Back to list of Stocks    See Also: Seasonal Analysis of MAXEGenetic Algorithms Stock Portfolio Generator, and Best Months to Buy/Sell Stocks

# Fourier Analysis of MAXE (Maxwell Resources)

MAXE (Maxwell Resources) appears to have interesting cyclic behaviour every 29 weeks (.0414*sine), 27 weeks (.0349*sine), and 5 weeks (.0126*cosine).

MAXE (Maxwell Resources) has an average price of .08 (topmost row, frequency = 0).

Click on the checkboxes shown on the right to see how the various frequencies contribute to the graph. Look for large magnitude coefficients (sine or cosine), as these are associated with frequencies which contribute most to the associated stock plot. If you find a large magnitude coefficient which dramatically changes the graph, look at the associated "Period" in weeks, as you may have found a significant recurring cycle for the stock of interest.

## Fourier Analysis

Using data from 9/4/2012 to 4/16/2018 for MAXE (Maxwell Resources), this program was able to calculate the following Fourier Series:
Sequence #Cosine Coefficients Sine Coefficients FrequenciesPeriod
0.07621   0
1.09601 .03637 (1*2π)/294294 weeks
2.09736 .04464 (2*2π)/294147 weeks
3.06635 .0596 (3*2π)/29498 weeks
4.06615 .06361 (4*2π)/29474 weeks
5.04263 .07258 (5*2π)/29459 weeks
6.03119 .07031 (6*2π)/29449 weeks
7.01097 .06502 (7*2π)/29442 weeks
8.00304 .05647 (8*2π)/29437 weeks
9-.00444 .04788 (9*2π)/29433 weeks
10-.00459 .04136 (10*2π)/29429 weeks
11-.00626 .03487 (11*2π)/29427 weeks
12-.00719 .02913 (12*2π)/29425 weeks
13-.00825 .02578 (13*2π)/29423 weeks
14-.00834 .02155 (14*2π)/29421 weeks
15-.00558 .02166 (15*2π)/29420 weeks
16-.00713 .01949 (16*2π)/29418 weeks
17-.00582 .01773 (17*2π)/29417 weeks
18-.00756 .01652 (18*2π)/29416 weeks
19-.00835 .01474 (19*2π)/29415 weeks
20-.01006 .0142 (20*2π)/29415 weeks
21-.01184 .01019 (21*2π)/29414 weeks
22-.00968 .00609 (22*2π)/29413 weeks
23-.00905 .00283 (23*2π)/29413 weeks
24-.00606 .00068 (24*2π)/29412 weeks
25-.00504 -.0001 (25*2π)/29412 weeks
26-.00133 -.00039 (26*2π)/29411 weeks
27.00062 -.00009 (27*2π)/29411 weeks
28.00369 .00066 (28*2π)/29411 weeks
29.00379 .00302 (29*2π)/29410 weeks
30.00407 .00514 (30*2π)/29410 weeks
31.0021 .00707 (31*2π)/2949 weeks
32.0012 .00817 (32*2π)/2949 weeks
33-.00203 .00725 (33*2π)/2949 weeks
34-.00269 .00567 (34*2π)/2949 weeks
35-.00406 .00439 (35*2π)/2948 weeks
36-.00466 .00254 (36*2π)/2948 weeks
37-.00347 .00164 (37*2π)/2948 weeks
38-.00406 -.0003 (38*2π)/2948 weeks
39-.00176 -.00102 (39*2π)/2948 weeks
40-.00259 -.00122 (40*2π)/2947 weeks
41-.00144 -.00234 (41*2π)/2947 weeks
42-.002 -.00208 (42*2π)/2947 weeks
43-.00072 -.00237 (43*2π)/2947 weeks
44-.00081 -.00385 (44*2π)/2947 weeks
45-.00064 -.00386 (45*2π)/2947 weeks
46-.00071 -.00577 (46*2π)/2946 weeks
47.0004 -.00643 (47*2π)/2946 weeks
48.00141 -.00843 (48*2π)/2946 weeks
49.00488 -.00867 (49*2π)/2946 weeks
50.00623 -.00859 (50*2π)/2946 weeks
51.00835 -.00839 (51*2π)/2946 weeks
