Back to list of Stocks    See Also: Seasonal Analysis of NKEGenetic Algorithms Stock Portfolio Generator, and Fourier Calculator

Fourier Analysis of NKE (Nike, Inc. Common Stock)


NKE (Nike, Inc. Common Stock) appears to have interesting cyclic behaviour every 188 weeks (1.9748*sine), 145 weeks (1.8842*sine), and 171 weeks (1.6707*sine).

NKE (Nike, Inc. Common Stock) has an average price of 10.01 (topmost row, frequency = 0).



Click on the checkboxes shown on the right to see how the various frequencies contribute to the graph. Look for large magnitude coefficients (sine or cosine), as these are associated with frequencies which contribute most to the associated stock plot. If you find a large magnitude coefficient which dramatically changes the graph, look at the associated "Period" in weeks, as you may have found a significant recurring cycle for the stock of interest.

Right click on the graph above to see the menu of operations (download, full screen, etc.)

Fourier Analysis

Using data from 12/2/1980 to 1/9/2017 for NKE (Nike, Inc. Common Stock), this program was able to calculate the following Fourier Series:
Sequence #Cosine Coefficients Sine Coefficients FrequenciesPeriod
010.00892   0 
18.72124 -9.01109 (1*2π)/18841,884 weeks
25.082 -7.53374 (2*2π)/1884942 weeks
32.62364 -5.84803 (3*2π)/1884628 weeks
41.87143 -5.60045 (4*2π)/1884471 weeks
5.52479 -4.21883 (5*2π)/1884377 weeks
6.42375 -3.96513 (6*2π)/1884314 weeks
7.28251 -3.11841 (7*2π)/1884269 weeks
8-.24769 -3.02264 (8*2π)/1884236 weeks
9-.19084 -2.6941 (9*2π)/1884209 weeks
10-.73761 -1.97482 (10*2π)/1884188 weeks
11-.27758 -1.67065 (11*2π)/1884171 weeks
12-.00335 -1.60728 (12*2π)/1884157 weeks
13-.444 -1.88424 (13*2π)/1884145 weeks
14-.50175 -1.19546 (14*2π)/1884135 weeks
15-.4201 -1.2903 (15*2π)/1884126 weeks
16-.28103 -.94407 (16*2π)/1884118 weeks
17-.46186 -1.12962 (17*2π)/1884111 weeks
18-.48917 -.74921 (18*2π)/1884105 weeks
19-.3589 -.52308 (19*2π)/188499 weeks
20-.11008 -.47647 (20*2π)/188494 weeks
21.03517 -.52127 (21*2π)/188490 weeks
22.0829 -.62851 (22*2π)/188486 weeks
23-.01407 -.73866 (23*2π)/188482 weeks
24-.01902 -.6052 (24*2π)/188479 weeks
25-.05839 -.73661 (25*2π)/188475 weeks
26-.20511 -.58276 (26*2π)/188472 weeks
27-.13239 -.50447 (27*2π)/188470 weeks
28-.17186 -.29491 (28*2π)/188467 weeks
29.18328 -.33241 (29*2π)/188465 weeks
30.12193 -.48763 (30*2π)/188463 weeks
31.09612 -.53748 (31*2π)/188461 weeks
32-.00029 -.5288 (32*2π)/188459 weeks
33.09451 -.44902 (33*2π)/188457 weeks
34.03507 -.50235 (34*2π)/188455 weeks
35.07733 -.47959 (35*2π)/188454 weeks
36.12423 -.49183 (36*2π)/188452 weeks
37.07872 -.63975 (37*2π)/188451 weeks
38-.04332 -.58191 (38*2π)/188450 weeks
39-.01474 -.6253 (39*2π)/188448 weeks
40-.22537 -.56519 (40*2π)/188447 weeks
