Back to list of Stocks    See Also: Seasonal Analysis of ILIVGenetic Algorithms Stock Portfolio Generator, and Fourier Calculator

Fourier Analysis of ILIV (INTELLIGENT LIVING)


ILIV (INTELLIGENT LIVING) appears to have interesting cyclic behaviour every 24 weeks (46.277*sine), 26 weeks (46.2132*sine), and 27 weeks (45.7295*sine).

ILIV (INTELLIGENT LIVING) has an average price of 44.41 (topmost row, frequency = 0).



Click on the checkboxes shown on the right to see how the various frequencies contribute to the graph. Look for large magnitude coefficients (sine or cosine), as these are associated with frequencies which contribute most to the associated stock plot. If you find a large magnitude coefficient which dramatically changes the graph, look at the associated "Period" in weeks, as you may have found a significant recurring cycle for the stock of interest.

Right click on the graph above to see the menu of operations (download, full screen, etc.)

Fourier Analysis

Using data from 4/1/2009 to 3/20/2017 for ILIV (INTELLIGENT LIVING), this program was able to calculate the following Fourier Series:
Sequence #Cosine Coefficients Sine Coefficients FrequenciesPeriod
044.41102   0 
186.88226 10.9795 (1*2π)/357357 weeks
282.63461 20.24808 (2*2π)/357179 weeks
376.66245 27.49142 (3*2π)/357119 weeks
470.21955 32.43972 (4*2π)/35789 weeks
564.12924 35.60035 (5*2π)/35771 weeks
658.56628 37.4416 (6*2π)/35760 weeks
754.16967 38.45084 (7*2π)/35751 weeks
850.38841 39.40176 (8*2π)/35745 weeks
947.28617 40.33665 (9*2π)/35740 weeks
1044.28526 41.67919 (10*2π)/35736 weeks
1141.12029 43.14354 (11*2π)/35732 weeks
1237.62848 44.5855 (12*2π)/35730 weeks
1333.67236 45.72953 (13*2π)/35727 weeks
1429.62143 46.2132 (14*2π)/35726 weeks
1525.54654 46.27695 (15*2π)/35724 weeks
1621.69559 45.69278 (16*2π)/35722 weeks
1718.16646 44.8502 (17*2π)/35721 weeks
1814.95308 43.72692 (18*2π)/35720 weeks
1912.01031 42.55404 (19*2π)/35719 weeks
209.18897 41.33384 (20*2π)/35718 weeks
216.38355 39.99346 (21*2π)/35717 weeks
223.56047 38.46771 (22*2π)/35716 weeks
23.73779 36.5322 (23*2π)/35716 weeks
24-1.90098 34.18233 (24*2π)/35715 weeks
25-4.20325 31.31035 (25*2π)/35714 weeks
26-5.93858 28.11779 (26*2π)/35714 weeks
27-7.02883 24.70715 (27*2π)/35713 weeks
28-7.44463 21.35875 (28*2π)/35713 weeks
29-7.26682 18.17873 (29*2π)/35712 weeks
30-6.57136 15.31817 (30*2π)/35712 weeks
31-5.48032 12.89433 (31*2π)/35712 weeks
32-4.18041 10.88653 (32*2π)/35711 weeks
33-2.70724 9.3472 (33*2π)/35711 weeks
34-1.27405 8.19257 (34*2π)/35711 weeks
