Back to list of Stocks    See Also: Seasonal Analysis of LBGenetic Algorithms Stock Portfolio Generator, and Fourier Calculator

Fourier Analysis of LB (L Brands, Inc.)


LB (L Brands, Inc.) appears to have interesting cyclic behaviour every 182 weeks (2.3676*sine), 165 weeks (2.1748*sine), and 182 weeks (1.2329*cosine).

LB (L Brands, Inc.) has an average price of 14.8 (topmost row, frequency = 0).



Click on the checkboxes shown on the right to see how the various frequencies contribute to the graph. Look for large magnitude coefficients (sine or cosine), as these are associated with frequencies which contribute most to the associated stock plot. If you find a large magnitude coefficient which dramatically changes the graph, look at the associated "Period" in weeks, as you may have found a significant recurring cycle for the stock of interest.

Right click on the graph above to see the menu of operations (download, full screen, etc.)

Fourier Analysis

Using data from 4/1/1982 to 1/17/2017 for LB (L Brands, Inc.), this program was able to calculate the following Fourier Series:
Sequence #Cosine Coefficients Sine Coefficients FrequenciesPeriod
014.80187   0 
113.04375 -10.87957 (1*2π)/18161,816 weeks
28.12533 -10.54703 (2*2π)/1816908 weeks
33.93145 -10.83306 (3*2π)/1816605 weeks
41.10102 -8.62276 (4*2π)/1816454 weeks
5-1.21425 -5.69529 (5*2π)/1816363 weeks
6.86824 -4.33282 (6*2π)/1816303 weeks
7.45704 -5.13754 (7*2π)/1816259 weeks
8-.53855 -4.47998 (8*2π)/1816227 weeks
9-1.61351 -3.44988 (9*2π)/1816202 weeks
10-1.23291 -2.36762 (10*2π)/1816182 weeks
11-1.06437 -2.17485 (11*2π)/1816165 weeks
12-1.16706 -1.91003 (12*2π)/1816151 weeks
13-1.07757 -1.37054 (13*2π)/1816140 weeks
14-.47338 -.89263 (14*2π)/1816130 weeks
15-.45259 -1.05207 (15*2π)/1816121 weeks
16-.4762 -.54032 (16*2π)/1816114 weeks
17-.23498 -.83843 (17*2π)/1816107 weeks
18-.25046 -.78728 (18*2π)/1816101 weeks
19.13738 -.5801 (19*2π)/181696 weeks
20.31458 -.74713 (20*2π)/181691 weeks
21.38192 -1.01222 (21*2π)/181686 weeks
22.18891 -1.23623 (22*2π)/181683 weeks
23-.03732 -.77345 (23*2π)/181679 weeks
24.12167 -1.24662 (24*2π)/181676 weeks
25-.30948 -1.07133 (25*2π)/181673 weeks
26-.19394 -1.01051 (26*2π)/181670 weeks
27-.55185 -.45043 (27*2π)/181667 weeks
28-.18204 -.23676 (28*2π)/181665 weeks
29.06987 -.26915 (29*2π)/181663 weeks
30.10681 -.45286 (30*2π)/181661 weeks
31.24594 -.35816 (31*2π)/181659 weeks
32.43512 -.63493 (32*2π)/181657 weeks
33.40053 -.6863 (33*2π)/181655 weeks
34.3553 -.93192 (34*2π)/181653 weeks
35.24671 -.6516 (35*2π)/181652 weeks
