Back to list of Stocks    See Also: Seasonal Analysis of LEAFXGenetic Algorithms Stock Portfolio Generator, and Fourier Calculator

# Fourier Analysis of LEAFX (Tea Leaf Long/Short Deep Value )

LEAFX (Tea Leaf Long/Short Deep Value ) appears to have interesting cyclic behaviour every 10 weeks (.1013*cosine), 16 weeks (.0896*sine), and 8 weeks (.0737*cosine).

LEAFX (Tea Leaf Long/Short Deep Value ) has an average price of 11.3 (topmost row, frequency = 0).

Click on the checkboxes shown on the right to see how the various frequencies contribute to the graph. Look for large magnitude coefficients (sine or cosine), as these are associated with frequencies which contribute most to the associated stock plot. If you find a large magnitude coefficient which dramatically changes the graph, look at the associated "Period" in weeks, as you may have found a significant recurring cycle for the stock of interest.

## Fourier Analysis

Using data from 3/28/2013 to 11/21/2016 for LEAFX (Tea Leaf Long/Short Deep Value ), this program was able to calculate the following Fourier Series:
Sequence #Cosine Coefficients Sine Coefficients FrequenciesPeriod
011.30274   0
1-.75446 .34736 (1*2π)/192192 weeks
2-.45692 .11186 (2*2π)/19296 weeks
3.10706 -.41684 (3*2π)/19264 weeks
4.0083 -.0042 (4*2π)/19248 weeks
5.00183 -.05359 (5*2π)/19238 weeks
6-.22298 .06271 (6*2π)/19232 weeks
7-.02279 -.07978 (7*2π)/19227 weeks
8.07951 -.22666 (8*2π)/19224 weeks
9-.11342 .0586 (9*2π)/19221 weeks
10-.01853 -.05781 (10*2π)/19219 weeks
11.0448 -.06005 (11*2π)/19217 weeks
12-.0407 -.08963 (12*2π)/19216 weeks
13.01529 -.02376 (13*2π)/19215 weeks
14.00657 -.02856 (14*2π)/19214 weeks
15.05491 -.01119 (15*2π)/19213 weeks
16-.03505 -.01056 (16*2π)/19212 weeks
17-.04889 .00488 (17*2π)/19211 weeks
18.05986 -.06677 (18*2π)/19211 weeks
19-.10134 .00657 (19*2π)/19210 weeks
20.06855 -.05633 (20*2π)/19210 weeks
21.02498 -.01101 (21*2π)/1929 weeks
22-.06593 -.03373 (22*2π)/1929 weeks
23.07368 .01405 (23*2π)/1928 weeks
24.01518 -.00625 (24*2π)/1928 weeks
25-.02052 .01089 (25*2π)/1928 weeks
26-.05246 .01902 (26*2π)/1927 weeks
27.03681 -.04484 (27*2π)/1927 weeks
28-.0187 .03291 (28*2π)/1927 weeks
29-.03185 -.01056 (29*2π)/1927 weeks
30-.01647 -.00892 (30*2π)/1926 weeks
31-.03766 -.03594 (31*2π)/1926 weeks
32.01608 .00607 (32*2π)/1926 weeks
33-.00006 -.03768 (33*2π)/1926 weeks
34-.03926 -.02476 (34*2π)/1926 weeks
35.02935 .01638 (35*2π)/1925 weeks
36-.00723 -.02259 (36*2π)/1925 weeks
37.00244 -.03189 (37*2π)/1925 weeks
38-.00194 .02453 (38*2π)/1925 weeks
39-.00088 -.00747 (39*2π)/1925 weeks
40-.0012 .00232 (40*2π)/1925 weeks
41.00715 -.00414 (41*2π)/1925 weeks
42-.04028 .02265 (42*2π)/1925 weeks
43-.02487 -.01571 (43*2π)/1924 weeks
