Back to list of Stocks    See Also: Seasonal Analysis of ILIVGenetic Algorithms Stock Portfolio Generator, and Fourier Calculator

Fourier Analysis of ILIV (INTELLIGENT LIVING)


ILIV (INTELLIGENT LIVING) appears to have interesting cyclic behaviour every 25 weeks (47.5023*sine), 23 weeks (47.2957*sine), and 27 weeks (47.1365*sine).

ILIV (INTELLIGENT LIVING) has an average price of 45.56 (topmost row, frequency = 0).



Click on the checkboxes shown on the right to see how the various frequencies contribute to the graph. Look for large magnitude coefficients (sine or cosine), as these are associated with frequencies which contribute most to the associated stock plot. If you find a large magnitude coefficient which dramatically changes the graph, look at the associated "Period" in weeks, as you may have found a significant recurring cycle for the stock of interest.

Right click on the graph above to see the menu of operations (download, full screen, etc.)

Fourier Analysis

Using data from 4/1/2009 to 1/16/2017 for ILIV (INTELLIGENT LIVING), this program was able to calculate the following Fourier Series:
Sequence #Cosine Coefficients Sine Coefficients FrequenciesPeriod
045.55958   0 
189.04026 11.52856 (1*2π)/348348 weeks
284.48987 21.21799 (2*2π)/348174 weeks
378.13699 28.67406 (3*2π)/348116 weeks
471.3608 33.68473 (4*2π)/34887 weeks
565.01601 36.84713 (5*2π)/34870 weeks
659.29368 38.5841 (6*2π)/34858 weeks
754.84077 39.64298 (7*2π)/34850 weeks
850.97416 40.58604 (8*2π)/34844 weeks
947.80859 41.68114 (9*2π)/34839 weeks
1044.61296 43.13361 (10*2π)/34835 weeks
1141.20119 44.69164 (11*2π)/34832 weeks
1237.39821 46.16457 (12*2π)/34829 weeks
1333.12351 47.13649 (13*2π)/34827 weeks
1428.89397 47.50225 (14*2π)/34825 weeks
1524.61173 47.29565 (15*2π)/34823 weeks
1620.73806 46.55242 (16*2π)/34822 weeks
1717.13444 45.52154 (17*2π)/34820 weeks
1813.91445 44.30396 (18*2π)/34819 weeks
1910.89195 43.04451 (19*2π)/34818 weeks
207.93398 41.71486 (20*2π)/34817 weeks
214.98915 40.2107 (21*2π)/34817 weeks
221.98268 38.39201 (22*2π)/34816 weeks
23-.87244 36.09912 (23*2π)/34815 weeks
24-3.48565 33.29337 (24*2π)/34815 weeks
25-5.52527 30.03319 (25*2π)/34814 weeks
26-6.93026 26.49857 (26*2π)/34813 weeks
27-7.5708 22.93454 (27*2π)/34813 weeks
28-7.5646 19.52037 (28*2π)/34812 weeks
29-6.96439 16.41274 (29*2π)/34812 weeks
30-5.89432 13.74168 (30*2π)/34812 weeks
31-4.57275 11.54551 (31*2π)/34811 weeks
32-3.03616 9.82417 (32*2π)/34811 weeks
33-1.52447 8.55958 (33*2π)/34811 weeks
