Back to list of Stocks    See Also: Seasonal Analysis of NAVGenetic Algorithms Stock Portfolio Generator, and Fourier Calculator

Fourier Analysis of NAV (Navistar International Corporat)


NAV (Navistar International Corporat) appears to have interesting cyclic behaviour every 245 weeks (9.1301*sine), 164 weeks (9.0427*sine), and 205 weeks (8.2747*cosine).

NAV (Navistar International Corporat) has an average price of 95.76 (topmost row, frequency = 0).



Click on the checkboxes shown on the right to see how the various frequencies contribute to the graph. Look for large magnitude coefficients (sine or cosine), as these are associated with frequencies which contribute most to the associated stock plot. If you find a large magnitude coefficient which dramatically changes the graph, look at the associated "Period" in weeks, as you may have found a significant recurring cycle for the stock of interest.

Right click on the graph above to see the menu of operations (download, full screen, etc.)

Fourier Analysis

Using data from 1/2/1970 to 1/9/2017 for NAV (Navistar International Corporat), this program was able to calculate the following Fourier Series:
Sequence #Cosine Coefficients Sine Coefficients FrequenciesPeriod
095.75556   0 
165.27009 87.9061 (1*2π)/24542,454 weeks
2-25.76971 61.99488 (2*2π)/24541,227 weeks
3-30.95318 17.12277 (3*2π)/2454818 weeks
4-9.76959 -10.07449 (4*2π)/2454614 weeks
520.19187 6.23729 (5*2π)/2454491 weeks
611.2241 27.13562 (6*2π)/2454409 weeks
7-16.41191 23.00857 (7*2π)/2454351 weeks
8-14.1213 -.45605 (8*2π)/2454307 weeks
9-.87216 -3.8771 (9*2π)/2454273 weeks
103.85104 9.13008 (10*2π)/2454245 weeks
11-6.43704 5.82244 (11*2π)/2454223 weeks
12-8.27474 -3.88514 (12*2π)/2454205 weeks
131.56053 -2.47321 (13*2π)/2454189 weeks
147.14933 6.1674 (14*2π)/2454175 weeks
154.4347 9.04273 (15*2π)/2454164 weeks
161.63627 2.4977 (16*2π)/2454153 weeks
172.30064 1.80618 (17*2π)/2454144 weeks
18-1.06439 5.86116 (18*2π)/2454136 weeks
19-1.74735 1.59804 (19*2π)/2454129 weeks
202.08657 .5351 (20*2π)/2454123 weeks
212.64106 5.71064 (21*2π)/2454117 weeks
22-1.48063 5.91741 (22*2π)/2454112 weeks
23-5.73397 .37328 (23*2π)/2454107 weeks
24-.4092 .27944 (24*2π)/2454102 weeks
252.3226 -.19696 (25*2π)/245498 weeks
261.88255 .67952 (26*2π)/245494 weeks
271.33476 2.6664 (27*2π)/245491 weeks
28-1.15817 3.35331 (28*2π)/245488 weeks
29-2.27468 .02866 (29*2π)/245485 weeks
30-.45216 -1.49455 (30*2π)/245482 weeks
31.21852 .37847 (31*2π)/245479 weeks
321.34542 -.43978 (32*2π)/245477 weeks
331.56725 -2.39709 (33*2π)/245474 weeks
344.24653 .44721 (34*2π)/245472 weeks
352.68744 3.62891 (35*2π)/245470 weeks
36-2.52291 2.66401 (36*2π)/245468 weeks
37.75934 .54207 (37*2π)/245466 weeks
383.3471 2.35606 (38*2π)/245465 weeks
391.4047 2.9845 (39*2π)/245463 weeks
40.46384 2.59658 (40*2π)/245461 weeks
41-3.17816 2.16898 (41*2π)/245460 weeks
42-2.91424 -1.7919 (42*2π)/245458 weeks
433.95604 -2.28329 (43*2π)/245457 weeks
444.49547 2.42602 (44*2π)/245456 weeks
45-.32589 3.2993 (45*2π)/245455 weeks
46-1.09968 1.78523 (46*2π)/245453 weeks
47-1.68966 2.51952 (47*2π)/245452 weeks
481.12743 -.02511 (48*2π)/245451 weeks
492.25174 1.98477 (49*2π)/245450 weeks
50.45226 .72948 (50*2π)/245449 weeks
511.15004 -.00935 (51*2π)/245448 weeks
52-.34701 .64949 (52*2π)/245447 weeks
531.25882 2.5666 (53*2π)/245446 weeks
54.04899 4.30261 (54*2π)/245445 weeks
55-1.05734 2.81 (55*2π)/245445 weeks
56-.79804 .4427 (56*2π)/245444 weeks
57-.10226 1.30336 (57*2π)/245443 weeks
58-1.23165 1.43549 (58*2π)/245442 weeks
59-1.52865 -.17569 (59*2π)/245442 weeks
60-.2415 -.45617 (60*2π)/245441 weeks
611.32227 -.31664 (61*2π)/245440 weeks
62.27587 1.2723 (62*2π)/245440 weeks
63-.268 .60742 (63*2π)/245439 weeks
64.76886 .04763 (64*2π)/245438 weeks