52.01039 -.00685 (52*2π)/2946 weeks
53.01145 -.00531 (53*2π)/2946 weeks
54.01247 -.0028 (54*2π)/2945 weeks
55.01265 -.00109 (55*2π)/2945 weeks
56.01248 .00057 (56*2π)/2945 weeks
57.01165 .0024 (57*2π)/2945 weeks
58.01028 .00306 (58*2π)/2945 weeks
59.00926 .00452 (59*2π)/2945 weeks
60.00746 .00449 (60*2π)/2945 weeks
61.00754 .00406 (61*2π)/2945 weeks
62.00608 .00405 (62*2π)/2945 weeks
63.0059 .00324 (63*2π)/2945 weeks
64.00632 .00398 (64*2π)/2945 weeks
65.00469 .00388 (65*2π)/2945 weeks
66.00532 .00372 (66*2π)/2944 weeks
67.00385 .00402 (67*2π)/2944 weeks
68.00417 .00304 (68*2π)/2944 weeks
69.00361 .00397 (69*2π)/2944 weeks
70.00247 .00363 (70*2π)/2944 weeks
71.00242 .00293 (71*2π)/2944 weeks
72.0015 .0025 (72*2π)/2944 weeks
73.00114 .00121 (73*2π)/2944 weeks
74.0017 .0012 (74*2π)/2944 weeks
75.00123 -.00005 (75*2π)/2944 weeks
76.00185 -.00043 (76*2π)/2944 weeks
77.00217 -.00128 (77*2π)/2944 weeks
78.00333 -.00135 (78*2π)/2944 weeks
79.00348 -.00124 (79*2π)/2944 weeks
80.00413 -.00061 (80*2π)/2944 weeks
81.00432 .00012 (81*2π)/2944 weeks
82.00367 .00046 (82*2π)/2944 weeks
83.00406 .00039 (83*2π)/2944 weeks
84.00277 .00116 (84*2π)/2944 weeks
85.00245 .00068 (85*2π)/2943 weeks
86.00143 .0007 (86*2π)/2943 weeks
87.00128 -.00052 (87*2π)/2943 weeks
88.00123 -.00092 (88*2π)/2943 weeks
89.00148 -.00145 (89*2π)/2943 weeks
90.00108 -.00186 (90*2π)/2943 weeks
91.00132 -.00212 (91*2π)/2943 weeks
92.00127 -.00269 (92*2π)/2943 weeks
93.00216 -.00328 (93*2π)/2943 weeks
94.00178 -.00262 (94*2π)/2943 weeks
95.00155 -.00379 (95*2π)/2943 weeks
96.00172 -.00327 (96*2π)/2943 weeks
97.001 -.0049 (97*2π)/2943 weeks
98.00238 -.00465 (98*2π)/2943 weeks
99.00158 -.00586 (99*2π)/2943 weeks
100.00273 -.0064 (100*2π)/2943 weeks
101.00283 -.00703 (101*2π)/2943 weeks
102.00388 -.0075 (102*2π)/2943 weeks
103.0048 -.00786 (103*2π)/2943 weeks
104.00585 -.00787 (104*2π)/2943 weeks
105.00687 -.0076 (105*2π)/2943 weeks
106.00763 -.00751 (106*2π)/2943 weeks
107.00828 -.00646 (107*2π)/2943 weeks
108.00875 -.00578 (108*2π)/2943 weeks
109.00849 -.00534 (109*2π)/2943 weeks
110.00879 -.00491 (110*2π)/2943 weeks
111.0085 -.0047 (111*2π)/2943 weeks
112.00838 -.00439 (112*2π)/2943 weeks
113.0086 -.00448 (113*2π)/2943 weeks
114.00811 -.00427 (114*2π)/2943 weeks
115.00901 -.00517 (115*2π)/2943 weeks
116.00889 -.00374 (116*2π)/2943 weeks
117.00867 -.00471 (117*2π)/2943 weeks
118.00927 -.00441 (118*2π)/2942 weeks
119.00974 -.00438 (119*2π)/2942 weeks
120.01058 -.00425 (120*2π)/2942 weeks
121.01067 -.00331 (121*2π)/2942 weeks
122.01024 -.00291 (122*2π)/2942 weeks
123.01007 -.00247 (123*2π)/2942 weeks
124.01009 -.00246 (124*2π)/2942 weeks
125.01034 -.00214 (125*2π)/2942 weeks
126.00966 -.00163 (126*2π)/2942 weeks
127.00939 -.00216 (127*2π)/2942 weeks
128.00903 -.00163 (128*2π)/2942 weeks
129.00895 -.0032 (129*2π)/2942 weeks
130.00978 -.00231 (130*2π)/2942 weeks
131.00982 -.00307 (131*2π)/2942 weeks
132.01106 -.00257 (132*2π)/2942 weeks
133.01062 -.00169 (133*2π)/2942 weeks