35.15145 7.39117 (35*2π)/35710 weeks
361.4312 6.8594 (36*2π)/35710 weeks
372.62885 6.53911 (37*2π)/35710 weeks
383.69172 6.42388 (38*2π)/3579 weeks
394.58869 6.43359 (39*2π)/3579 weeks
405.37965 6.5487 (40*2π)/3579 weeks
415.97317 6.72002 (41*2π)/3579 weeks
426.5093 6.87017 (42*2π)/3579 weeks
436.94304 7.02918 (43*2π)/3578 weeks
447.41298 7.1448 (44*2π)/3578 weeks
457.92515 7.35135 (45*2π)/3578 weeks
468.43195 7.69398 (46*2π)/3578 weeks
478.88814 8.17543 (47*2π)/3578 weeks
489.22485 8.83673 (48*2π)/3577 weeks
499.38678 9.60197 (49*2π)/3577 weeks
509.31858 10.47597 (50*2π)/3577 weeks
518.98516 11.34232 (51*2π)/3577 weeks
528.37267 12.14666 (52*2π)/3577 weeks
537.51395 12.77698 (53*2π)/3577 weeks
546.45617 13.1468 (54*2π)/3577 weeks
555.34934 13.21113 (55*2π)/3576 weeks
564.25693 12.99755 (56*2π)/3576 weeks
573.28515 12.53459 (57*2π)/3576 weeks
582.47342 11.87908 (58*2π)/3576 weeks
591.88011 11.11583 (59*2π)/3576 weeks
601.49642 10.31526 (60*2π)/3576 weeks
611.28152 9.56967 (61*2π)/3576 weeks
621.20323 8.87196 (62*2π)/3576 weeks
631.19598 8.29532 (63*2π)/3576 weeks
641.21769 7.77019 (64*2π)/3576 weeks
651.23755 7.30249 (65*2π)/3575 weeks
661.29151 6.82817 (66*2π)/3575 weeks
671.39046 6.39484 (67*2π)/3575 weeks
681.51256 6.0119 (68*2π)/3575 weeks
691.6713 5.6411 (69*2π)/3575 weeks
701.85907 5.38986 (70*2π)/3575 weeks
712.00122 5.16745 (71*2π)/3575 weeks
722.11697 5.02695 (72*2π)/3575 weeks
732.15316 4.89231 (73*2π)/3575 weeks
742.11526 4.75841 (74*2π)/3575 weeks
752.01307 4.56395 (75*2π)/3575 weeks
761.87467 4.26957 (76*2π)/3575 weeks
771.77145 3.89514 (77*2π)/3575 weeks
781.69941 3.41074 (78*2π)/3575 weeks
791.74767 2.86908 (79*2π)/3575 weeks
801.90085 2.27723 (80*2π)/3574 weeks
812.20972 1.71032 (81*2π)/3574 weeks
822.61866 1.19409 (82*2π)/3574 weeks
833.13363 .73705 (83*2π)/3574 weeks
843.75853 .37396 (84*2π)/3574 weeks
854.46109 .12957 (85*2π)/3574 weeks
865.24633 .05514 (86*2π)/3574 weeks
876.00998 .1738 (87*2π)/3574 weeks
886.72795 .47426 (88*2π)/3574 weeks
897.30256 .91953 (89*2π)/3574 weeks
907.76028 1.43925 (90*2π)/3574 weeks
918.07624 2.02937 (91*2π)/3574 weeks
928.25192 2.63384 (92*2π)/3574 weeks
938.3048 3.23975 (93*2π)/3574 weeks
948.21903 3.81389 (94*2π)/3574 weeks
958.05057 4.3236 (95*2π)/3574 weeks
967.78475 4.78264 (96*2π)/3574 weeks
977.46668 5.15362 (97*2π)/3574 weeks
987.08883 5.46075 (98*2π)/3574 weeks
996.68467 5.66377 (99*2π)/3574 weeks
1006.27882 5.79501 (100*2π)/3574 weeks
1015.87245 5.84185 (101*2π)/3574 weeks
1025.51679 5.81318 (102*2π)/3574 weeks
1035.20496 5.76802 (103*2π)/3573 weeks
