Back to list of Stocks    See Also: Seasonal Analysis of HSHGenetic Algorithms Stock Portfolio Generator, and Fourier Calculator

Fourier Analysis of HSH (Hillshire Brands Company (The) )


HSH (Hillshire Brands Company (The) ) appears to have interesting cyclic behaviour every 157 weeks (2.3608*sine), 170 weeks (1.9408*cosine), and 184 weeks (.9318*cosine).

HSH (Hillshire Brands Company (The) ) has an average price of 17.65 (topmost row, frequency = 0).



Click on the checkboxes shown on the right to see how the various frequencies contribute to the graph. Look for large magnitude coefficients (sine or cosine), as these are associated with frequencies which contribute most to the associated stock plot. If you find a large magnitude coefficient which dramatically changes the graph, look at the associated "Period" in weeks, as you may have found a significant recurring cycle for the stock of interest.

Right click on the graph above to see the menu of operations (download, full screen, etc.)

Fourier Analysis

Using data from 6/1/1972 to 8/25/2014 for HSH (Hillshire Brands Company (The) ), this program was able to calculate the following Fourier Series:
Sequence #Cosine Coefficients Sine Coefficients FrequenciesPeriod
017.6486   0 
1-1.0015 -19.37227 (1*2π)/22042,204 weeks
2.39239 -1.50936 (2*2π)/22041,102 weeks
31.97266 -4.01889 (3*2π)/2204735 weeks
4.20771 -3.21424 (4*2π)/2204551 weeks
51.62709 -2.38356 (5*2π)/2204441 weeks
6-.58088 -4.23428 (6*2π)/2204367 weeks
7-1.25353 -.41926 (7*2π)/2204315 weeks
8.34251 -1.81665 (8*2π)/2204276 weeks
9-1.05206 -.16242 (9*2π)/2204245 weeks
10.72634 .14702 (10*2π)/2204220 weeks
11.85704 -.45158 (11*2π)/2204200 weeks
12.93175 -.27927 (12*2π)/2204184 weeks
131.94085 -.87506 (13*2π)/2204170 weeks
14.35226 -2.36075 (14*2π)/2204157 weeks
15-.04288 -.49148 (15*2π)/2204147 weeks
16.51627 -.86576 (16*2π)/2204138 weeks
17.5835 -.76556 (17*2π)/2204130 weeks
18.71421 -.99834 (18*2π)/2204122 weeks
19.20798 -1.32146 (19*2π)/2204116 weeks
20.17525 -.85402 (20*2π)/2204110 weeks
21.11519 -.87067 (21*2π)/2204105 weeks
22.19787 -.936 (22*2π)/2204100 weeks
23-.16336 -.82277 (23*2π)/220496 weeks
24-.16734 -.508 (24*2π)/220492 weeks
25.14555 -.28756 (25*2π)/220488 weeks
26.11834 -.55685 (26*2π)/220485 weeks
27.0794 -.17481 (27*2π)/220482 weeks
28.53482 -.33685 (28*2π)/220479 weeks
29.3167 -.64622 (29*2π)/220476 weeks
30.13286 -.34482 (30*2π)/220473 weeks
31.4509 -.47778 (31*2π)/220471 weeks
32.12243 -.3974 (32*2π)/220469 weeks
33.4944 -.21069 (33*2π)/220467 weeks
34.64562 -.5192 (34*2π)/220465 weeks
35.43887 -.61823 (35*2π)/220463 weeks
36.60301 -.6045 (36*2π)/220461 weeks
