.00015 (112*2π)/2312 weeks
113.00179 -.00046 (113*2π)/2312 weeks
114.00332 .00167 (114*2π)/2312 weeks
115-.00061 .00146 (115*2π)/2312 weeks
116-.00061 -.00146 (116*2π)/2312 weeks
117.00332 -.00167 (117*2π)/2312 weeks
118.00179 .00046 (118*2π)/2312 weeks
119.00091 .00015 (119*2π)/2312 weeks
120.00226 .00024 (120*2π)/2312 weeks
121-.00045 .0005 (121*2π)/2312 weeks
122-.00157 -.0017 (122*2π)/2312 weeks
123.00057 -.00413 (123*2π)/2312 weeks
124.00228 -.00377 (124*2π)/2312 weeks
125.00252 -.00472 (125*2π)/2312 weeks
126.00737 -.00374 (126*2π)/2312 weeks
127.00619 .00067 (127*2π)/2312 weeks
128.00431 .00153 (128*2π)/2312 weeks
129.00307 .00134 (129*2π)/2312 weeks
130.00233 .00222 (130*2π)/2312 weeks
131-.0011 .00152 (131*2π)/2312 weeks
132-.00118 -.00276 (132*2π)/2312 weeks
133.00105 -.00375 (133*2π)/2312 weeks
134.00219 -.00488 (134*2π)/2312 weeks
135.00515 -.00398 (135*2π)/2312 weeks
136.00628 -.00275 (136*2π)/2312 weeks
137.00584 -.00056 (137*2π)/2312 weeks
138.00544 .0006 (138*2π)/2312 weeks
139.0041 -.0004 (139*2π)/2312 weeks
140.00664 .00172 (140*2π)/2312 weeks
141.00314 .00354 (141*2π)/2312 weeks
142.0009 .00379 (142*2π)/2312 weeks
143-.00191 .00036 (143*2π)/2312 weeks
144-.00068 -.00175 (144*2π)/2312 weeks
145-.00047 -.00402 (145*2π)/2312 weeks
146.00363 -.00569 (146*2π)/2312 weeks
147.00692 -.00446 (147*2π)/2312 weeks
148.00788 .00033 (148*2π)/2312 weeks
149.00577 .00296 (149*2π)/2312 weeks
150.00405 .00319 (150*2π)/2312 weeks
151.00157 .00404 (151*2π)/2312 weeks
152-.00125 .00197 (152*2π)/2312 weeks
153-.00104 .00025 (153*2π)/2312 weeks
154.00024 -.00156 (154*2π)/2312 weeks
155-.00037 -.0007 (155*2π)/2311 weeks
156-.00037 -.00194 (156*2π)/2311 weeks
157.00013 -.00317 (157*2π)/2311 weeks
158.00056 -.00369 (158*2π)/2311 weeks
159.00102 -.00495 (159*2π)/2311 weeks
160.00489 -.0046 (160*2π)/2311 weeks
161.00614 -.0031 (161*2π)/2311 weeks
162.00411 .00105 (162*2π)/2311 weeks
163.00275 .00051 (163*2π)/2311 weeks
164.00227 .00067 (164*2π)/2311 weeks
165-.0021 -.00012 (165*2π)/2311 weeks
166-.00041 -.00339 (166*2π)/2311 weeks
167.00141 -.00493 (167*2π)/2311 weeks
168.00159 -.0046 (168*2π)/2311 weeks
169.00441 -.00324 (169*2π)/2311 weeks
170.00404 -.00338 (170*2π)/2311 weeks
171.00249 -.0003 (171*2π)/2311 weeks
172.00209 -.00408 (172*2π)/2311 weeks
173.00356 -.00194 (173*2π)/2311 weeks
174.00216 -.00218 (174*2π)/2311 weeks
175.00361 -.00317 (175*2π)/2311 weeks
176.00335 -.00076 (176*2π)/2311 weeks
177.00239 -.00089 (177*2π)/2311 weeks
178-.00153 .00015 (178*2π)/2311 weeks
179-.00075 -.00434 (179*2π)/2311 weeks
180-.00002 -.00654 (180*2π)/2311 weeks
181.00155 -.00646 (181*2π)/2311 weeks
182.00448 -.00627 (182*2π)/2311 weeks
183.00535 -.00685 (183*2π)/2311 weeks
184.00605 -.0026 (184*2π)/2311 weeks
185.0069 -.00187 (185*2π)/2311 weeks
186.00109 -.00026 (186*2π)/2311 weeks
187.00437 -.00354 (187*2π)/2311 weeks
188.00144 -.00057 (188*2π)/2311 weeks
189  -.00291 (189*2π)/2311 weeks
190.00213 -.00663 (190*2π)/2311 weeks
191.00265 -.00335 (191*2π)/2311 weeks
192.0035 -.00454 (192*2π)/2311 weeks
193.00013 -.0054 (193*2π)/2311 weeks
194.00647 -.00638 (194*2π)/2311 weeks
195.00191 -.00228 (195*2π)/2311 weeks
196.00595 -.00752 (196*2π)/2311 weeks
197.00331 -.00203 (197*2π)/2311 weeks
198.00594 -.00394 (198*2π)/2311 weeks
199.00246 -.00009 (199*2π)/2311 weeks
200.00118 -.00277 (200*2π)/2311 weeks
201-.00189 -.00369 (201*2π)/2311 weeks
202.00168 -.00723 (202*2π)/2311 weeks
203.00117 -.00498 (203*2π)/2311 weeks
204-.00107 -.00726 (204*2π)/2311 weeks
205.00158 -.0095 (205*2π)/2311 weeks
206.00392 -.01088 (206*2π)/2311 weeks
207.00492 -.00877 (207*2π)/2311 weeks
208.00779 -.00985 (208*2π)/2311 weeks
209.00876 -.00678 (209*2π)/2311 weeks
210.01142 -.00134 (210*2π)/2311 weeks
211.00336 .00427 (211*2π)/2311 weeks
212-.00138 -.00107 (212*2π)/2311 weeks
213-.00311 .00017 (213*2π)/2311 weeks
214-.00997 -.00237 (214*2π)/2311 weeks
215-.01481 -.00873 (215*2π)/2311 weeks
216-.01163 -.02871 (216*2π)/2311 weeks
217.00124 -.02163 (217*2π)/2311 weeks
218.00442 -.02619 (218*2π)/2311 weeks
219.00913 -.02611 (219*2π)/2311 weeks
220.01822 -.018 (220*2π)/2311 weeks
221.01759 -.00423 (221*2π)/2311 weeks
222-.00014 -.00188 (222*2π)/2311 weeks
223-.01299 -.00937 (223*2π)/2311 weeks
224-.01316 -.01862 (224*2π)/2311 weeks
225-.02536 -.03656 (225*2π)/2311 weeks
226-.01895 -.05752 (226*2π)/2311 weeks
227-.00925 -.09342 (227*2π)/2311 weeks
228.04717 -.09841 (228*2π)/2311 weeks
229.06608 -.09795 (229*2π)/2311 weeks

Problems, Comments, Suggestions? Click here to contact Greg Thatcher

Please read my Disclaimer





Copyright (c) 2013 Thatcher Development Software, LLC. All rights reserved. No claim to original U.S. Gov't works.