65.8522 1.22181 (65*2π)/245438 weeks
661.70472 1.61723 (66*2π)/245437 weeks
67-.35121 2.84586 (67*2π)/245437 weeks
68-3.24903 1.17724 (68*2π)/245436 weeks
69-1.58426 -.87439 (69*2π)/245436 weeks
701.11214 -.58241 (70*2π)/245435 weeks
711.06783 1.10175 (71*2π)/245435 weeks
72-.74937 2.30841 (72*2π)/245434 weeks
73-1.58595 .06043 (73*2π)/245434 weeks
74-.07706 -.80964 (74*2π)/245433 weeks
75.39563 -.07643 (75*2π)/245433 weeks
76.38966 -.22188 (76*2π)/245432 weeks
771.76852 -.11856 (77*2π)/245432 weeks
781.57764 1.44321 (78*2π)/245431 weeks
79-.7201 1.80006 (79*2π)/245431 weeks
80-1.10016 .56852 (80*2π)/245431 weeks
81-.64979 .12488 (81*2π)/245430 weeks
82-.02714 .67752 (82*2π)/245430 weeks
83.19444 .4825 (83*2π)/245430 weeks
84.08095 .41996 (84*2π)/245429 weeks
85-.57059 .49131 (85*2π)/245429 weeks
86-.42568 -.65081 (86*2π)/245429 weeks
871.47175 -.71118 (87*2π)/245428 weeks
881.54243 .66918 (88*2π)/245428 weeks
89.56951 1.48182 (89*2π)/245428 weeks
90-.07691 1.29988 (90*2π)/245427 weeks
91-.53985 .82041 (91*2π)/245427 weeks
92-.15243 .04976 (92*2π)/245427 weeks
931.00073 .52682 (93*2π)/245426 weeks
94.04716 2.01219 (94*2π)/245426 weeks
95-1.02519 .75807 (95*2π)/245426 weeks
96-.88382 .52079 (96*2π)/245426 weeks
97-.48534 .01289 (97*2π)/245425 weeks
98.63962 .20811 (98*2π)/245425 weeks
99.11401 .957 (99*2π)/245425 weeks
100-.31774 .62192 (100*2π)/245425 weeks
101.0924 .20052 (101*2π)/245424 weeks
102.66016 .67747 (102*2π)/245424 weeks
103.15331 1.41551 (103*2π)/245424 weeks
104-1.25069 1.45927 (104*2π)/245424 weeks
105-1.39089 .32084 (105*2π)/245423 weeks
106-.15352 .10361 (106*2π)/245423 weeks
107.32924 .35373 (107*2π)/245423 weeks
108.24578 .19635 (108*2π)/245423 weeks
109-.06794 .85105 (109*2π)/245423 weeks
110-1.28815 .50905 (110*2π)/245422 weeks
111-1.13818 -.60435 (111*2π)/245422 weeks
112.88636 -.84212 (112*2π)/245422 weeks
113.98957 .26954 (113*2π)/245422 weeks
114.44061 .29605 (114*2π)/245422 weeks
115.65864 .59485 (115*2π)/245421 weeks
116.05156 .91665 (116*2π)/245421 weeks
117-.09503 .68789 (117*2π)/245421 weeks
118.181 .60806 (118*2π)/245421 weeks
119-.61948 .54923 (119*2π)/245421 weeks
120-.66978 -.18433 (120*2π)/245420 weeks
121-.25485 -.02887 (121*2π)/245420 weeks
122.41011 .29857 (122*2π)/245420 weeks
123.22198 .50922 (123*2π)/245420 weeks
124-.1481 .59176 (124*2π)/245420 weeks
125-.68944 .0192 (125*2π)/245420 weeks
126-.18949 -.2313 (126*2π)/245419 weeks
127.56477 .12901 (127*2π)/245419 weeks
128.09265 -.01034 (128*2π)/245419 weeks
129.44808 -.01664 (129*2π)/245419 weeks
130.68836 .77435 (130*2π)/245419 weeks
131-.35222 .6667 (131*2π)/245419 weeks
132-.32153 .50742 (132*2π)/245419 weeks
133-.41131 .14338 (133*2π)/245418 weeks
134-.18248 -.54431 (134*2π)/245418 weeks
135.86165 -.40219 (135*2π)/245418 weeks
1361.16477 .5509 (136*2π)/245418 weeks
137.50453 .65031 (137*2π)/245418 weeks
138-.15102 .56998 (138*2π)/245418 weeks
139-.34429 .0989 (139*2π)/245418 weeks
140.81846 .26741 (140*2π)/245418 weeks
141.80275 1.02006 (141*2π)/245417 weeks
142-.17298 .95989 (142*2π)/245417 weeks
143-.59861 .60632 (143*2π)/245417 weeks
144-.44106 -.03431 (144*2π)/245417 weeks
145-.24181 .18184 (145*2π)/245417 weeks
146.75525 .39731 (146*2π)/245417 weeks
147.82684 1.03387 (147*2π)/245417 weeks
148-.53955 1.16639 (148*2π)/245417 weeks
149-1.22263 .70375 (149*2π)/245416 weeks
150-1.07061 .02725 (150*2π)/245416 weeks
151-.29819 .16275 (151*2π)/245416 weeks
152.14899 .13369 (152*2π)/245416 weeks
153-.18145 -.05458 (153*2π)/245416 weeks
154-.39964 -.11694 (154*2π)/245416 weeks
155-.24251 -.47915 (155*2π)/245416 weeks
156.22811 -.39918 (156*2π)/245416 weeks
157.44699 .29184 (157*2π)/245416 weeks
158.02981 .30897 (158*2π)/245416 weeks
159-.02529 -.24619 (159*2π)/245415 weeks
160.39463 .0079 (160*2π)/245415 weeks
161.25063