34-.01311 7.66156 (34*2π)/34810 weeks
351.34715 7.08055 (35*2π)/34810 weeks
362.61611 6.72348 (36*2π)/34810 weeks
373.74374 6.59149 (37*2π)/3489 weeks
384.69245 6.59927 (38*2π)/3489 weeks
395.52495 6.71974 (39*2π)/3489 weeks
406.14681 6.89835 (40*2π)/3489 weeks
416.70792 7.05963 (41*2π)/3488 weeks
427.16025 7.22016 (42*2π)/3488 weeks
437.66263 7.34819 (43*2π)/3488 weeks
448.2041 7.58053 (44*2π)/3488 weeks
458.72955 7.96362 (45*2π)/3488 weeks
469.19844 8.50245 (46*2π)/3488 weeks
479.51205 9.22562 (47*2π)/3487 weeks
489.64049 10.06045 (48*2π)/3487 weeks
499.4921 10.98666 (49*2π)/3487 weeks
509.065 11.89076 (50*2π)/3487 weeks
518.33274 12.6882 (51*2π)/3487 weeks
527.35126 13.27622 (52*2π)/3487 weeks
536.20243 13.54291 (53*2π)/3487 weeks
545.03619 13.50276 (54*2π)/3486 weeks
553.92807 13.15759 (55*2π)/3486 weeks
562.9708 12.58039 (56*2π)/3486 weeks
572.22332 11.82199 (57*2π)/3486 weeks
581.70241 10.99144 (58*2π)/3486 weeks
591.40592 10.1735 (59*2π)/3486 weeks
601.24999 9.40926 (60*2π)/3486 weeks
611.23117 8.75035 (61*2π)/3486 weeks
621.23402 8.17522 (62*2π)/3486 weeks
631.26497 7.67049 (63*2π)/3486 weeks
641.29792 7.1682 (64*2π)/3485 weeks
651.38956 6.6979 (65*2π)/3485 weeks
661.51651 6.27893 (66*2π)/3485 weeks
671.6596 5.88237 (67*2π)/3485 weeks
681.87016 5.58305 (68*2π)/3485 weeks
692.01793 5.34616 (69*2π)/3485 weeks
702.1586 5.1811 (70*2π)/3485 weeks
712.2056 5.04039 (71*2π)/3485 weeks
722.18076 4.9039 (72*2π)/3485 weeks
732.07984 4.70767 (73*2π)/3485 weeks
741.93379 4.41085 (74*2π)/3485 weeks
751.8239 4.0211 (75*2π)/3485 weeks
761.74362 3.51791 (76*2π)/3485 weeks
771.79213 2.94821 (77*2π)/3485 weeks
781.95432 2.3255 (78*2π)/3484 weeks
792.28278 1.73087 (79*2π)/3484 weeks
802.7194 1.19047 (80*2π)/3484 weeks
813.27079 .71554 (81*2π)/3484 weeks
823.93856 .3475 (82*2π)/3484 weeks
834.69082 .10756 (83*2π)/3484 weeks
845.52023 .06609 (84*2π)/3484 weeks
856.31768 .22232 (85*2π)/3484 weeks
867.04809 .58151 (86*2π)/3484 weeks
877.61907 1.06803 (87*2π)/3484 weeks
888.06654 1.63924 (88*2π)/3484 weeks
898.35325 2.2687 (89*2π)/3484 weeks
908.49736 2.90527 (90*2π)/3484 weeks
918.50395 3.54023 (91*2π)/3484 weeks
928.37362 4.11481 (92*2π)/3484 weeks
938.16121 4.63782 (93*2π)/3484 weeks
947.84894 5.07727 (94*2π)/3484 weeks
957.49169 5.44336 (95*2π)/3484 weeks
967.07111 5.71363 (96*2π)/3484 weeks
976.64726 5.88777 (97*2π)/3484 weeks
986.21583 5.98281 (98*2π)/3484 weeks
995.81078 5.98119 (99*2π)/3484 weeks
1005.47029 5.93885 (100*2π)/3483 weeks