134.01028 -.00196 (134*2π)/2942 weeks
135.01094 -.00138 (135*2π)/2942 weeks
136.01018 -.0012 (136*2π)/2942 weeks
137.01085 -.0012 (137*2π)/2942 weeks
138.01009 -.00034 (138*2π)/2942 weeks
139.00953 -.00121 (139*2π)/2942 weeks
140.00972 -.00113 (140*2π)/2942 weeks
141.00945 -.00182 (141*2π)/2942 weeks
142.01057 -.00188 (142*2π)/2942 weeks
143.01062 -.00193 (143*2π)/2942 weeks
144.01146 -.00185 (144*2π)/2942 weeks
145.01226 -.0008 (145*2π)/2942 weeks
146.01161 -.00048 (146*2π)/2942 weeks
147.01228   (147*2π)/2942 weeks
148.01161 .00048 (148*2π)/2942 weeks
149.01226 .0008 (149*2π)/2942 weeks
150.01146 .00185 (150*2π)/2942 weeks
151.01062 .00193 (151*2π)/2942 weeks
152.01057 .00188 (152*2π)/2942 weeks
153.00945 .00182 (153*2π)/2942 weeks
154.00972 .00113 (154*2π)/2942 weeks
155.00953 .00121 (155*2π)/2942 weeks
156.01009 .00034 (156*2π)/2942 weeks
157.01085 .0012 (157*2π)/2942 weeks
158.01018 .0012 (158*2π)/2942 weeks
159.01094 .00138 (159*2π)/2942 weeks
160.01028 .00196 (160*2π)/2942 weeks
161.01062 .00169 (161*2π)/2942 weeks
162.01106 .00257 (162*2π)/2942 weeks
163.00982 .00307 (163*2π)/2942 weeks
164.00978 .00231 (164*2π)/2942 weeks
165.00895 .0032 (165*2π)/2942 weeks
166.00903 .00163 (166*2π)/2942 weeks
167.00939 .00216 (167*2π)/2942 weeks
168.00966 .00163 (168*2π)/2942 weeks
169.01034 .00214 (169*2π)/2942 weeks
170.01009 .00246 (170*2π)/2942 weeks
171.01007 .00247 (171*2π)/2942 weeks
172.01024 .00291 (172*2π)/2942 weeks
173.01067 .00331 (173*2π)/2942 weeks
174.01058 .00425 (174*2π)/2942 weeks
175.00974 .00438 (175*2π)/2942 weeks
176.00927 .00441 (176*2π)/2942 weeks
177.00867 .00471 (177*2π)/2942 weeks
178.00889 .00374 (178*2π)/2942 weeks
179.00901 .00517 (179*2π)/2942 weeks
180.00811 .00427 (180*2π)/2942 weeks
181.0086 .00448 (181*2π)/2942 weeks
182.00838 .00439 (182*2π)/2942 weeks
183.0085 .0047 (183*2π)/2942 weeks
184.00879 .00491 (184*2π)/2942 weeks
185.00849 .00534 (185*2π)/2942 weeks
186.00875 .00578 (186*2π)/2942 weeks
187.00828 .00646 (187*2π)/2942 weeks
188.00763 .00751 (188*2π)/2942 weeks
189.00687 .0076 (189*2π)/2942 weeks
190.00585 .00787 (190*2π)/2942 weeks
191.0048 .00786 (191*2π)/2942 weeks
192.00388 .0075 (192*2π)/2942 weeks
193.00283 .00703 (193*2π)/2942 weeks
194.00273 .0064 (194*2π)/2942 weeks
195.00158 .00586 (195*2π)/2942 weeks
196.00238 .00465 (196*2π)/2942 weeks
197.001 .0049 (197*2π)/2941 weeks
198.00172 .00327 (198*2π)/2941 weeks
199.00155 .00379 (199*2π)/2941 weeks
200.00178 .00262 (200*2π)/2941 weeks
201.00216 .00328 (201*2π)/2941 weeks
202.00127 .00269 (202*2π)/2941 weeks
203.00132 .00212 (203*2π)/2941 weeks
204.00108 .00186 (204*2π)/2941 weeks
205.00148 .00145 (205*2π)/2941 weeks
206.00123 .00092 (206*2π)/2941 weeks
207.00128 .00052 (207*2π)/2941 weeks
208.00143 -.0007 (208*2π)/2941 weeks
209.00245 -.00068 (209*2π)/2941 weeks
210.00277 -.00116 (210*2π)/2941 weeks
211.00406 -.00039 (211*2π)/2941 weeks
212.00367 -.00046 (212*2π)/2941 weeks
213.00432 -.00012 (213*2π)/2941 weeks
214.00413 .00061 (214*2π)/2941 weeks