41-.22023 -.45907 (41*2π)/188446 weeks
42-.17961 -.34342 (42*2π)/188445 weeks
43-.14174 -.33948 (43*2π)/188444 weeks
44-.16447 -.2771 (44*2π)/188443 weeks
45-.07119 -.28144 (45*2π)/188442 weeks
46-.03583 -.2105 (46*2π)/188441 weeks
47.03779 -.29915 (47*2π)/188440 weeks
48-.01596 -.38005 (48*2π)/188439 weeks
49-.06729 -.363 (49*2π)/188438 weeks
50-.09062 -.25797 (50*2π)/188438 weeks
51-.06335 -.30144 (51*2π)/188437 weeks
52-.04235 -.22784 (52*2π)/188436 weeks
53-.0095 -.28756 (53*2π)/188436 weeks
54-.00997 -.26034 (54*2π)/188435 weeks
55-.07292 -.31526 (55*2π)/188434 weeks
56-.04121 -.20903 (56*2π)/188434 weeks
57-.03363 -.25164 (57*2π)/188433 weeks
58-.00287 -.19592 (58*2π)/188432 weeks
59.03524 -.25021 (59*2π)/188432 weeks
60-.00594 -.29759 (60*2π)/188431 weeks
61-.0089 -.26704 (61*2π)/188431 weeks
62-.09758 -.26228 (62*2π)/188430 weeks
63-.0207 -.18966 (63*2π)/188430 weeks
64-.05696 -.22019 (64*2π)/188429 weeks
65.04952 -.12295 (65*2π)/188429 weeks
66.04269 -.27252 (66*2π)/188429 weeks
67.02852 -.2347 (67*2π)/188428 weeks
68.00609 -.28256 (68*2π)/188428 weeks
69.00219 -.23728 (69*2π)/188427 weeks
70.02494 -.28941 (70*2π)/188427 weeks
71-.03592 -.32696 (71*2π)/188427 weeks
72-.11903 -.30716 (72*2π)/188426 weeks
73-.18132 -.2099 (73*2π)/188426 weeks
74-.07921 -.11295 (74*2π)/188425 weeks
75-.04216 -.16641 (75*2π)/188425 weeks
76-.07132 -.16669 (76*2π)/188425 weeks
77-.08394 -.13319 (77*2π)/188424 weeks
78-.02234 -.08051 (78*2π)/188424 weeks
79.01047 -.11433 (79*2π)/188424 weeks
80-.00344 -.14768 (80*2π)/188424 weeks
81.0164 -.09288 (81*2π)/188423 weeks
82.0389 -.16366 (82*2π)/188423 weeks
83.00783 -.10043 (83*2π)/188423 weeks
84.0739 -.16113 (84*2π)/188422 weeks
85.04591 -.14554 (85*2π)/188422 weeks
86.03428 -.17486 (86*2π)/188422 weeks
87.07097 -.15659 (87*2π)/188422 weeks
88.00941 -.17298 (88*2π)/188421 weeks
89.05726 -.13439 (89*2π)/188421 weeks
90.10708 -.14266 (90*2π)/188421 weeks
91.1236 -.24595 (91*2π)/188421 weeks
92.03217 -.2537 (92*2π)/188420 weeks
93-.00191 -.24608 (93*2π)/188420 weeks
94.00453 -.17264 (94*2π)/188420 weeks
95.02719 -.20727 (95*2π)/188420 weeks
96.01879 -.20083 (96*2π)/188420 weeks
97.02325 -.17278 (97*2π)/188419 weeks
98.06889 -.20911 (98*2π)/188419 weeks
99.06452 -.21255 (99*2π)/188419 weeks
100.0381 -.32109 (100*2π)/188419 weeks
101-.03511 -.2413 (101*2π)/188419 weeks
102-.0235 -.26883 (102*2π)/188418 weeks
103-.02365 -.21499 (103*2π)/188418 weeks
104-.05284 -.29928 (104*2π)/188418 weeks
105-.10313 -.21355 (105*2π)/188418 weeks
106-.08862 -.18899 (106*2π)/188418 weeks
107-.07407 -.19391 (107*2π)/188418 weeks
108-.10049 -.16803 (108*2π)/188417 weeks
109-.0774 -.15602 (109*2π)/188417 weeks
110-.0811 -.13525 (110*2π)/188417 weeks
111-.0711 -.13945 (111*2π)/188417 weeks
112-.05065 -.08676 (112*2π)/188417 weeks