36.17972 -.88854 (36*2π)/181650 weeks
37.05039 -.85614 (37*2π)/181649 weeks
38-.00616 -1.06941 (38*2π)/181648 weeks
39-.15522 -.77058 (39*2π)/181647 weeks
40-.11168 -.61871 (40*2π)/181645 weeks
41-.04043 -.85926 (41*2π)/181644 weeks
42-.06276 -.88851 (42*2π)/181643 weeks
43-.24196 -.80538 (43*2π)/181642 weeks
44-.41114 -.70009 (44*2π)/181641 weeks
45-.32226 -.72365 (45*2π)/181640 weeks
46-.41674 -.53224 (46*2π)/181639 weeks
47-.40382 -.3968 (47*2π)/181639 weeks
48-.39199 -.23268 (48*2π)/181638 weeks
49-.1939 -.30744 (49*2π)/181637 weeks
50-.21726 -.30703 (50*2π)/181636 weeks
51-.0931 -.29027 (51*2π)/181636 weeks
52-.08323 -.40305 (52*2π)/181635 weeks
53-.23785 -.26161 (53*2π)/181634 weeks
54-.04879 -.24957 (54*2π)/181634 weeks
55-.04913 -.34068 (55*2π)/181633 weeks
56.03641 -.31395 (56*2π)/181632 weeks
57.01558 -.36999 (57*2π)/181632 weeks
58.00915 -.44262 (58*2π)/181631 weeks
59-.13629 -.43053 (59*2π)/181631 weeks
60-.19316 -.27036 (60*2π)/181630 weeks
61-.10986 -.21928 (61*2π)/181630 weeks
62-.08166 -.27651 (62*2π)/181629 weeks
63-.07962 -.39861 (63*2π)/181629 weeks
64-.08421 -.23437 (64*2π)/181628 weeks
65-.03131 -.24766 (65*2π)/181628 weeks
66-.02614 -.27059 (66*2π)/181628 weeks
67.02593 -.3634 (67*2π)/181627 weeks
68-.20716 -.32639 (68*2π)/181627 weeks
69-.18955 -.32574 (69*2π)/181626 weeks
70-.31094 -.12695 (70*2π)/181626 weeks
71-.02193 -.02393 (71*2π)/181626 weeks
72.00441 -.09057 (72*2π)/181625 weeks
73.02824 -.14962 (73*2π)/181625 weeks
74-.05268 -.22481 (74*2π)/181625 weeks
75-.00425 -.16892 (75*2π)/181624 weeks
76-.0424 -.1793 (76*2π)/181624 weeks
77.01922 -.16712 (77*2π)/181624 weeks
78.06706 -.0694 (78*2π)/181623 weeks
79.22614 -.21456 (79*2π)/181623 weeks
80-.00901 -.32549 (80*2π)/181623 weeks
81.06157 -.28125 (81*2π)/181622 weeks
82-.03947 -.31236 (82*2π)/181622 weeks
83-.01859 -.25681 (83*2π)/181622 weeks
84-.0117 -.25978 (84*2π)/181622 weeks
85.09597 -.14719 (85*2π)/181621 weeks
86.07944 -.33285 (86*2π)/181621 weeks
87.05363 -.30449 (87*2π)/181621 weeks
88.04705 -.45147 (88*2π)/181621 weeks
89-.18797 -.34689 (89*2π)/181620 weeks
90-.05756 -.22603 (90*2π)/181620 weeks
91-.02649 -.21029 (91*2π)/181620 weeks
92-.02988 -.31899 (92*2π)/181620 weeks
93-.08359 -.25469 (93*2π)/181620 weeks
94-.0382 -.25266 (94*2π)/181619 weeks
95-.0862 -.2992 (95*2π)/181619 weeks
96-.07272 -.3083 (96*2π)/181619 weeks
97-.098 -.27731 (97*2π)/181619 weeks
98-.10985 -.23174 (98*2π)/181619 weeks
99-.07431 -.19021 (99*2π)/181618 weeks
100-.02454 -.2386 (100*2π)/181618 weeks
101-.07986 -.293 (101*2π)/181618 weeks