1015.15867 5.87238 (101*2π)/3483 weeks
1024.89783 5.81094 (102*2π)/3483 weeks
1034.62411 5.76709 (103*2π)/3483 weeks
1044.3321 5.73101 (104*2π)/3483 weeks
1053.98349 5.6575 (105*2π)/3483 weeks
1063.61866 5.52753 (106*2π)/3483 weeks
1073.23441 5.32665 (107*2π)/3483 weeks
1082.85293 5.02587 (108*2π)/3483 weeks
1092.52802 4.62108 (109*2π)/3483 weeks
1102.29712 4.11118 (110*2π)/3483 weeks
1112.22546 3.56988 (111*2π)/3483 weeks
1122.29954 3.02426 (112*2π)/3483 weeks
1132.54682 2.59102 (113*2π)/3483 weeks
1142.84657 2.30979 (114*2π)/3483 weeks
1153.15343 2.17035 (115*2π)/3483 weeks
1163.40498 2.17935 (116*2π)/3483 weeks
1173.51583 2.26412 (117*2π)/3483 weeks
1183.49498 2.36169 (118*2π)/3483 weeks
1193.32787 2.37572 (119*2π)/3483 weeks
1203.10179 2.25259 (120*2π)/3483 weeks
1212.89002 1.95411 (121*2π)/3483 weeks
1222.79827 1.52558 (122*2π)/3483 weeks
1232.87177 1.03542 (123*2π)/3483 weeks
1243.12163 .56425 (124*2π)/3483 weeks
1253.52408 .18901 (125*2π)/3483 weeks
1264.03616 -.05675 (126*2π)/3483 weeks
1274.60333 -.09829 (127*2π)/3483 weeks
1285.1121 .03211 (128*2π)/3483 weeks
1295.52083 .30513 (129*2π)/3483 weeks
1305.78028 .62887 (130*2π)/3483 weeks
1315.9459 .95593 (131*2π)/3483 weeks
1326.01623 1.27753 (132*2π)/3483 weeks
1336.02909 1.55044 (133*2π)/3483 weeks
1346.0142 1.81302 (134*2π)/3483 weeks
1355.96907 2.02988 (135*2π)/3483 weeks
1365.95895 2.26805 (136*2π)/3483 weeks
1375.90533 2.56056 (137*2π)/3483 weeks
1385.78355 2.90727 (138*2π)/3483 weeks
1395.51727 3.26885 (139*2π)/3483 weeks
1405.12506 3.545 (140*2π)/3482 weeks
1414.66173 3.73862 (141*2π)/3482 weeks
1424.12071 3.8052 (142*2π)/3482 weeks
1433.56742 3.74811 (143*2π)/3482 weeks
1443.00618 3.53425 (144*2π)/3482 weeks
1452.53027 3.17854 (145*2π)/3482 weeks
1462.16511 2.73129 (146*2π)/3482 weeks
1471.92125 2.24327 (147*2π)/3482 weeks
1481.77664 1.76064 (148*2π)/3482 weeks
1491.6949 1.27328 (149*2π)/3482 weeks
1501.69419 .77959 (150*2π)/3482 weeks
1511.78778 .29394 (151*2π)/3482 weeks
1521.96475 -.13924 (152*2π)/3482 weeks
1532.21303 -.51992 (153*2π)/3482 weeks
1542.49846 -.80071 (154*2π)/3482 weeks
1552.78331 -1.0252 (155*2π)/3482 weeks
1563.07069 -1.18018 (156*2π)/3482 weeks
1573.3239 -1.28662 (157*2π)/3482 weeks
1583.56027 -1.3692 (158*2π)/3482 weeks
1593.75007 -1.41106 (159*2π)/3482 weeks
1603.88769 -1.49187 (160*2π)/3482 weeks
1614.01853 -1.61969 (161*2π)/3482 weeks
1624.20568 -1.83612 (162*2π)/3482 weeks
1634.53466 -2.04309 (163*2π)/3482 weeks
1644.97086 -2.15821 (164*2π)/3482 weeks