113-.02671 -.16063 (113*2π)/188417 weeks
114-.07088 -.10081 (114*2π)/188417 weeks
115-.01176 -.09613 (115*2π)/188416 weeks
116.00939 -.09088 (116*2π)/188416 weeks
117.05811 -.1723 (117*2π)/188416 weeks
118-.04013 -.20089 (118*2π)/188416 weeks
119-.04207 -.16684 (119*2π)/188416 weeks
120-.0886 -.13284 (120*2π)/188416 weeks
121-.01212 -.09095 (121*2π)/188416 weeks
122-.02096 -.13032 (122*2π)/188415 weeks
123.0017 -.12906 (123*2π)/188415 weeks
124-.014 -.12672 (124*2π)/188415 weeks
125.02914 -.15141 (125*2π)/188415 weeks
126-.02295 -.18925 (126*2π)/188415 weeks
127-.03167 -.18569 (127*2π)/188415 weeks
128-.08401 -.16084 (128*2π)/188415 weeks
129-.05106 -.12478 (129*2π)/188415 weeks
130-.06394 -.14688 (130*2π)/188414 weeks
131-.06203 -.11141 (131*2π)/188414 weeks
132-.06023 -.11955 (132*2π)/188414 weeks
133-.05556 -.0832 (133*2π)/188414 weeks
134-.0189 -.10632 (134*2π)/188414 weeks
135-.04877 -.09186 (135*2π)/188414 weeks
136-.01467 -.10436 (136*2π)/188414 weeks
137-.03618 -.07917 (137*2π)/188414 weeks
138.02219 -.09041 (138*2π)/188414 weeks
139.00152 -.13151 (139*2π)/188414 weeks
140.00802 -.12045 (140*2π)/188413 weeks
141-.03493 -.16583 (141*2π)/188413 weeks
142-.03874 -.10056 (142*2π)/188413 weeks
143-.00764 -.1201 (143*2π)/188413 weeks
144-.00994 -.13193 (144*2π)/188413 weeks
145-.0513 -.15385 (145*2π)/188413 weeks
146-.04361 -.08978 (146*2π)/188413 weeks
147-.01224 -.13366 (147*2π)/188413 weeks
148-.05609 -.11995 (148*2π)/188413 weeks
149-.0264 -.11401 (149*2π)/188413 weeks
150-.06317 -.11034 (150*2π)/188413 weeks
151-.0287 -.08988 (151*2π)/188412 weeks
152-.02672 -.09183 (152*2π)/188412 weeks
153-.01584 -.12287 (153*2π)/188412 weeks
154-.04153 -.10203 (154*2π)/188412 weeks
155-.0264 -.12451 (155*2π)/188412 weeks
156-.04817 -.10824 (156*2π)/188412 weeks
157-.05981 -.1052 (157*2π)/188412 weeks
158-.0499 -.08233 (158*2π)/188412 weeks
159-.03926 -.08764 (159*2π)/188412 weeks
160-.04261 -.0855 (160*2π)/188412 weeks
161-.05622 -.07116 (161*2π)/188412 weeks
162-.0379 -.05705 (162*2π)/188412 weeks
163-.00733 -.02463 (163*2π)/188412 weeks
164.03398 -.07097 (164*2π)/188411 weeks
165.02199 -.10452 (165*2π)/188411 weeks
166-.00355 -.1127 (166*2π)/188411 weeks
167-.01738 -.11232 (167*2π)/188411 weeks
168-.03224 -.10225 (168*2π)/188411 weeks
169-.02939 -.07323 (169*2π)/188411 weeks
170.00913 -.07624 (170*2π)/188411 weeks
171.00697 -.09706 (171*2π)/188411 weeks
172.00765 -.12213 (172*2π)/188411 weeks
173-.02704 -.11871 (173*2π)/188411 weeks
174-.01529 -.10091 (174*2π)/188411 weeks
175-.01794 -.10157 (175*2π)/188411 weeks
176-.00027 -.11681 (176*2π)/188411 weeks
177-.018 -.11891 (177*2π)/188411 weeks
178-.01207 -.13549 (178*2π)/188411 weeks
179-.0542 -.15182 (179*2π)/188411 weeks
180-.07516 -.12635 (180*2π)/188410 weeks
181-.09682 -.09405 (181*2π)/188410 weeks
