Back to list of Stocks    See Also: Seasonal Analysis of LOGGGenetic Algorithms Stock Portfolio Generator, and Best Months to Buy/Sell Stocks

# Fourier Analysis of LOGG (LifeLogger Technologies Corp)

LOGG (LifeLogger Technologies Corp) appears to have interesting cyclic behaviour every 17 weeks (.19*sine), 18 weeks (.1715*cosine), and 10 weeks (.0964*cosine).

LOGG (LifeLogger Technologies Corp) has an average price of .98 (topmost row, frequency = 0).

Click on the checkboxes shown on the right to see how the various frequencies contribute to the graph. Look for large magnitude coefficients (sine or cosine), as these are associated with frequencies which contribute most to the associated stock plot. If you find a large magnitude coefficient which dramatically changes the graph, look at the associated "Period" in weeks, as you may have found a significant recurring cycle for the stock of interest.

## Fourier Analysis

Using data from 10/20/2014 to 4/16/2018 for LOGG (LifeLogger Technologies Corp), this program was able to calculate the following Fourier Series:
Sequence #Cosine Coefficients Sine Coefficients FrequenciesPeriod
0.97709   0
1-1.25327 .61714 (1*2π)/183183 weeks
2.78679 -.57371 (2*2π)/18392 weeks
3-.09077 .71049 (3*2π)/18361 weeks
4-.37045 -.26418 (4*2π)/18346 weeks
5.45508 -.05941 (5*2π)/18337 weeks
6-.28613 .40948 (6*2π)/18331 weeks
7-.00451 -.42059 (7*2π)/18326 weeks
8.21013 .30824 (8*2π)/18323 weeks
9-.2381 -.04675 (9*2π)/18320 weeks
10.17152 -.06943 (10*2π)/18318 weeks
11-.06556 .18998 (11*2π)/18317 weeks
12-.05179 -.11838 (12*2π)/18315 weeks
13.06562 .06196 (13*2π)/18314 weeks
14-.07619 .01818 (14*2π)/18313 weeks
15.04544 -.06098 (15*2π)/18312 weeks
16-.01023 .10029 (16*2π)/18311 weeks
17-.04486 -.10548 (17*2π)/18311 weeks
18.0964 .06721 (18*2π)/18310 weeks
19-.08943 -.00635 (19*2π)/18310 weeks
20.07434 -.04469 (20*2π)/1839 weeks
21.01204 .08529 (21*2π)/1839 weeks
22-.0652 -.02592 (22*2π)/1838 weeks
23.07466 -.02328 (23*2π)/1838 weeks
24-.03154 .09256 (24*2π)/1838 weeks
25-.04575 -.07699 (25*2π)/1837 weeks
26.07945 .01364 (26*2π)/1837 weeks
27-.06034 .05568 (27*2π)/1837 weeks
28.00655 -.08932 (28*2π)/1837 weeks
29.07578 .05576 (29*2π)/1836 weeks
30-.08142 .03277 (30*2π)/1836 weeks
31.04363 -.07596 (31*2π)/1836 weeks
32.02069 .07728 (32*2π)/1836 weeks
33-.0544 -.02579 (33*2π)/1836 weeks
34.05742 -.03668 (34*2π)/1835 weeks
35.01162 .06856 (35*2π)/1835 weeks
36-.05349 -.02344 (36*2π)/1835 weeks
37.07176 -.02557 (37*2π)/1835 weeks
38-.02763 .0732 (38*2π)/1835 weeks
39-.01936 -.061 (39*2π)/1835 weeks
40.06504 .03134 (40*2π)/1835 weeks