1655.46646 -2.12305 (165*2π)/3482 weeks
1665.91771 -1.91251 (166*2π)/3482 weeks
1676.26686 -1.60805 (167*2π)/3482 weeks
1686.50558 -1.22363 (168*2π)/3482 weeks
1696.60422 -.82471 (169*2π)/3482 weeks
1706.57109 -.45207 (170*2π)/3482 weeks
1716.43389 -.17975 (171*2π)/3482 weeks
1726.26579 -.02774 (172*2π)/3482 weeks
1736.13592 .01491 (173*2π)/3482 weeks
1746.0868   (174*2π)/3482 weeks
1756.13592 -.01491 (175*2π)/3482 weeks
1766.26579 .02774 (176*2π)/3482 weeks
1776.43389 .17975 (177*2π)/3482 weeks
1786.57109 .45207 (178*2π)/3482 weeks
1796.60422 .82471 (179*2π)/3482 weeks
1806.50558 1.22363 (180*2π)/3482 weeks
1816.26686 1.60805 (181*2π)/3482 weeks
1825.91771 1.91251 (182*2π)/3482 weeks
1835.46646 2.12305 (183*2π)/3482 weeks
1844.97086 2.15821 (184*2π)/3482 weeks
1854.53466 2.04309 (185*2π)/3482 weeks
1864.20568 1.83612 (186*2π)/3482 weeks
1874.01853 1.61969 (187*2π)/3482 weeks
1883.88769 1.49187 (188*2π)/3482 weeks
1893.75007 1.41106 (189*2π)/3482 weeks
1903.56027 1.3692 (190*2π)/3482 weeks
1913.3239 1.28662 (191*2π)/3482 weeks
1923.07069 1.18018 (192*2π)/3482 weeks
1932.78331 1.0252 (193*2π)/3482 weeks
1942.49846 .80071 (194*2π)/3482 weeks
1952.21303 .51992 (195*2π)/3482 weeks
1961.96475 .13924 (196*2π)/3482 weeks
1971.78778 -.29394 (197*2π)/3482 weeks
1981.69419 -.77959 (198*2π)/3482 weeks
1991.6949 -1.27328 (199*2π)/3482 weeks
2001.77664 -1.76064 (200*2π)/3482 weeks
2011.92125 -2.24327 (201*2π)/3482 weeks
2022.16511 -2.73129 (202*2π)/3482 weeks
2032.53027 -3.17854 (203*2π)/3482 weeks
2043.00618 -3.53425 (204*2π)/3482 weeks
2053.56742 -3.74811 (205*2π)/3482 weeks
2064.12071 -3.8052 (206*2π)/3482 weeks
2074.66173 -3.73862 (207*2π)/3482 weeks
2085.12506 -3.545 (208*2π)/3482 weeks
2095.51727 -3.26885 (209*2π)/3482 weeks
2105.78355 -2.90727 (210*2π)/3482 weeks
2115.90533 -2.56056 (211*2π)/3482 weeks
2125.95895 -2.26805 (212*2π)/3482 weeks
2135.96907 -2.02988 (213*2π)/3482 weeks
2146.0142 -1.81302 (214*2π)/3482 weeks
2156.02909 -1.55044 (215*2π)/3482 weeks
2166.01623 -1.27753 (216*2π)/3482 weeks
2175.9459 -.95593 (217*2π)/3482 weeks
2185.78028 -.62887 (218*2π)/3482 weeks
2195.52083 -.30513 (219*2π)/3482 weeks
2205.1121 -.03211 (220*2π)/3482 weeks
2214.60333 .09829 (221*2π)/3482 weeks
2224.03616 .05675 (222*2π)/3482 weeks
2233.52408 -.18901 (223*2π)/3482 weeks
2243.12163 -.56425 (224*2π)/3482 weeks
2252.87177 -1.03542 (225*2π)/3482 weeks
2262.79827 -1.52558 (226*2π)/3482 weeks
2272.89002 -1.95411 (227*2π)/3482 weeks
2283.10179 -2.25259 (228*2π)/3482 weeks