102-.1221 -.22926 (102*2π)/181618 weeks
103-.07311 -.28405 (103*2π)/181618 weeks
104-.17747 -.31543 (104*2π)/181617 weeks
105-.20093 -.23886 (105*2π)/181617 weeks
106-.23818 -.17073 (106*2π)/181617 weeks
107-.17893 -.07393 (107*2π)/181617 weeks
108-.05057 -.07675 (108*2π)/181617 weeks
109-.06162 -.1852 (109*2π)/181617 weeks
110-.08573 -.15818 (110*2π)/181617 weeks
111-.05725 -.10355 (111*2π)/181616 weeks
112.03508 -.19347 (112*2π)/181616 weeks
113-.06642 -.25846 (113*2π)/181616 weeks
114-.15458 -.2539 (114*2π)/181616 weeks
115-.2046 -.18141 (115*2π)/181616 weeks
116-.12343 -.09299 (116*2π)/181616 weeks
117-.13509 -.11895 (117*2π)/181616 weeks
118-.08299 -.07974 (118*2π)/181615 weeks
119-.07645 -.07708 (119*2π)/181615 weeks
120-.00671 -.0983 (120*2π)/181615 weeks
121-.04903 -.15175 (121*2π)/181615 weeks
122-.04796 -.10514 (122*2π)/181615 weeks
123-.0573 -.06976 (123*2π)/181615 weeks
124-.00798 -.05545 (124*2π)/181615 weeks
125-.0698 -.13205 (125*2π)/181615 weeks
126-.02412 -.07324 (126*2π)/181614 weeks
127-.05191 -.0949 (127*2π)/181614 weeks
128.00729 -.02509 (128*2π)/181614 weeks
129.01808 -.10269 (129*2π)/181614 weeks
130.02538 -.05048 (130*2π)/181614 weeks
131.10682 -.1303 (131*2π)/181614 weeks
132.07594 -.14586 (132*2π)/181614 weeks
133.13159 -.23304 (133*2π)/181614 weeks
134.02181 -.32751 (134*2π)/181614 weeks
135-.06486 -.28977 (135*2π)/181613 weeks
136-.16011 -.25283 (136*2π)/181613 weeks
137-.12532 -.17566 (137*2π)/181613 weeks
138-.16335 -.20503 (138*2π)/181613 weeks
139-.13711 -.12083 (139*2π)/181613 weeks
140-.08972 -.17512 (140*2π)/181613 weeks
141-.14409 -.13438 (141*2π)/181613 weeks
142-.1117 -.13714 (142*2π)/181613 weeks
143-.1296 -.08472 (143*2π)/181613 weeks
144-.07633 -.07775 (144*2π)/181613 weeks
145-.06542 -.07383 (145*2π)/181613 weeks
146-.05098 -.11986 (146*2π)/181612 weeks
147-.07655 -.14145 (147*2π)/181612 weeks
148-.13839 -.10782 (148*2π)/181612 weeks
149-.09447 -.08772 (149*2π)/181612 weeks
150-.09936 -.0584 (150*2π)/181612 weeks
151-.07224 -.08988 (151*2π)/181612 weeks
152-.10421 -.04924 (152*2π)/181612 weeks
153-.02561 -.06996 (153*2π)/181612 weeks
154-.09552 -.08111 (154*2π)/181612 weeks
155-.07632 -.01728 (155*2π)/181612 weeks
156-.04794 .01167 (156*2π)/181612 weeks
157.05943 .00566 (157*2π)/181612 weeks
158.02507 -.08813 (158*2π)/181611 weeks
159.02395 -.08577 (159*2π)/181611 weeks
160.01011 -.13252 (160*2π)/181611 weeks
161-.00633 -.1133 (161*2π)/181611 weeks
162-.01746 -.13346 (162*2π)/181611 weeks
163.00731 -.09794 (163*2π)/181611 weeks