182-.07604 -.05764 (182*2π)/188410 weeks
183-.04695 -.04539 (183*2π)/188410 weeks
184-.03258 -.06678 (184*2π)/188410 weeks
185-.02216 -.05689 (185*2π)/188410 weeks
186-.04141 -.08104 (186*2π)/188410 weeks
187-.03144 -.05716 (187*2π)/188410 weeks
188-.03073 -.04228 (188*2π)/188410 weeks
189.01763 -.05118 (189*2π)/188410 weeks
190.00721 -.09833 (190*2π)/188410 weeks
191-.01955 -.10507 (191*2π)/188410 weeks
192-.05343 -.08315 (192*2π)/188410 weeks
193-.03789 -.05424 (193*2π)/188410 weeks
194-.01575 -.04246 (194*2π)/188410 weeks
195.01391 -.0561 (195*2π)/188410 weeks
196.01867 -.0804 (196*2π)/188410 weeks
197-.00931 -.09011 (197*2π)/188410 weeks
198.00277 -.08778 (198*2π)/188410 weeks
199-.01502 -.0898 (199*2π)/18849 weeks
200-.00212 -.07254 (200*2π)/18849 weeks
201.00801 -.09212 (201*2π)/18849 weeks
202.00742 -.11125 (202*2π)/18849 weeks
203-.01845 -.10888 (203*2π)/18849 weeks
204-.01697 -.11348 (204*2π)/18849 weeks
205-.04274 -.1236 (205*2π)/18849 weeks
206-.05107 -.08623 (206*2π)/18849 weeks
207-.05465 -.0861 (207*2π)/18849 weeks
208-.03351 -.05296 (208*2π)/18849 weeks
209-.00938 -.08572 (209*2π)/18849 weeks
210-.03598 -.09022 (210*2π)/18849 weeks
211-.04851 -.08481 (211*2π)/18849 weeks
212-.05043 -.03831 (212*2π)/18849 weeks
213.0031 -.04465 (213*2π)/18849 weeks
214.0073 -.07628 (214*2π)/18849 weeks
215-.00373 -.09 (215*2π)/18849 weeks
216-.03022 -.07943 (216*2π)/18849 weeks
217.00163 -.07407 (217*2π)/18849 weeks
218.00621 -.08712 (218*2π)/18849 weeks
219-.01379 -.12352 (219*2π)/18849 weeks
220-.0486 -.09886 (220*2π)/18849 weeks
221-.03487 -.07553 (221*2π)/18849 weeks
222-.01256 -.07688 (222*2π)/18848 weeks
223-.0223 -.10746 (223*2π)/18848 weeks
224-.04732 -.09583 (224*2π)/18848 weeks
225-.05755 -.07625 (225*2π)/18848 weeks
226-.01623 -.04792 (226*2π)/18848 weeks
227-.01374 -.08976 (227*2π)/18848 weeks
228-.02087 -.09732 (228*2π)/18848 weeks
229-.03742 -.10001 (229*2π)/18848 weeks
230-.04243 -.0825 (230*2π)/18848 weeks
231-.04758 -.09724 (231*2π)/18848 weeks
232-.0557 -.07731 (232*2π)/18848 weeks
233-.05936 -.05966 (233*2π)/18848 weeks
234-.02006 -.05499 (234*2π)/18848 weeks
235-.03419 -.08078 (235*2π)/18848 weeks
236-.03131 -.0795 (236*2π)/18848 weeks
237-.05342 -.0868 (237*2π)/18848 weeks
238-.04812 -.06479 (238*2π)/18848 weeks
239-.04737 -.07617 (239*2π)/18848 weeks
240-.06467 -.06649 (240*2π)/18848 weeks
241-.04592 -.04517 (241*2π)/18848 weeks
242-.0417 -.05904 (242*2π)/18848 weeks
243-.04176 -.07176 (243*2π)/18848 weeks
244-.07803 -.06063 (244*2π)/18848 weeks
245-.06119 -.01878 (245*2π)/18848 weeks
246-.04126 -.01949 (246*2π)/18848 weeks
247-.01604 -.02207 (247*2π)/18848 weeks
248-.02397 -.03822 (248*2π)/18848 weeks
249-.01826 -.03059 (249*2π)/18848 weeks
250-.01101 -.02627 (250*2π)/18848 weeks
251.01758 -.0437 (251*2π)/18848 weeks
