Back to list of Stocks    See Also: Seasonal Analysis of MOGenetic Algorithms Stock Portfolio Generator, and Fourier Calculator

Fourier Analysis of MO (Altria Group, Inc.)


MO (Altria Group, Inc.) appears to have interesting cyclic behaviour every 246 weeks (2.5894*sine), 223 weeks (2.3406*sine), and 246 weeks (.6442*cosine).

MO (Altria Group, Inc.) has an average price of 7.52 (topmost row, frequency = 0).



Click on the checkboxes shown on the right to see how the various frequencies contribute to the graph. Look for large magnitude coefficients (sine or cosine), as these are associated with frequencies which contribute most to the associated stock plot. If you find a large magnitude coefficient which dramatically changes the graph, look at the associated "Period" in weeks, as you may have found a significant recurring cycle for the stock of interest.

Right click on the graph above to see the menu of operations (download, full screen, etc.)

Fourier Analysis

Using data from 1/2/1970 to 1/17/2017 for MO (Altria Group, Inc.), this program was able to calculate the following Fourier Series:
Sequence #Cosine Coefficients Sine Coefficients FrequenciesPeriod
07.52133   0 
19.14762 -6.9191 (1*2π)/24552,455 weeks
25.07126 -6.24083 (2*2π)/24551,228 weeks
33.08218 -5.31928 (3*2π)/2455818 weeks
42.28431 -4.51804 (4*2π)/2455614 weeks
51.70649 -4.21466 (5*2π)/2455491 weeks
6.78873 -3.80542 (6*2π)/2455409 weeks
7.55765 -2.91569 (7*2π)/2455351 weeks
8.51238 -2.56633 (8*2π)/2455307 weeks
9.76564 -2.22061 (9*2π)/2455273 weeks
10.64422 -2.58943 (10*2π)/2455246 weeks
11.16968 -2.34063 (11*2π)/2455223 weeks
12.06383 -2.03558 (12*2π)/2455205 weeks
13-.03219 -1.87496 (13*2π)/2455189 weeks
14-.14863 -1.51868 (14*2π)/2455175 weeks
15.15096 -1.34142 (15*2π)/2455164 weeks
16.06496 -1.54946 (16*2π)/2455153 weeks
17-.14978 -1.30909 (17*2π)/2455144 weeks
18-.07348 -1.09868 (18*2π)/2455136 weeks
19-.00521 -1.04253 (19*2π)/2455129 weeks
20.04519 -.8964 (20*2π)/2455123 weeks
21.24533 -.96928 (21*2π)/2455117 weeks
22.1395 -1.10665 (22*2π)/2455112 weeks
23.02897 -1.02093 (23*2π)/2455107 weeks
24.04625 -.97477 (24*2π)/2455102 weeks
25.01486 -.93958 (25*2π)/245598 weeks
26.03227 -.92391 (26*2π)/245594 weeks
27-.03854 -.93978 (27*2π)/245591 weeks
28-.08754 -.81841 (28*2π)/245588 weeks
29.00004 -.83796 (29*2π)/245585 weeks
30-.16168 -.83009 (30*2π)/245582 weeks
31-.10587 -.66631 (31*2π)/245579 weeks
32-.03315 -.69924 (32*2π)/245577 weeks
33-.08644 -.76533 (33*2π)/245574 weeks
34-.21669 -.68871 (34*2π)/245572 weeks
35-.1962 -.54433 (35*2π)/245570 weeks
36-.13825 -.50004 (36*2π)/245568 weeks
37-.12498 -.46743 (37*2π)/245566 weeks
38-.05569 -.39314 (38*2π)/245565 weeks
39.01238 -.45399 (39*2π)/245563 weeks
40-.00829 -.45734 (40*2π)/245561 weeks
41.01377 -.45796 (41*2π)/245560 weeks
42.00117 -.46364 (42*2π)/245558 weeks
43.01704 -.46249 (43*2π)/245557 weeks
44.00755 -.474 (44*2π)/245556 weeks
45-.02979 -.48314 (45*2π)/245555 weeks
46-.04131 -.41539 (46*2π)/245553 weeks
47.0039 -.42332 (47*2π)/245552 weeks
48-.02353 -.42893 (48*2π)/245551 weeks
49-.01575 -.39522 (49*2π)/245550 weeks
50.00712 -.3851 (50*2π)/245549 weeks
51.04914 -.41804 (51*2π)/245548 weeks
52-.00866 -.47726 (52*2π)/245547 weeks
53-.06826 -.42649 (53*2π)/245546 weeks
54-.0311 -.38672 (54*2π)/245545 weeks
55-.05509 -.44325 (55*2π)/245545 weeks
56-.12034 -.36592 (56*2π)/245544 weeks
57-.08568 -.34715 (57*2π)/245543 weeks
58-.11158 -.29606 (58*2π)/245542 weeks
59-.04709 -.26003 (59*2π)/245542 weeks
60-.04024 -.29082 (60*2π)/245541 weeks
61-.04693 -.24433 (61*2π)/245540 weeks
62.0273 -.25173 (62*2π)/245540 weeks
63-.00268 -.30765 (63*2π)/245539 weeks
64-.0294 -.27256 (64*2π)/245538 weeks
65-.01976 -.24992 (65*2π)/245538 weeks
66-.00203 -.22475 (66*2π)/245537 weeks