164-.02462 -.17741 (164*2π)/181611 weeks
165-.06422 -.15641 (165*2π)/181611 weeks
166-.10294 -.10501 (166*2π)/181611 weeks
167-.06242 -.0471 (167*2π)/181611 weeks
168-.02434 -.04954 (168*2π)/181611 weeks
169.00427 -.0857 (169*2π)/181611 weeks
170.01067 -.13274 (170*2π)/181611 weeks
171-.01365 -.15105 (171*2π)/181611 weeks
172-.09534 -.16909 (172*2π)/181611 weeks
173-.12107 -.0874 (173*2π)/181610 weeks
174-.03246 -.0193 (174*2π)/181610 weeks
175.02007 -.04652 (175*2π)/181610 weeks
176.02348 -.09229 (176*2π)/181610 weeks
177.02938 -.14031 (177*2π)/181610 weeks
178-.02505 -.13136 (178*2π)/181610 weeks
179-.04888 -.17215 (179*2π)/181610 weeks
180-.09255 -.10521 (180*2π)/181610 weeks
181-.02778 -.0514 (181*2π)/181610 weeks
182.02225 -.11081 (182*2π)/181610 weeks
183.00175 -.17916 (183*2π)/181610 weeks
184-.09146 -.18547 (184*2π)/181610 weeks
185-.09775 -.09552 (185*2π)/181610 weeks
186-.09035 -.1276 (186*2π)/181610 weeks
187-.08851 -.1043 (187*2π)/181610 weeks
188-.12876 -.09762 (188*2π)/181610 weeks
189-.10546 -.04316 (189*2π)/181610 weeks
190-.12333 -.04872 (190*2π)/181610 weeks
191-.07135 .01151 (191*2π)/181610 weeks
192-.07032 -.04686 (192*2π)/18169 weeks
193-.03378 .00259 (193*2π)/18169 weeks
194-.00741 -.08951 (194*2π)/18169 weeks
195-.07977 -.08041 (195*2π)/18169 weeks
196-.06138 -.0663 (196*2π)/18169 weeks
197-.09918 -.04401 (197*2π)/18169 weeks
198-.06544 -.00638 (198*2π)/18169 weeks
199-.0353 .00614 (199*2π)/18169 weeks
200.01102 -.04463 (200*2π)/18169 weeks
201-.01037 -.06904 (201*2π)/18169 weeks
202-.02573 -.06133 (202*2π)/18169 weeks
203-.04623 -.08701 (203*2π)/18169 weeks
204-.06354 -.04896 (204*2π)/18169 weeks
205-.02576 -.04316 (205*2π)/18169 weeks
206.00494 -.05567 (206*2π)/18169 weeks
207-.03878 -.08417 (207*2π)/18169 weeks
208-.05176 -.04238 (208*2π)/18169 weeks
209-.01097 -.03862 (209*2π)/18169 weeks
210-.00284 -.03437 (210*2π)/18169 weeks
211-.00572 -.07628 (211*2π)/18169 weeks
212-.03229 -.06837 (212*2π)/18169 weeks
213-.0271 -.05893 (213*2π)/18169 weeks
214-.04197 -.04811 (214*2π)/18168 weeks
215-.01016 -.04687 (215*2π)/18168 weeks
216-.03398 -.0401 (216*2π)/18168 weeks
217  -.01125 (217*2π)/18168 weeks
218.02619 -.05606 (218*2π)/18168 weeks
219.02612 -.04787 (219*2π)/18168 weeks
220.01532 -.10734 (220*2π)/18168 weeks
221.00277 -.08703 (221*2π)/18168 weeks
222-.04023 -.13093 (222*2π)/18168 weeks
223-.07495 -.06231 (223*2π)/18168 weeks
224-.04286 -.0346 (224*2π)/18168 weeks
225-.02087 -.0181 (225*2π)/18168 weeks
226-.00374 -.07972 (226*2π)/18168 weeks
227-.00968 -.05005 (227*2π)/18168 weeks