44.00395 -.01635 (44*2π)/1924 weeks
45-.00109 -.00979 (45*2π)/1924 weeks
46-.03021 -.01979 (46*2π)/1924 weeks
47.00014 .01535 (47*2π)/1924 weeks
48.02001 -.00982 (48*2π)/1924 weeks
49-.02729 -.01636 (49*2π)/1924 weeks
50-.02538 -.00153 (50*2π)/1924 weeks
51.00677 .01996 (51*2π)/1924 weeks
52-.00015 -.02712 (52*2π)/1924 weeks
53-.03118 -.02789 (53*2π)/1924 weeks
54-.01057 .024 (54*2π)/1924 weeks
55.01826 -.01392 (55*2π)/1923 weeks
56-.01363 -.01973 (56*2π)/1923 weeks
57-.02186 -.00378 (57*2π)/1923 weeks
58.00338 .00964 (58*2π)/1923 weeks
59.00676 -.0169 (59*2π)/1923 weeks
60-.01843 -.00239 (60*2π)/1923 weeks
61.00076 .00334 (61*2π)/1923 weeks
62-.02781 .01214 (62*2π)/1923 weeks
63-.00587 -.03513 (63*2π)/1923 weeks
64.00302 .0039 (64*2π)/1923 weeks
65-.01406 -.01226 (65*2π)/1923 weeks
66-.00297 .0062 (66*2π)/1923 weeks
67.0052 -.00951 (67*2π)/1923 weeks
68-.02378 .00871 (68*2π)/1923 weeks
69-.01116 -.00732 (69*2π)/1923 weeks
70-.01531 -.01596 (70*2π)/1923 weeks
71.00271 -.00718 (71*2π)/1923 weeks
72-.01562 -.0062 (72*2π)/1923 weeks
73.00721 -.0089 (73*2π)/1923 weeks
74-.01862 -.01348 (74*2π)/1923 weeks
75.00901 -.0029 (75*2π)/1923 weeks
76.00961 .00768 (76*2π)/1923 weeks
77-.03225 -.00736 (77*2π)/1922 weeks
78.00284 -.01599 (78*2π)/1922 weeks
79.00483 .01681 (79*2π)/1922 weeks
80-.01232 -.02357 (80*2π)/1922 weeks
81-.01051 .00516 (81*2π)/1922 weeks
82-.00275 -.00802 (82*2π)/1922 weeks
83.01692 -.01168 (83*2π)/1922 weeks
84-.02334 .00922 (84*2π)/1922 weeks
85.0073 .00306 (85*2π)/1922 weeks
86-.02007 -.00788 (86*2π)/1922 weeks
87.01015 -.02112 (87*2π)/1922 weeks
88-.01155 .02378 (88*2π)/1922 weeks
89-.00544 -.01347 (89*2π)/1922 weeks
90.0033 -.018 (90*2π)/1922 weeks
91-.00181 .00292 (91*2π)/1922 weeks
92.00055 .00953 (92*2π)/1922 weeks
93.01283 .00791 (93*2π)/1922 weeks
94-.03209 -.01922 (94*2π)/1922 weeks
95-.00028 .01124 (95*2π)/1922 weeks
96.01585   (96*2π)/1922 weeks
97-.00028 -.01124 (97*2π)/1922 weeks
98-.03209 .01922 (98*2π)/1922 weeks
99.01283 -.00791 (99*2π)/1922 weeks
100.00055 -.00953 (100*2π)/1922 weeks
101-.00181 -.00292 (101*2π)/1922 weeks
102.0033 .018 (102*2π)/1922 weeks
103-.00544 .01347 (103*2π)/1922 weeks
104-.01155 -.02378 (104*2π)/1922 weeks
105.01015 .02112 (105*2π)/1922 weeks
106-.02007 .00788 (106*2π)/1922 weeks
107.0073 -.00306 (107*2π)/1922 weeks
108-.02334 -.00922 (108*2π)/1922 weeks
109.01692 .01168 (109*2π)/1922 weeks
110-.00275 .00802 (110*2π)/1922 weeks
111-.01051 -.00516 (111*2π)/1922 weeks
112-.01232 .02357 (112*2π)/1922 weeks
113.00483 -.01681 (113*2π)/1922 weeks
114.00284 .01599 (114*2π)/1922 weeks
115-.03225 .00736 (115*2π)/1922 weeks
116.00961 -.00768 (116*2π)/1922 weeks
117.00901 .0029 (117*2π)/1922 weeks
118-.01862 .01348 (118*2π)/1922 weeks