1044.92952 5.69609 (104*2π)/3573 weeks
1054.68182 5.65093 (105*2π)/3573 weeks
1064.41944 5.608 (106*2π)/3573 weeks
1074.12348 5.5726 (107*2π)/3573 weeks
1083.78669 5.48439 (108*2π)/3573 weeks
1093.43386 5.34638 (109*2π)/3573 weeks
1103.06687 5.13596 (110*2π)/3573 weeks
1112.71182 4.82641 (111*2π)/3573 weeks
1122.41499 4.42494 (112*2π)/3573 weeks
1132.21991 3.92665 (113*2π)/3573 weeks
1142.16859 3.41324 (114*2π)/3573 weeks
1152.26029 2.8977 (115*2π)/3573 weeks
1162.50358 2.50035 (116*2π)/3573 weeks
1172.79016 2.24138 (117*2π)/3573 weeks
1183.08118 2.11403 (118*2π)/3573 weeks
1193.31914 2.12441 (119*2π)/3573 weeks
1203.42589 2.2048 (120*2π)/3573 weeks
1213.41192 2.29804 (121*2π)/3573 weeks
1223.25881 2.31955 (122*2π)/3573 weeks
1233.04746 2.21504 (123*2π)/3573 weeks
1242.83771 1.95016 (124*2π)/3573 weeks
1252.73205 1.55607 (125*2π)/3573 weeks
1262.77401 1.09415 (126*2π)/3573 weeks
1272.98007 .6377 (127*2π)/3573 weeks
1283.3368 .25668 (128*2π)/3573 weeks
1293.79822 -.01028 (129*2π)/3573 weeks
1304.33783 -.10535 (130*2π)/3573 weeks
1314.83975 -.02193 (131*2π)/3573 weeks
1325.26792 .19824 (132*2π)/3573 weeks
1335.55807 .50204 (133*2π)/3573 weeks
1345.74491 .80983 (134*2π)/3573 weeks
1355.84803 1.12315 (135*2π)/3573 weeks
1365.87333 1.40203 (136*2π)/3573 weeks
1375.87653 1.65184 (137*2π)/3573 weeks
1385.83555 1.88435 (138*2π)/3573 weeks
1395.81479 2.08382 (139*2π)/3573 weeks
1405.78993 2.34104 (140*2π)/3573 weeks
1415.71666 2.6389 (141*2π)/3573 weeks
1425.5479 2.9865 (142*2π)/3573 weeks
1435.23651 3.30562 (143*2π)/3572 weeks
1444.83919 3.53339 (144*2π)/3572 weeks
1454.36623 3.68463 (145*2π)/3572 weeks
1463.84753 3.70241 (146*2π)/3572 weeks
1473.31256 3.61124 (147*2π)/3572 weeks
1482.79629 3.3624 (148*2π)/3572 weeks
1492.36858 2.9987 (149*2π)/3572 weeks
1502.04875 2.56042 (150*2π)/3572 weeks
1511.83975 2.09426 (151*2π)/3572 weeks
1521.71374 1.63779 (152*2π)/3572 weeks
1531.64727 1.17233 (153*2π)/3572 weeks
1541.65678 .70321 (154*2π)/3572 weeks
1551.75616 .24507 (155*2π)/3572 weeks
1561.92886 -.16259 (156*2π)/3572 weeks
1572.16898 -.52031 (157*2π)/3572 weeks
1582.44002 -.78456 (158*2π)/3572 weeks
1592.71073 -.99777 (159*2π)/3572 weeks
1602.98433 -1.14638 (160*2π)/3572 weeks
1613.22641 -1.24858 (161*2π)/3572 weeks
1623.45165 -1.32982 (162*2π)/3572 weeks
1633.63936 -1.37046 (163*2π)/3572 weeks
1643.77164 -1.44104 (164*2π)/3572 weeks
1653.89718 -1.5536 (165*2π)/3572 weeks
1664.05513 -1.74734 (166*2π)/3572 weeks
1674.34332 -1.95488 (167*2π)/3572 weeks
1684.73796 -2.08857 (168*2π)/3572 weeks
1695.20146 -2.09561 (169*2π)/3572 weeks