228.02417 -.05809 (228*2π)/18168 weeks
229-.01655 -.06303 (229*2π)/18168 weeks
230.01774 -.07199 (230*2π)/18168 weeks
231-.01081 -.06192 (231*2π)/18168 weeks
232.03885 -.06528 (232*2π)/18168 weeks
233.00641 -.09815 (233*2π)/18168 weeks
234.00589 -.10887 (234*2π)/18168 weeks
235-.05379 -.08987 (235*2π)/18168 weeks
236-.00107 -.03375 (236*2π)/18168 weeks
237-.01813 -.09761 (237*2π)/18168 weeks
238-.02712 -.06138 (238*2π)/18168 weeks
239-.00669 -.05464 (239*2π)/18168 weeks
240.02766 -.04601 (240*2π)/18168 weeks
241.00615 -.08574 (241*2π)/18168 weeks
242-.00163 -.07995 (242*2π)/18168 weeks
243-.02336 -.08345 (243*2π)/18167 weeks
244-.00621 -.04705 (244*2π)/18167 weeks
245.00343 -.08867 (245*2π)/18167 weeks
246-.01534 -.09793 (246*2π)/18167 weeks
247-.02584 -.09094 (247*2π)/18167 weeks
248-.02743 -.05345 (248*2π)/18167 weeks
249-.02465 -.06373 (249*2π)/18167 weeks
250-.00834 -.04049 (250*2π)/18167 weeks
251.05792 -.09715 (251*2π)/18167 weeks
252.02451 -.13804 (252*2π)/18167 weeks
253-.02253 -.16648 (253*2π)/18167 weeks
254-.08356 -.14464 (254*2π)/18167 weeks
255-.10476 -.08109 (255*2π)/18167 weeks
256-.10759 -.07149 (256*2π)/18167 weeks
257-.07582 -.03207 (257*2π)/18167 weeks
258-.05144 -.02423 (258*2π)/18167 weeks
259-.03252 -.05984 (259*2π)/18167 weeks
260-.02862 -.06421 (260*2π)/18167 weeks
261-.04217 -.05416 (261*2π)/18167 weeks
262-.03438 -.0333 (262*2π)/18167 weeks
263-.04061 -.05252 (263*2π)/18167 weeks
264-.04987 -.05828 (264*2π)/18167 weeks
265-.05276 -.0341 (265*2π)/18167 weeks
266-.02717 .00348 (266*2π)/18167 weeks
267-.01138 -.00442 (267*2π)/18167 weeks
268.02353 -.00802 (268*2π)/18167 weeks
269.04087 -.02525 (269*2π)/18167 weeks
270.07156 -.03659 (270*2π)/18167 weeks
271.05253 -.09896 (271*2π)/18167 weeks
272.04456 -.11265 (272*2π)/18167 weeks
273.01376 -.12201 (273*2π)/18167 weeks
274-.03226 -.12026 (274*2π)/18167 weeks
275-.03354 -.0788 (275*2π)/18167 weeks
276-.02408 -.08798 (276*2π)/18167 weeks
277-.03206 -.05341 (277*2π)/18167 weeks
278-.00505 -.06016 (278*2π)/18167 weeks
279.00798 -.05826 (279*2π)/18167 weeks
280.01298 -.10072 (280*2π)/18166 weeks
281-.01271 -.08557 (281*2π)/18166 weeks
282.00828 -.08692 (282*2π)/18166 weeks
283.01283 -.10351 (283*2π)/18166 weeks
284.00202 -.12122 (284*2π)/18166 weeks
285-.02353 -.1209 (285*2π)/18166 weeks
286-.00802 -.13442 (286*2π)/18166 weeks
287-.03672 -.13007 (287*2π)/18166 weeks
288-.06038 -.1496 (288*2π)/18166 weeks
289-.09629 -.15644 (289*2π)/18166 weeks
290-.10767 -.10661 (290*2π)/18166 weeks
291-.1216 -.07445 (291*2π)/18166 weeks