119.00721 .0089 (119*2π)/1922 weeks
120-.01562 .0062 (120*2π)/1922 weeks
121.00271 .00718 (121*2π)/1922 weeks
122-.01531 .01596 (122*2π)/1922 weeks
123-.01116 .00732 (123*2π)/1922 weeks
124-.02378 -.00871 (124*2π)/1922 weeks
125.0052 .00951 (125*2π)/1922 weeks
126-.00297 -.0062 (126*2π)/1922 weeks
127-.01406 .01226 (127*2π)/1922 weeks
128.00302 -.0039 (128*2π)/1922 weeks
129-.00587 .03513 (129*2π)/1921 weeks
130-.02781 -.01214 (130*2π)/1921 weeks
131.00076 -.00334 (131*2π)/1921 weeks
132-.01843 .00239 (132*2π)/1921 weeks
133.00676 .0169 (133*2π)/1921 weeks
134.00338 -.00964 (134*2π)/1921 weeks
135-.02186 .00378 (135*2π)/1921 weeks
136-.01363 .01973 (136*2π)/1921 weeks
137.01826 .01392 (137*2π)/1921 weeks
138-.01057 -.024 (138*2π)/1921 weeks
139-.03118 .02789 (139*2π)/1921 weeks
140-.00015 .02712 (140*2π)/1921 weeks
141.00677 -.01996 (141*2π)/1921 weeks
142-.02538 .00153 (142*2π)/1921 weeks
143-.02729 .01636 (143*2π)/1921 weeks
144.02001 .00982 (144*2π)/1921 weeks
145.00014 -.01535 (145*2π)/1921 weeks
146-.03021 .01979 (146*2π)/1921 weeks
147-.00109 .00979 (147*2π)/1921 weeks
148.00395 .01635 (148*2π)/1921 weeks
149-.02487 .01571 (149*2π)/1921 weeks
150-.04028 -.02265 (150*2π)/1921 weeks
151.00715 .00414 (151*2π)/1921 weeks
152-.0012 -.00232 (152*2π)/1921 weeks
153-.00088 .00747 (153*2π)/1921 weeks
154-.00194 -.02453 (154*2π)/1921 weeks
155.00244 .03189 (155*2π)/1921 weeks
156-.00723 .02259 (156*2π)/1921 weeks
157.02935 -.01638 (157*2π)/1921 weeks
158-.03926 .02476 (158*2π)/1921 weeks
159-.00006 .03768 (159*2π)/1921 weeks
160.01608 -.00607 (160*2π)/1921 weeks
161-.03766 .03594 (161*2π)/1921 weeks
162-.01647 .00892 (162*2π)/1921 weeks
163-.03185 .01056 (163*2π)/1921 weeks
164-.0187 -.03291 (164*2π)/1921 weeks
165.03681 .04484 (165*2π)/1921 weeks
166-.05246 -.01902 (166*2π)/1921 weeks
167-.02052 -.01089 (167*2π)/1921 weeks
168.01518 .00625 (168*2π)/1921 weeks
169.07368 -.01405 (169*2π)/1921 weeks
170-.06593 .03373 (170*2π)/1921 weeks
171.02498 .01101 (171*2π)/1921 weeks
172.06855 .05633 (172*2π)/1921 weeks
173-.10134 -.00657 (173*2π)/1921 weeks
174.05986 .06677 (174*2π)/1921 weeks
175-.04889 -.00488 (175*2π)/1921 weeks
176-.03505 .01056 (176*2π)/1921 weeks
177.05491 .01119 (177*2π)/1921 weeks
178.00657 .02856 (178*2π)/1921 weeks
179.01529 .02376 (179*2π)/1921 weeks
180-.0407 .08963 (180*2π)/1921 weeks
181.0448 .06005 (181*2π)/1921 weeks
182-.01853 .05781 (182*2π)/1921 weeks
183-.11342 -.0586 (183*2π)/1921 weeks
184.07951 .22666 (184*2π)/1921 weeks
185-.02279 .07978 (185*2π)/1921 weeks
186-.22298 -.06271 (186*2π)/1921 weeks
187.00183 .05359 (187*2π)/1921 weeks
188.0083 .0042 (188*2π)/1921 weeks
189.10706 .41684 (189*2π)/1921 weeks
190-.45692 -.11186 (190*2π)/1921 weeks