252.00124 -.07116 (252*2π)/18847 weeks
253-.02241 -.07093 (253*2π)/18847 weeks
254-.0206 -.05354 (254*2π)/18847 weeks
255-.01165 -.05351 (255*2π)/18847 weeks
256-.00623 -.06479 (256*2π)/18847 weeks
257-.02429 -.07525 (257*2π)/18847 weeks
258-.02052 -.06638 (258*2π)/18847 weeks
259-.0417 -.06506 (259*2π)/18847 weeks
260-.02966 -.03945 (260*2π)/18847 weeks
261-.00612 -.04367 (261*2π)/18847 weeks
262-.00447 -.06325 (262*2π)/18847 weeks
263-.01346 -.07349 (263*2π)/18847 weeks
264-.02476 -.07097 (264*2π)/18847 weeks
265-.02788 -.05889 (265*2π)/18847 weeks
266-.0176 -.07234 (266*2π)/18847 weeks
267-.04301 -.05991 (267*2π)/18847 weeks
268-.02068 -.04724 (268*2π)/18847 weeks
269-.02857 -.06191 (269*2π)/18847 weeks
270-.02389 -.05998 (270*2π)/18847 weeks
271-.04219 -.04685 (271*2π)/18847 weeks
272-.01641 -.02604 (272*2π)/18847 weeks
273.00198 -.04599 (273*2π)/18847 weeks
274.00887 -.06214 (274*2π)/18847 weeks
275-.01008 -.08282 (275*2π)/18847 weeks
276-.02638 -.07556 (276*2π)/18847 weeks
277-.02918 -.07133 (277*2π)/18847 weeks
278-.03903 -.06583 (278*2π)/18847 weeks
279-.04008 -.04776 (279*2π)/18847 weeks
280-.03289 -.03792 (280*2π)/18847 weeks
281-.00589 -.0381 (281*2π)/18847 weeks
282-.00389 -.05088 (282*2π)/18847 weeks
283-.00088 -.06359 (283*2π)/18847 weeks
284-.01176 -.07463 (284*2π)/18847 weeks
285-.02647 -.07133 (285*2π)/18847 weeks
286-.01929 -.06208 (286*2π)/18847 weeks
287-.03138 -.06447 (287*2π)/18847 weeks
288-.0133 -.05932 (288*2π)/18847 weeks
289-.03151 -.06318 (289*2π)/18847 weeks
290-.01006 -.05971 (290*2π)/18846 weeks
291-.02916 -.08017 (291*2π)/18846 weeks
292-.04104 -.06344 (292*2π)/18846 weeks
293-.03813 -.04435 (293*2π)/18846 weeks
294-.0214 -.04007 (294*2π)/18846 weeks
295-.00572 -.05344 (295*2π)/18846 weeks
296-.01303 -.06665 (296*2π)/18846 weeks
297-.02206 -.0645 (297*2π)/18846 weeks
298-.01504 -.05969 (298*2π)/18846 weeks
299-.01541 -.06826 (299*2π)/18846 weeks
300-.01544 -.08193 (300*2π)/18846 weeks
301-.04734 -.07101 (301*2π)/18846 weeks
302-.01908 -.06158 (302*2π)/18846 weeks
303-.02802 -.07109 (303*2π)/18846 weeks
304-.02585 -.07685 (304*2π)/18846 weeks
305-.04802 -.07972 (305*2π)/18846 weeks
306-.0331 -.06893 (306*2π)/18846 weeks
307-.05624 -.07805 (307*2π)/18846 weeks
308-.05536 -.07037 (308*2π)/18846 weeks
309-.08337 -.05709 (309*2π)/18846 weeks
310-.05735 -.01937 (310*2π)/18846 weeks
311-.04282 -.02734 (311*2π)/18846 weeks
312-.02502 -.03162 (312*2π)/18846 weeks
313-.02583 -.04308 (313*2π)/18846 weeks
314-.03131 -.0569 (314*2π)/18846 weeks
315-.04103 -.04445 (315*2π)/18846 weeks
316-.04874 -.04775 (316*2π)/18846 weeks
317-.03279 -.02525 (317*2π)/18846 weeks
318-.03776 -.04134 (318*2π)/18846 weeks
319-.0294 -.0237 (319*2π)/18846 weeks
320-.02158 -.04363 (320*2π)/18846 weeks
321-.03165 -.02983 (321*2π)/18846 weeks