292-.10135 -.05565 (292*2π)/18166 weeks
293-.07197 -.03941 (293*2π)/18166 weeks
294-.06356 -.03721 (294*2π)/18166 weeks
295-.08797 -.05353 (295*2π)/18166 weeks
296-.0432 -.04074 (296*2π)/18166 weeks
297-.06798 -.02632 (297*2π)/18166 weeks
298-.04981 -.01291 (298*2π)/18166 weeks
299-.04169 -.03566 (299*2π)/18166 weeks
300-.02483 -.01955 (300*2π)/18166 weeks
301-.03636 -.02454 (301*2π)/18166 weeks
302-.0122 -.02611 (302*2π)/18166 weeks
303.00559 -.04785 (303*2π)/18166 weeks
304-.00977 -.05836 (304*2π)/18166 weeks
305-.00848 -.05934 (305*2π)/18166 weeks
306-.02981 -.08295 (306*2π)/18166 weeks
307-.04643 -.07015 (307*2π)/18166 weeks
308-.03812 -.05868 (308*2π)/18166 weeks
309-.04479 -.0428 (309*2π)/18166 weeks
310-.02822 -.05537 (310*2π)/18166 weeks
311-.01783 -.05117 (311*2π)/18166 weeks
312-.02243 -.06668 (312*2π)/18166 weeks
313-.04334 -.06916 (313*2π)/18166 weeks
314-.03047 -.06731 (314*2π)/18166 weeks
315-.05497 -.08097 (315*2π)/18166 weeks
316-.04917 -.05038 (316*2π)/18166 weeks
317-.04621 -.04358 (317*2π)/18166 weeks
318-.04823 -.02916 (318*2π)/18166 weeks
319-.0282 -.02924 (319*2π)/18166 weeks
320-.00848 -.03584 (320*2π)/18166 weeks
321-.01499 -.05256 (321*2π)/18166 weeks
322-.00286 -.05685 (322*2π)/18166 weeks
323-.02095 -.08701 (323*2π)/18166 weeks
324-.02255 -.05308 (324*2π)/18166 weeks
325-.01257 -.0703 (325*2π)/18166 weeks
326-.03849 -.07455 (326*2π)/18166 weeks
327-.02916 -.0578 (327*2π)/18166 weeks
328-.0327 -.04988 (328*2π)/18166 weeks
329-.00308 -.05459 (329*2π)/18166 weeks
330-.02217 -.07013 (330*2π)/18166 weeks
331-.02978 -.06911 (331*2π)/18165 weeks
332-.03756 -.08033 (332*2π)/18165 weeks
333-.06239 -.07873 (333*2π)/18165 weeks
334-.04744 -.05971 (334*2π)/18165 weeks
335-.05612 -.05286 (335*2π)/18165 weeks
336-.04723 -.02606 (336*2π)/18165 weeks
337-.01975 -.04974 (337*2π)/18165 weeks
338-.04062 -.03709 (338*2π)/18165 weeks
339-.01589 -.0564 (339*2π)/18165 weeks
340-.04578 -.06646 (340*2π)/18165 weeks
341-.05045 -.04445 (341*2π)/18165 weeks
342-.02204 -.0461 (342*2π)/18165 weeks
343-.03172 -.04981 (343*2π)/18165 weeks
344-.03929 -.07476 (344*2π)/18165 weeks
345-.03996 -.06454 (345*2π)/18165 weeks
346-.03902 -.06659 (346*2π)/18165 weeks
347-.06891 -.08809 (347*2π)/18165 weeks
348-.09002 -.03186 (348*2π)/18165 weeks
349-.05912 -.01898 (349*2π)/18165 weeks
350-.04514 -.00178 (350*2π)/18165 weeks
351-.01928 -.03093 (351*2π)/18165 weeks
352-.04677 -.03197 (352*2π)/18165 weeks
353.00005 -.03671 (353*2π)/18165 weeks
354-.01344 -.05353 (354*2π)/18165 weeks
355-.02768 -.08033 (355*2π)/18165 weeks