2293.32787 -2.37572 (229*2π)/3482 weeks
2303.49498 -2.36169 (230*2π)/3482 weeks
2313.51583 -2.26412 (231*2π)/3482 weeks
2323.40498 -2.17935 (232*2π)/3482 weeks
2333.15343 -2.17035 (233*2π)/3481 weeks
2342.84657 -2.30979 (234*2π)/3481 weeks
2352.54682 -2.59102 (235*2π)/3481 weeks
2362.29954 -3.02426 (236*2π)/3481 weeks
2372.22546 -3.56988 (237*2π)/3481 weeks
2382.29712 -4.11118 (238*2π)/3481 weeks
2392.52802 -4.62108 (239*2π)/3481 weeks
2402.85293 -5.02587 (240*2π)/3481 weeks
2413.23441 -5.32665 (241*2π)/3481 weeks
2423.61866 -5.52753 (242*2π)/3481 weeks
2433.98349 -5.6575 (243*2π)/3481 weeks
2444.3321 -5.73101 (244*2π)/3481 weeks
2454.62411 -5.76709 (245*2π)/3481 weeks
2464.89783 -5.81094 (246*2π)/3481 weeks
2475.15867 -5.87238 (247*2π)/3481 weeks
2485.47029 -5.93885 (248*2π)/3481 weeks
2495.81078 -5.98119 (249*2π)/3481 weeks
2506.21583 -5.98281 (250*2π)/3481 weeks
2516.64726 -5.88777 (251*2π)/3481 weeks
2527.07111 -5.71363 (252*2π)/3481 weeks
2537.49169 -5.44336 (253*2π)/3481 weeks
2547.84894 -5.07727 (254*2π)/3481 weeks
2558.16121 -4.63782 (255*2π)/3481 weeks
2568.37362 -4.11481 (256*2π)/3481 weeks
2578.50395 -3.54023 (257*2π)/3481 weeks
2588.49736 -2.90527 (258*2π)/3481 weeks
2598.35325 -2.2687 (259*2π)/3481 weeks
2608.06654 -1.63924 (260*2π)/3481 weeks
2617.61907 -1.06803 (261*2π)/3481 weeks
2627.04809 -.58151 (262*2π)/3481 weeks
2636.31768 -.22232 (263*2π)/3481 weeks
2645.52023 -.06609 (264*2π)/3481 weeks
2654.69082 -.10756 (265*2π)/3481 weeks
2663.93856 -.3475 (266*2π)/3481 weeks
2673.27079 -.71554 (267*2π)/3481 weeks
2682.7194 -1.19047 (268*2π)/3481 weeks
2692.28278 -1.73087 (269*2π)/3481 weeks
2701.95432 -2.3255 (270*2π)/3481 weeks
2711.79213 -2.94821 (271*2π)/3481 weeks
2721.74362 -3.51791 (272*2π)/3481 weeks
2731.8239 -4.0211 (273*2π)/3481 weeks
2741.93379 -4.41085 (274*2π)/3481 weeks
2752.07984 -4.70767 (275*2π)/3481 weeks
2762.18076 -4.9039 (276*2π)/3481 weeks
2772.2056 -5.04039 (277*2π)/3481 weeks
2782.1586 -5.1811 (278*2π)/3481 weeks
2792.01793 -5.34616 (279*2π)/3481 weeks
2801.87016 -5.58305 (280*2π)/3481 weeks
2811.6596 -5.88237 (281*2π)/3481 weeks
2821.51651 -6.27893 (282*2π)/3481 weeks
2831.38956 -6.6979 (283*2π)/3481 weeks
2841.29792 -7.1682 (284*2π)/3481 weeks
2851.26497 -7.67049 (285*2π)/3481 weeks
2861.23402 -8.17522 (286*2π)/3481 weeks
2871.23117 -8.75035 (287*2π)/3481 weeks
2881.24999 -9.40926 (288*2π)/3481 weeks
2891.40592 -10.1735 (289*2π)/3481 weeks
2901.70241 -10.99144 (290*2π)/3481 weeks
2912.22332 -11.82199 (291*2π)/3481 weeks