215.00348 .00124 (215*2π)/2941 weeks
216.00333 .00135 (216*2π)/2941 weeks
217.00217 .00128 (217*2π)/2941 weeks
218.00185 .00043 (218*2π)/2941 weeks
219.00123 .00005 (219*2π)/2941 weeks
220.0017 -.0012 (220*2π)/2941 weeks
221.00114 -.00121 (221*2π)/2941 weeks
222.0015 -.0025 (222*2π)/2941 weeks
223.00242 -.00293 (223*2π)/2941 weeks
224.00247 -.00363 (224*2π)/2941 weeks
225.00361 -.00397 (225*2π)/2941 weeks
226.00417 -.00304 (226*2π)/2941 weeks
227.00385 -.00402 (227*2π)/2941 weeks
228.00532 -.00372 (228*2π)/2941 weeks
229.00469 -.00388 (229*2π)/2941 weeks
230.00632 -.00398 (230*2π)/2941 weeks
231.0059 -.00324 (231*2π)/2941 weeks
232.00608 -.00405 (232*2π)/2941 weeks
233.00754 -.00406 (233*2π)/2941 weeks
234.00746 -.00449 (234*2π)/2941 weeks
235.00926 -.00452 (235*2π)/2941 weeks
236.01028 -.00306 (236*2π)/2941 weeks
237.01165 -.0024 (237*2π)/2941 weeks
238.01248 -.00057 (238*2π)/2941 weeks
239.01265 .00109 (239*2π)/2941 weeks
240.01247 .0028 (240*2π)/2941 weeks
241.01145 .00531 (241*2π)/2941 weeks
242.01039 .00685 (242*2π)/2941 weeks
243.00835 .00839 (243*2π)/2941 weeks
244.00623 .00859 (244*2π)/2941 weeks
245.00488 .00867 (245*2π)/2941 weeks
246.00141 .00843 (246*2π)/2941 weeks
247.0004 .00643 (247*2π)/2941 weeks
248-.00071 .00577 (248*2π)/2941 weeks
249-.00064 .00386 (249*2π)/2941 weeks
250-.00081 .00385 (250*2π)/2941 weeks
251-.00072 .00237 (251*2π)/2941 weeks
252-.002 .00208 (252*2π)/2941 weeks
253-.00144 .00234 (253*2π)/2941 weeks
254-.00259 .00122 (254*2π)/2941 weeks
255-.00176 .00102 (255*2π)/2941 weeks
256-.00406 .0003 (256*2π)/2941 weeks
257-.00347 -.00164 (257*2π)/2941 weeks
258-.00466 -.00254 (258*2π)/2941 weeks
259-.00406 -.00439 (259*2π)/2941 weeks
260-.00269 -.00567 (260*2π)/2941 weeks
261-.00203 -.00725 (261*2π)/2941 weeks
262.0012 -.00817 (262*2π)/2941 weeks
263.0021 -.00707 (263*2π)/2941 weeks
264.00407 -.00514 (264*2π)/2941 weeks
265.00379 -.00302 (265*2π)/2941 weeks
266.00369 -.00066 (266*2π)/2941 weeks
267.00062 .00009 (267*2π)/2941 weeks
268-.00133 .00039 (268*2π)/2941 weeks
269-.00504 .0001 (269*2π)/2941 weeks
270-.00606 -.00068 (270*2π)/2941 weeks
271-.00905 -.00283 (271*2π)/2941 weeks
272-.00968 -.00609 (272*2π)/2941 weeks
273-.01184 -.01019 (273*2π)/2941 weeks
274-.01006 -.0142 (274*2π)/2941 weeks
275-.00835 -.01474 (275*2π)/2941 weeks
276-.00756 -.01652 (276*2π)/2941 weeks
277-.00582 -.01773 (277*2π)/2941 weeks
278-.00713 -.01949 (278*2π)/2941 weeks
279-.00558 -.02166 (279*2π)/2941 weeks
280-.00834 -.02155 (280*2π)/2941 weeks
281-.00825 -.02578 (281*2π)/2941 weeks
282-.00719 -.02913 (282*2π)/2941 weeks
283-.00626 -.03487 (283*2π)/2941 weeks
284-.00459 -.04136 (284*2π)/2941 weeks
285-.00444 -.04788 (285*2π)/2941 weeks
286.00304 -.05647 (286*2π)/2941 weeks
287.01097 -.06502 (287*2π)/2941 weeks
288.03119 -.07031 (288*2π)/2941 weeks
289.04263 -.07258 (289*2π)/2941 weeks
290.06615 -.06361 (290*2π)/2941 weeks
291.06635 -.0596 (291*2π)/2941 weeks
292.09736 -.04464 (292*2π)/2941 weeks