67.06132 -.23403 (67*2π)/245537 weeks
68.03127 -.30349 (68*2π)/245536 weeks
69-.01342 -.26216 (69*2π)/245536 weeks
70.00546 -.22977 (70*2π)/245535 weeks
71.02601 -.21144 (71*2π)/245535 weeks
72.08146 -.19491 (72*2π)/245534 weeks
73.13179 -.26085 (73*2π)/245534 weeks
74.09793 -.32117 (74*2π)/245533 weeks
75.06325 -.32504 (75*2π)/245533 weeks
76.04383 -.33277 (76*2π)/245532 weeks
77.02348 -.33107 (77*2π)/245532 weeks
78-.00117 -.34185 (78*2π)/245531 weeks
79-.05106 -.30477 (79*2π)/245531 weeks
80-.02769 -.27321 (80*2π)/245531 weeks
81-.04814 -.254 (81*2π)/245530 weeks
82-.00902 -.21383 (82*2π)/245530 weeks
83.02892 -.24325 (83*2π)/245530 weeks
84.00446 -.27122 (84*2π)/245529 weeks
85-.02019 -.25776 (85*2π)/245529 weeks
86-.02042 -.22707 (86*2π)/245529 weeks
87-.01028 -.22354 (87*2π)/245528 weeks
88-.00112 -.19455 (88*2π)/245528 weeks
89.04471 -.19851 (89*2π)/245528 weeks
90.05324 -.23703 (90*2π)/245527 weeks
91.04279 -.25835 (91*2π)/245527 weeks
92.0108 -.26531 (92*2π)/245527 weeks
93.00934 -.24361 (93*2π)/245526 weeks
94.01445 -.25839 (94*2π)/245526 weeks
95-.02402 -.25228 (95*2π)/245526 weeks
96-.00147 -.21643 (96*2π)/245526 weeks
97-.00502 -.23669 (97*2π)/245525 weeks
98-.00724 -.21583 (98*2π)/245525 weeks
99-.00207 -.22173 (99*2π)/245525 weeks
100-.0119 -.20209 (100*2π)/245525 weeks
101.01617 -.18783 (101*2π)/245524 weeks
102.03249 -.20895 (102*2π)/245524 weeks
103.02737 -.20627 (103*2π)/245524 weeks
104.05176 -.2233 (104*2π)/245524 weeks
105.02848 -.24074 (105*2π)/245523 weeks
106.03232 -.23642 (106*2π)/245523 weeks
107.04222 -.24765 (107*2π)/245523 weeks
108.02569 -.2937 (108*2π)/245523 weeks
109-.03227 -.28697 (109*2π)/245523 weeks
110-.05116 -.25015 (110*2π)/245522 weeks
111-.04084 -.22582 (111*2π)/245522 weeks
112-.03624 -.22294 (112*2π)/245522 weeks
113-.03489 -.21128 (113*2π)/245522 weeks
114-.02368 -.21617 (114*2π)/245522 weeks
115-.04709 -.21801 (115*2π)/245521 weeks
116-.04441 -.17505 (116*2π)/245521 weeks
117.0038 -.1819 (117*2π)/245521 weeks
118-.00494 -.2192 (118*2π)/245521 weeks
119-.03275 -.2111 (119*2π)/245521 weeks
120-.02348 -.19583 (120*2π)/245520 weeks
121-.02042 -.20246 (121*2π)/245520 weeks
122-.02963 -.20677 (122*2π)/245520 weeks
123-.03721 -.18478 (123*2π)/245520 weeks
124-.00829 -.18382 (124*2π)/245520 weeks
125-.00785 -.20693 (125*2π)/245520 weeks
126-.02692 -.22032 (126*2π)/245519 weeks
127-.04149 -.2047 (127*2π)/245519 weeks
128-.03988 -.20839 (128*2π)/245519 weeks
129-.05622 -.19877 (129*2π)/245519 weeks
130-.05412 -.19167 (130*2π)/245519 weeks
131-.05859 -.18439 (131*2π)/245519 weeks
132-.06035 -.17972 (132*2π)/245519 weeks
133-.06762 -.17445 (133*2π)/245518 weeks
134-.07101 -.14541 (134*2π)/245518 weeks
135-.03421 -.1475 (135*2π)/245518 weeks
136-.05501 -.16964 (136*2π)/245518 weeks
137-.06136 -.14158 (137*2π)/245518 weeks
138-.05005 -.13844 (138*2π)/245518 weeks
139-.04396 -.13107 (139*2π)/245518 weeks
140-.03458 -.13296 (140*2π)/245518 weeks
141-.02957 -.14045 (141*2π)/245517 weeks
142-.04606 -.14652 (142*2π)/245517 weeks
143-.05305 -.11412 (143*2π)/245517 weeks
144-.01778 -.10637 (144*2π)/245517 weeks
145-.01058 -.12494 (145*2π)/245517 weeks
146-.00869 -.1283 (146*2π)/245517 weeks
147-.00731 -.13667 (147*2π)/245517 weeks
148-.01113 -.14324 (148*2π)/245517 weeks
149-.02215 -.14499 (149*2π)/245516 weeks
150-.02477 -.13255 (150*2π)/245516 weeks
151-.01846 -.13299 (151*2π)/245516 weeks
152-.01675 -.12602 (152*2π)/245516 weeks
153-.00663 -.13518 (153*2π)/245516 weeks
154-.01482 -.1428 (154*2π)/245516 weeks
155-.02577 -.13813 (155*2π)/245516 weeks
156-.0272 -.12352 (156*2π)/245516 weeks
157-.00845 -.10987 (157*2π)/245516 weeks
158.00803 -.13375 (158*2π)/245516 weeks
159-.00664 -.13698 (159*2π)/245515 weeks
160-.0022 -.14713 (160*2π)/245515 weeks
161-.02889