322-.01776 -.03364 (322*2π)/18846 weeks
323-.01361 -.04022 (323*2π)/18846 weeks
324-.01339 -.05077 (324*2π)/18846 weeks
325-.03139 -.04325 (325*2π)/18846 weeks
326-.01349 -.05065 (326*2π)/18846 weeks
327-.02575 -.04858 (327*2π)/18846 weeks
328-.02043 -.04928 (328*2π)/18846 weeks
329-.03336 -.05407 (329*2π)/18846 weeks
330-.02397 -.04104 (330*2π)/18846 weeks
331-.02292 -.05028 (331*2π)/18846 weeks
332-.02646 -.05604 (332*2π)/18846 weeks
333-.04275 -.0546 (333*2π)/18846 weeks
334-.0359 -.04045 (334*2π)/18846 weeks
335-.04234 -.03796 (335*2π)/18846 weeks
336-.03476 -.03083 (336*2π)/18846 weeks
337-.02334 -.02234 (337*2π)/18846 weeks
338-.01538 -.04106 (338*2π)/18846 weeks
339-.02351 -.03462 (339*2π)/18846 weeks
340-.02065 -.04076 (340*2π)/18846 weeks
341-.01946 -.03952 (341*2π)/18846 weeks
342-.02568 -.02843 (342*2π)/18846 weeks
343.00153 -.03805 (343*2π)/18845 weeks
344-.01103 -.04387 (344*2π)/18845 weeks
345.00005 -.05756 (345*2π)/18845 weeks
346-.02326 -.06398 (346*2π)/18845 weeks
347-.0215 -.05702 (347*2π)/18845 weeks
348-.03079 -.06417 (348*2π)/18845 weeks
349-.04476 -.04696 (349*2π)/18845 weeks
350-.0287 -.03844 (350*2π)/18845 weeks
351-.02775 -.03435 (351*2π)/18845 weeks
352-.01207 -.0505 (352*2π)/18845 weeks
353-.03732 -.05238 (353*2π)/18845 weeks
354-.0331 -.03001 (354*2π)/18845 weeks
355-.00671 -.03138 (355*2π)/18845 weeks
356-.01222 -.05653 (356*2π)/18845 weeks
357-.02282 -.05296 (357*2π)/18845 weeks
358-.02627 -.04613 (358*2π)/18845 weeks
359-.01707 -.04833 (359*2π)/18845 weeks
360-.01623 -.05318 (360*2π)/18845 weeks
361-.03242 -.0682 (361*2π)/18845 weeks
362-.04119 -.0413 (362*2π)/18845 weeks
363-.02535 -.03839 (363*2π)/18845 weeks
364-.01972 -.045 (364*2π)/18845 weeks
365-.02822 -.05602 (365*2π)/18845 weeks
366-.03377 -.0402 (366*2π)/18845 weeks
367-.01997 -.03633 (367*2π)/18845 weeks
368-.00532 -.05082 (368*2π)/18845 weeks
369-.02455 -.06843 (369*2π)/18845 weeks
370-.03123 -.0593 (370*2π)/18845 weeks
371-.03906 -.0614 (371*2π)/18845 weeks
372-.04123 -.04562 (372*2π)/18845 weeks
373-.03234 -.0463 (373*2π)/18845 weeks
374-.02976 -.04903 (374*2π)/18845 weeks
375-.04188 -.05526 (375*2π)/18845 weeks
376-.03566 -.03086 (376*2π)/18845 weeks
377-.02701 -.04825 (377*2π)/18845 weeks
378-.01769 -.04292 (378*2π)/18845 weeks
379-.03018 -.06813 (379*2π)/18845 weeks
380-.04575 -.05896 (380*2π)/18845 weeks
381-.04037 -.04646 (381*2π)/18845 weeks
382-.0391 -.05493 (382*2π)/18845 weeks
383-.05036 -.05876 (383*2π)/18845 weeks
384-.06795 -.04482 (384*2π)/18845 weeks
385-.04845 -.02641 (385*2π)/18845 weeks
386-.047 -.03329 (386*2π)/18845 weeks
387-.04717 -.03741 (387*2π)/18845 weeks
388-.04968 -.02747 (388*2π)/18845 weeks
389-.0452 -.02163 (389*2π)/18845 weeks
390-.03014 -.02348 (390*2π)/18845 weeks
391-.03657 -.03983 (391*2π)/18845 weeks
392-.0418