356-.05122 -.05818 (356*2π)/18165 weeks
357-.04612 -.04676 (357*2π)/18165 weeks
358-.05294 -.05716 (358*2π)/18165 weeks
359-.04471 -.05823 (359*2π)/18165 weeks
360-.06268 -.04709 (360*2π)/18165 weeks
361-.06963 -.05497 (361*2π)/18165 weeks
362-.0768 -.0324 (362*2π)/18165 weeks
363-.07991 -.01006 (363*2π)/18165 weeks
364-.06396 .01 (364*2π)/18165 weeks
365-.04535 -.0122 (365*2π)/18165 weeks
366-.03868 -.01075 (366*2π)/18165 weeks
367-.04529 -.01139 (367*2π)/18165 weeks
368-.03138 -.01074 (368*2π)/18165 weeks
369-.03697 -.03269 (369*2π)/18165 weeks
370-.06203 -.00765 (370*2π)/18165 weeks
371-.03489 .03107 (371*2π)/18165 weeks
372-.00638 .00621 (372*2π)/18165 weeks
373-.00493 -.00286 (373*2π)/18165 weeks
374-.00118 -.00861 (374*2π)/18165 weeks
375.02412 -.01907 (375*2π)/18165 weeks
376.01089 -.06791 (376*2π)/18165 weeks
377-.01054 -.05553 (377*2π)/18165 weeks
378-.02518 -.05386 (378*2π)/18165 weeks
379-.01608 -.0447 (379*2π)/18165 weeks
380-.02205 -.05317 (380*2π)/18165 weeks
381-.01666 -.02634 (381*2π)/18165 weeks
382-.01891 -.03611 (382*2π)/18165 weeks
383.00008 -.02642 (383*2π)/18165 weeks
384-.00532 -.05075 (384*2π)/18165 weeks
385.01927 -.04738 (385*2π)/18165 weeks
386-.00348 -.08989 (386*2π)/18165 weeks
387-.03535 -.05618 (387*2π)/18165 weeks
388-.02313 -.07217 (388*2π)/18165 weeks
389-.03178 -.05965 (389*2π)/18165 weeks
390-.04624 -.05498 (390*2π)/18165 weeks
391-.04197 -.02809 (391*2π)/18165 weeks
392-.02384 -.03776 (392*2π)/18165 weeks
393-.03225 -.04554 (393*2π)/18165 weeks
394-.03322 -.04837 (394*2π)/18165 weeks
395-.02148 -.02999 (395*2π)/18165 weeks
396-.02193 -.05087 (396*2π)/18165 weeks
397-.04252 -.06231 (397*2π)/18165 weeks
398-.03916 -.04681 (398*2π)/18165 weeks
399-.05891 -.05427 (399*2π)/18165 weeks
400-.04654 -.02266 (400*2π)/18165 weeks
401-.03787 -.03996 (401*2π)/18165 weeks
402-.03958 -.01517 (402*2π)/18165 weeks
403-.02911 -.04662 (403*2π)/18165 weeks
404-.04319 -.01902 (404*2π)/18164 weeks
405-.03067 -.01845 (405*2π)/18164 weeks
406-.02942 -.02205 (406*2π)/18164 weeks
407-.02608 -.04082 (407*2π)/18164 weeks
408-.03672 -.01643 (408*2π)/18164 weeks
409-.00545 -.01218 (409*2π)/18164 weeks
410-.00553 -.03017 (410*2π)/18164 weeks
411-.01771 -.05821 (411*2π)/18164 weeks
412-.03072 -.03066 (412*2π)/18164 weeks
413-.01537 -.02866 (413*2π)/18164 weeks
414-.03631 -.02069 (414*2π)/18164 weeks
415-.02001 -.02456 (415*2π)/18164 weeks
416-.02753 .00357 (416*2π)/18164 weeks
417.00289 -.00146 (417*2π)/18164 weeks
418.01268 .0069 (418*2π)/18164 weeks
419.03941 -.03773 (419*2π)/18164 weeks
420.02349