2922.9708 -12.58039 (292*2π)/3481 weeks
2933.92807 -13.15759 (293*2π)/3481 weeks
2945.03619 -13.50276 (294*2π)/3481 weeks
2956.20243 -13.54291 (295*2π)/3481 weeks
2967.35126 -13.27622 (296*2π)/3481 weeks
2978.33274 -12.6882 (297*2π)/3481 weeks
2989.065 -11.89076 (298*2π)/3481 weeks
2999.4921 -10.98666 (299*2π)/3481 weeks
3009.64049 -10.06045 (300*2π)/3481 weeks
3019.51205 -9.22562 (301*2π)/3481 weeks
3029.19844 -8.50245 (302*2π)/3481 weeks
3038.72955 -7.96362 (303*2π)/3481 weeks
3048.2041 -7.58053 (304*2π)/3481 weeks
3057.66263 -7.34819 (305*2π)/3481 weeks
3067.16025 -7.22016 (306*2π)/3481 weeks
3076.70792 -7.05963 (307*2π)/3481 weeks
3086.14681 -6.89835 (308*2π)/3481 weeks
3095.52495 -6.71974 (309*2π)/3481 weeks
3104.69245 -6.59927 (310*2π)/3481 weeks
3113.74374 -6.59149 (311*2π)/3481 weeks
3122.61611 -6.72348 (312*2π)/3481 weeks
3131.34715 -7.08055 (313*2π)/3481 weeks
314-.01311 -7.66156 (314*2π)/3481 weeks
315-1.52447 -8.55958 (315*2π)/3481 weeks
316-3.03616 -9.82417 (316*2π)/3481 weeks
317-4.57275 -11.54551 (317*2π)/3481 weeks
318-5.89432 -13.74168 (318*2π)/3481 weeks
319-6.96439 -16.41274 (319*2π)/3481 weeks
320-7.5646 -19.52037 (320*2π)/3481 weeks
321-7.5708 -22.93454 (321*2π)/3481 weeks
322-6.93026 -26.49857 (322*2π)/3481 weeks
323-5.52527 -30.03319 (323*2π)/3481 weeks
324-3.48565 -33.29337 (324*2π)/3481 weeks
325-.87244 -36.09912 (325*2π)/3481 weeks
3261.98268 -38.39201 (326*2π)/3481 weeks
3274.98915 -40.2107 (327*2π)/3481 weeks
3287.93398 -41.71486 (328*2π)/3481 weeks
32910.89195 -43.04451 (329*2π)/3481 weeks
33013.91445 -44.30396 (330*2π)/3481 weeks
33117.13444 -45.52154 (331*2π)/3481 weeks
33220.73806 -46.55242 (332*2π)/3481 weeks
33324.61173 -47.29565 (333*2π)/3481 weeks
33428.89397 -47.50225 (334*2π)/3481 weeks
33533.12351 -47.13649 (335*2π)/3481 weeks
33637.39821 -46.16457 (336*2π)/3481 weeks
33741.20119 -44.69164 (337*2π)/3481 weeks
33844.61296 -43.13361 (338*2π)/3481 weeks
33947.80859 -41.68114 (339*2π)/3481 weeks
34050.97416 -40.58604 (340*2π)/3481 weeks
34154.84077 -39.64298 (341*2π)/3481 weeks
34259.29368 -38.5841 (342*2π)/3481 weeks
34365.01601 -36.84713 (343*2π)/3481 weeks
34471.3608 -33.68473 (344*2π)/3481 weeks
34578.13699 -28.67406 (345*2π)/3481 weeks
34684.48987 -21.21799 (346*2π)/3481 weeks

Problems, Comments, Suggestions? Click here to contact Greg Thatcher

Please read my Disclaimer





Copyright (c) 2013 Thatcher Development Software, LLC. All rights reserved. No claim to original U.S. Gov't works.