41-.0598 .03062 (41*2π)/1834 weeks
42.02897 -.04778 (42*2π)/1834 weeks
43.01203 .05521 (43*2π)/1834 weeks
44-.03945 -.02635 (44*2π)/1834 weeks
45.04506 .00297 (45*2π)/1834 weeks
46-.03268 .02072 (46*2π)/1834 weeks
47.02232 -.03724 (47*2π)/1834 weeks
48.00639 .04794 (48*2π)/1834 weeks
49-.01739 -.03442 (49*2π)/1834 weeks
50.03897 .02306 (50*2π)/1834 weeks
51-.04446 .01349 (51*2π)/1834 weeks
52.03035 -.0364 (52*2π)/1834 weeks
53.00478 .04127 (53*2π)/1833 weeks
54-.02807 -.01919 (54*2π)/1833 weeks
55.03273 -.00889 (55*2π)/1833 weeks
56-.00781 .0293 (56*2π)/1833 weeks
57-.02281 -.02709 (57*2π)/1833 weeks
58.04588 -.00717 (58*2π)/1833 weeks
59-.01828 .03815 (59*2π)/1833 weeks
60-.01303 -.04033 (60*2π)/1833 weeks
61.04946 .01105 (61*2π)/1833 weeks
62-.03734 .02973 (62*2π)/1833 weeks
63.01702 -.05505 (63*2π)/1833 weeks
64.03925 .04933 (64*2π)/1833 weeks
65-.05362 -.00178 (65*2π)/1833 weeks
66.05544 -.03601 (66*2π)/1833 weeks
67-.01221 .06615 (67*2π)/1833 weeks
68-.01982 -.04758 (68*2π)/1833 weeks
69.04321 .02776 (69*2π)/1833 weeks
70-.04007 .00886 (70*2π)/1833 weeks
71.01963 -.02363 (71*2π)/1833 weeks
72-.0005 .02461 (72*2π)/1833 weeks
73-.00197 -.01808 (73*2π)/1833 weeks
74.0062 .01647 (74*2π)/1832 weeks
75-.00787 -.00617 (75*2π)/1832 weeks
76.00869 -.00187 (76*2π)/1832 weeks
77-.00954 .00512 (77*2π)/1832 weeks
78.00815 -.01459 (78*2π)/1832 weeks
79.01002 .00888 (79*2π)/1832 weeks
80-.00881 .00111 (80*2π)/1832 weeks
81.00658 -.00506 (81*2π)/1832 weeks
82.00696 .0015 (82*2π)/1832 weeks
83-.01027 .00639 (83*2π)/1832 weeks
84.00661 -.02015 (84*2π)/1832 weeks
85.01761 .01189 (85*2π)/1832 weeks
86-.0202 .00149 (86*2π)/1832 weeks
87.02205 -.01965 (87*2π)/1832 weeks
88.0018 .02651 (88*2π)/1832 weeks
89-.02208 -.01915 (89*2π)/1832 weeks
90.03537 -.01625 (90*2π)/1832 weeks
91-.00404 .02772 (91*2π)/1832 weeks
92-.00404 -.02772 (92*2π)/1832 weeks
93.03537 .01625 (93*2π)/1832 weeks
94-.02208 .01915 (94*2π)/1832 weeks
95.0018 -.02651 (95*2π)/1832 weeks
96.02205 .01965 (96*2π)/1832 weeks
97-.0202 -.00149 (97*2π)/1832 weeks
98.01761 -.01189 (98*2π)/1832 weeks
99.00661 .02015 (99*2π)/1832 weeks
100-.01027 -.00639 (100*2π)/1832 weeks
101.00696 -.0015 (101*2π)/1832 weeks
102.00658 .00506 (102*2π)/1832 weeks
103-.00881 -.00111 (103*2π)/1832 weeks
104.01002 -.00888 (104*2π)/1832 weeks
105.00815 .01459 (105*2π)/1832 weeks
106-.00954 -.00512 (106*2π)/1832 weeks
107.00869 .00187 (107*2π)/1832 weeks
108-.00787 .00617 (108*2π)/1832 weeks
109.0062 -.01647 (109*2π)/1832 weeks
110-.00197 .01808 (110*2π)/1832 weeks
111-.0005 -.02461 (111*2π)/1832 weeks
112.01963 .02363 (112*2π)/1832 weeks