1705.65424 -1.93609 (170*2π)/3572 weeks
1716.01143 -1.66797 (171*2π)/3572 weeks
1726.27988 -1.32438 (172*2π)/3572 weeks
1736.4166 -.94338 (173*2π)/3572 weeks
1746.43414 -.57346 (174*2π)/3572 weeks
1756.33354 -.2703 (175*2π)/3572 weeks
1766.17942 -.07686 (176*2π)/3572 weeks
1776.03113 .00525 (177*2π)/3572 weeks
1785.94535 .01135 (178*2π)/3572 weeks
1795.94535 -.01135 (179*2π)/3572 weeks
1806.03113 -.00525 (180*2π)/3572 weeks
1816.17942 .07686 (181*2π)/3572 weeks
1826.33354 .2703 (182*2π)/3572 weeks
1836.43414 .57346 (183*2π)/3572 weeks
1846.4166 .94338 (184*2π)/3572 weeks
1856.27988 1.32438 (185*2π)/3572 weeks
1866.01143 1.66797 (186*2π)/3572 weeks
1875.65424 1.93609 (187*2π)/3572 weeks
1885.20146 2.09561 (188*2π)/3572 weeks
1894.73796 2.08857 (189*2π)/3572 weeks
1904.34332 1.95488 (190*2π)/3572 weeks
1914.05513 1.74734 (191*2π)/3572 weeks
1923.89718 1.5536 (192*2π)/3572 weeks
1933.77164 1.44104 (193*2π)/3572 weeks
1943.63936 1.37046 (194*2π)/3572 weeks
1953.45165 1.32982 (195*2π)/3572 weeks
1963.22641 1.24858 (196*2π)/3572 weeks
1972.98433 1.14638 (197*2π)/3572 weeks
1982.71073 .99777 (198*2π)/3572 weeks
1992.44002 .78456 (199*2π)/3572 weeks
2002.16898 .52031 (200*2π)/3572 weeks
2011.92886 .16259 (201*2π)/3572 weeks
2021.75616 -.24507 (202*2π)/3572 weeks
2031.65678 -.70321 (203*2π)/3572 weeks
2041.64727 -1.17233 (204*2π)/3572 weeks
2051.71374 -1.63779 (205*2π)/3572 weeks
2061.83975 -2.09426 (206*2π)/3572 weeks
2072.04875 -2.56042 (207*2π)/3572 weeks
2082.36858 -2.9987 (208*2π)/3572 weeks
2092.79629 -3.3624 (209*2π)/3572 weeks
2103.31256 -3.61124 (210*2π)/3572 weeks
2113.84753 -3.70241 (211*2π)/3572 weeks
2124.36623 -3.68463 (212*2π)/3572 weeks
2134.83919 -3.53339 (213*2π)/3572 weeks
2145.23651 -3.30562 (214*2π)/3572 weeks
2155.5479 -2.9865 (215*2π)/3572 weeks
2165.71666 -2.6389 (216*2π)/3572 weeks
2175.78993 -2.34104 (217*2π)/3572 weeks
2185.81479 -2.08382 (218*2π)/3572 weeks
2195.83555 -1.88435 (219*2π)/3572 weeks
2205.87653 -1.65184 (220*2π)/3572 weeks
2215.87333 -1.40203 (221*2π)/3572 weeks
2225.84803 -1.12315 (222*2π)/3572 weeks
2235.74491 -.80983 (223*2π)/3572 weeks
2245.55807 -.50204 (224*2π)/3572 weeks
2255.26792 -.19824 (225*2π)/3572 weeks
2264.83975 .02193 (226*2π)/3572 weeks
2274.33783 .10535 (227*2π)/3572 weeks
2283.79822 .01028 (228*2π)/3572 weeks
2293.3368 -.25668 (229*2π)/3572 weeks
2302.98007 -.6377 (230*2π)/3572 weeks
2312.77401 -1.09415 (231*2π)/3572 weeks
2322.73205 -1.55607 (232*2π)/3572 weeks
2332.83771 -1.95016 (233*2π)/3572 weeks
2343.04746 -2.21504 (234*2π)/3572 weeks
2353.25881 -2.31955 (235*2π)/3572 weeks
2363.41192 -2.29804 (236*2π)/3572 weeks
2373.42589 -2.2048 (237*2π)/3572 weeks
2383.31914 -2.12441 (238*2π)/3572 weeks
2393.08118 -2.11403 (239*2π)/3571 weeks
2402.79016 -2.24138 (240*2π)/3571 weeks
2412.50358 -2.50035 (241*2π)/3571 weeks
2422.26029 -2.8977 (242*2π)/3571 weeks
2432.16859 -3.41324 (243*2π)/3571 weeks
2442.21991 -3.92665 (244*2π)/3571 weeks
2452.41499 -4.42494 (245*2π)/3571 weeks
2462.71182 -4.82641 (246*2π)/3571 weeks
2473.06687 -5.13596 (247*2π)/3571 weeks
2483.43386 -5.34638 (248*2π)/3571 weeks
2493.78669 -5.48439 (249*2π)/3571 weeks
2504.12348 -5.5726 (250*2π)/3571 weeks
2514.41944 -5.608 (251*2π)/3571 weeks
2524.68182 -5.65093 (252*2π)/3571 weeks
2534.92952 -5.69609 (253*2π)/3571 weeks
2545.20496 -5.76802 (254*2π)/3571 weeks
2555.51679 -5.81318 (255*2π)/3571 weeks
2565.87245 -5.84185 (256*2π)/3571 weeks
2576.27882 -5.79501 (257*2π)/3571 weeks
2586.68467 -5.66377 (258*2π)/3571 weeks
2597.08883 -5.46075 (259*2π)/3571 weeks
2607.46668 -5.15362 (260*2π)/3571 weeks
2617.78475 -4.78264 (261*2π)/3571 weeks
2628.05057 -4.3236 (262*2π)/3571 weeks
2638.21903 -3.81389 (263*2π)/3571 weeks
2648.3048 -3.23975 (264*2π)/3571 weeks
2658.25192 -2.63384 (265*2π)/3571 weeks
2668.07624 -2.02937 (266*2π)/3571 weeks
2677.76028 -1.43925 (267*2π)/3571 weeks
2687.30256 -.91953 (268*2π)/3571 weeks
2696.72795 -.47426 (269*2π)/3571 weeks
2706.00998 -.1738 (270*2π)/3571 weeks
2715.24633 -.05514 (271*2π)/3571 weeks
2724.46109 -.12957 (272*2π)/3571 weeks
2733.75853 -.37396 (273*2π)/3571 weeks
2743.13363 -.73705 (274*2π)/3571 weeks
2752.61866 -1.19409 (275*2π)/3571 weeks
2762.20972 -1.71032 (276*2π)/3571 weeks
2771.90085 -2.27723 (277*2π)/3571 weeks
2781.74767 -2.86908 (278*2π)/3571 weeks
2791.69941 -3.41074 (279*2π)/3571 weeks
2801.77145 -3.89514 (280*2π)/3571 weeks
2811.87467 -4.26957 (281*2π)/3571 weeks
2822.01307 -4.56395 (282*2π)/3571 weeks
2832.11526 -4.75841 (283*2π)/3571 weeks
2842.15316 -4.89231 (284*2π)/3571 weeks
2852.11697 -5.02695 (285*2π)/3571 weeks
2862.00122 -5.16745 (286*2π)/3571 weeks
2871.85907 -5.38986 (287*2π)/3571 weeks
2881.6713 -5.6411 (288*2π)/3571 weeks
2891.51256 -6.0119 (289*2π)/3571 weeks
2901.39046 -6.39484 (290*2π)/3571 weeks
2911.29151 -6.82817 (291*2π)/3571 weeks
2921.23755 -7.30249 (292*2π)/3571 weeks
2931.21769 -7.77019 (293*2π)/3571 weeks
2941.19598 -8.29532 (294*2π)/3571 weeks
2951.20323 -8.87196 (295*2π)/3571 weeks
2961.28152 -9.56967 (296*2π)/3571 weeks
2971.49642 -10.31526 (297*2π)/3571 weeks
2981.88011 -11.11583 (298*2π)/3571 weeks