113-.04007 -.00886 (113*2π)/1832 weeks
114.04321 -.02776 (114*2π)/1832 weeks
115-.01982 .04758 (115*2π)/1832 weeks
116-.01221 -.06615 (116*2π)/1832 weeks
117.05544 .03601 (117*2π)/1832 weeks
118-.05362 .00178 (118*2π)/1832 weeks
119.03925 -.04933 (119*2π)/1832 weeks
120.01702 .05505 (120*2π)/1832 weeks
121-.03734 -.02973 (121*2π)/1832 weeks
122.04946 -.01105 (122*2π)/1832 weeks
123-.01303 .04033 (123*2π)/1831 weeks
124-.01828 -.03815 (124*2π)/1831 weeks
125.04588 .00717 (125*2π)/1831 weeks
126-.02281 .02709 (126*2π)/1831 weeks
127-.00781 -.0293 (127*2π)/1831 weeks
128.03273 .00889 (128*2π)/1831 weeks
129-.02807 .01919 (129*2π)/1831 weeks
130.00478 -.04127 (130*2π)/1831 weeks
131.03035 .0364 (131*2π)/1831 weeks
132-.04446 -.01349 (132*2π)/1831 weeks
133.03897 -.02306 (133*2π)/1831 weeks
134-.01739 .03442 (134*2π)/1831 weeks
135.00639 -.04794 (135*2π)/1831 weeks
136.02232 .03724 (136*2π)/1831 weeks
137-.03268 -.02072 (137*2π)/1831 weeks
138.04506 -.00297 (138*2π)/1831 weeks
139-.03945 .02635 (139*2π)/1831 weeks
140.01203 -.05521 (140*2π)/1831 weeks
141.02897 .04778 (141*2π)/1831 weeks
142-.0598 -.03062 (142*2π)/1831 weeks
143.06504 -.03134 (143*2π)/1831 weeks
144-.01936 .061 (144*2π)/1831 weeks
145-.02763 -.0732 (145*2π)/1831 weeks
146.07176 .02557 (146*2π)/1831 weeks
147-.05349 .02344 (147*2π)/1831 weeks
148.01162 -.06856 (148*2π)/1831 weeks
149.05742 .03668 (149*2π)/1831 weeks
150-.0544 .02579 (150*2π)/1831 weeks
151.02069 -.07728 (151*2π)/1831 weeks
152.04363 .07596 (152*2π)/1831 weeks
153-.08142 -.03277 (153*2π)/1831 weeks
154.07578 -.05576 (154*2π)/1831 weeks
155.00655 .08932 (155*2π)/1831 weeks
156-.06034 -.05568 (156*2π)/1831 weeks
157.07945 -.01364 (157*2π)/1831 weeks
158-.04575 .07699 (158*2π)/1831 weeks
159-.03154 -.09256 (159*2π)/1831 weeks
160.07466 .02328 (160*2π)/1831 weeks
161-.0652 .02592 (161*2π)/1831 weeks
162.01204 -.08529 (162*2π)/1831 weeks
163.07434 .04469 (163*2π)/1831 weeks
164-.08943 .00635 (164*2π)/1831 weeks
165.0964 -.06721 (165*2π)/1831 weeks
166-.04486 .10548 (166*2π)/1831 weeks
167-.01023 -.10029 (167*2π)/1831 weeks
168.04544 .06098 (168*2π)/1831 weeks
169-.07619 -.01818 (169*2π)/1831 weeks
170.06562 -.06196 (170*2π)/1831 weeks
171-.05179 .11838 (171*2π)/1831 weeks
172-.06556 -.18998 (172*2π)/1831 weeks
173.17152 .06943 (173*2π)/1831 weeks
174-.2381 .04675 (174*2π)/1831 weeks
175.21013 -.30824 (175*2π)/1831 weeks
176-.00451 .42059 (176*2π)/1831 weeks
177-.28613 -.40948 (177*2π)/1831 weeks
178.45508 .05941 (178*2π)/1831 weeks
179-.37045 .26418 (179*2π)/1831 weeks
180-.09077 -.71049 (180*2π)/1831 weeks
181.78679 .57371 (181*2π)/1831 weeks