2992.47342 -11.87908 (299*2π)/3571 weeks
3003.28515 -12.53459 (300*2π)/3571 weeks
3014.25693 -12.99755 (301*2π)/3571 weeks
3025.34934 -13.21113 (302*2π)/3571 weeks
3036.45617 -13.1468 (303*2π)/3571 weeks
3047.51395 -12.77698 (304*2π)/3571 weeks
3058.37267 -12.14666 (305*2π)/3571 weeks
3068.98516 -11.34232 (306*2π)/3571 weeks
3079.31858 -10.47597 (307*2π)/3571 weeks
3089.38678 -9.60197 (308*2π)/3571 weeks
3099.22485 -8.83673 (309*2π)/3571 weeks
3108.88814 -8.17543 (310*2π)/3571 weeks
3118.43195 -7.69398 (311*2π)/3571 weeks
3127.92515 -7.35135 (312*2π)/3571 weeks
3137.41298 -7.1448 (313*2π)/3571 weeks
3146.94304 -7.02918 (314*2π)/3571 weeks
3156.5093 -6.87017 (315*2π)/3571 weeks
3165.97317 -6.72002 (316*2π)/3571 weeks
3175.37965 -6.5487 (317*2π)/3571 weeks
3184.58869 -6.43359 (318*2π)/3571 weeks
3193.69172 -6.42388 (319*2π)/3571 weeks
3202.62885 -6.53911 (320*2π)/3571 weeks
3211.4312 -6.8594 (321*2π)/3571 weeks
322.15145 -7.39117 (322*2π)/3571 weeks
323-1.27405 -8.19257 (323*2π)/3571 weeks
324-2.70724 -9.3472 (324*2π)/3571 weeks
325-4.18041 -10.88653 (325*2π)/3571 weeks
326-5.48032 -12.89433 (326*2π)/3571 weeks
327-6.57136 -15.31817 (327*2π)/3571 weeks
328-7.26682 -18.17873 (328*2π)/3571 weeks
329-7.44463 -21.35875 (329*2π)/3571 weeks
330-7.02883 -24.70715 (330*2π)/3571 weeks
331-5.93858 -28.11779 (331*2π)/3571 weeks
332-4.20325 -31.31035 (332*2π)/3571 weeks
333-1.90098 -34.18233 (333*2π)/3571 weeks
334.73779 -36.5322 (334*2π)/3571 weeks
3353.56047 -38.46771 (335*2π)/3571 weeks
3366.38355 -39.99346 (336*2π)/3571 weeks
3379.18897 -41.33384 (337*2π)/3571 weeks
33812.01031 -42.55404 (338*2π)/3571 weeks
33914.95308 -43.72692 (339*2π)/3571 weeks
34018.16646 -44.8502 (340*2π)/3571 weeks
34121.69559 -45.69278 (341*2π)/3571 weeks
34225.54654 -46.27695 (342*2π)/3571 weeks
34329.62143 -46.2132 (343*2π)/3571 weeks
34433.67236 -45.72953 (344*2π)/3571 weeks
34537.62848 -44.5855 (345*2π)/3571 weeks
34641.12029 -43.14354 (346*2π)/3571 weeks
34744.28526 -41.67919 (347*2π)/3571 weeks
34847.28617 -40.33665 (348*2π)/3571 weeks
34950.38841 -39.40176 (349*2π)/3571 weeks
35054.16967 -38.45084 (350*2π)/3571 weeks
35158.56628 -37.4416 (351*2π)/3571 weeks
35264.12924 -35.60035 (352*2π)/3571 weeks
35370.21955 -32.43972 (353*2π)/3571 weeks
35476.66245 -27.49142 (354*2π)/3571 weeks
35582.63461 -20.24808 (355*2π)/3571 weeks

Problems, Comments, Suggestions? Click here to contact Greg Thatcher

Please read my Disclaimer





Copyright (c) 2013 Thatcher Development Software, LLC. All rights reserved. No claim to original U.S. Gov't works.