37.51709 -1.01231 (37*2π)/220460 weeks
38.0175 -.86115 (38*2π)/220458 weeks
39.21001 -.68296 (39*2π)/220457 weeks
40.28134 -.76219 (40*2π)/220455 weeks
41-.04262 -1.15171 (41*2π)/220454 weeks
42-.47941 -.4153 (42*2π)/220452 weeks
43.31474 -.48549 (43*2π)/220451 weeks
44-.31514 -.82364 (44*2π)/220450 weeks
45-.26905 -.28631 (45*2π)/220449 weeks
46-.07446 -.24449 (46*2π)/220448 weeks
47-.11605 -.2686 (47*2π)/220447 weeks
48.14037 .04391 (48*2π)/220446 weeks
49.34531 -.37334 (49*2π)/220445 weeks
50.17519 -.26134 (50*2π)/220444 weeks
51.33815 -.48167 (51*2π)/220443 weeks
52.11925 -.46427 (52*2π)/220442 weeks
53.0994 -.33377 (53*2π)/220442 weeks
54.39951 -.39373 (54*2π)/220441 weeks
55.0984 -.6668 (55*2π)/220440 weeks
56.12047 -.37035 (56*2π)/220439 weeks
57.2685 -.60015 (57*2π)/220439 weeks
58-.05677 -.65423 (58*2π)/220438 weeks
59-.01041 -.4263 (59*2π)/220437 weeks
60-.03896 -.51231 (60*2π)/220437 weeks
61-.03449 -.36141 (61*2π)/220436 weeks
62.04757 -.44288 (62*2π)/220436 weeks
63-.12215 -.44434 (63*2π)/220435 weeks
64-.09794 -.211 (64*2π)/220434 weeks
65.17279 -.26352 (65*2π)/220434 weeks
66-.00306 -.49009 (66*2π)/220433 weeks
67-.08606 -.23053 (67*2π)/220433 weeks
68.11428 -.15219 (68*2π)/220432 weeks
69.26852 -.38796 (69*2π)/220432 weeks
70.04976 -.42084 (70*2π)/220431 weeks
71.11979 -.36228 (71*2π)/220431 weeks
72.11428 -.49726 (72*2π)/220431 weeks
73-.04506 -.45732 (73*2π)/220430 weeks
74-.06381 -.2892 (74*2π)/220430 weeks
75.22457 -.39947 (75*2π)/220429 weeks
76-.09603 -.51369 (76*2π)/220429 weeks
77-.00465 -.38314 (77*2π)/220429 weeks
78-.04415 -.43847 (78*2π)/220428 weeks
79-.1466 -.34971 (79*2π)/220428 weeks
80.04425 -.3309 (80*2π)/220428 weeks
81-.13507 -.47127 (81*2π)/220427 weeks
82-.13769 -.18133 (82*2π)/220427 weeks
83.12824 -.40316 (83*2π)/220427 weeks
84-.31059 -.4831 (84*2π)/220426 weeks
85-.16519 -.01777 (85*2π)/220426 weeks
86.09258 -.3091 (86*2π)/220426 weeks
87-.15732 -.24047 (87*2π)/220425 weeks
88.0317 -.19169 (88*2π)/220425 weeks
89.00997 -.28018 (89*2π)/220425 weeks
90-.005 -.20877 (90*2π)/220424 weeks
91.1061 -.28908 (91*2π)/220424 weeks
92.03713 -.35215 (92*2π)/220424 weeks
93.03723 -.35731 (93*2π)/220424 weeks
94-.01396 -.46206 (94*2π)/220423 weeks
95-.1287 -.35413 (95*2π)/220423 weeks
96-.10549 -.39518 (96*2π)/220423 weeks
97-.17248 -.30038 (97*2π)/220423 weeks
98-.13975 -.29086 (98*2π)/220422 weeks
99-.12378 -.28161 (99*2π)/220422 weeks
100-.18387 -.28919 (100*2π)/220422 weeks
101-.17931 -.22047 (101*2π)/220422 weeks
102-.19202 -.17513 (102*2π)/220422 weeks
103-.13275 -.11725 (103*2π)/220421 weeks
104-.04873 -.11925 (104*2π)/220421 weeks
105-.05715 -.17618 (105*2π)/220421 weeks
106.03484 -.1398 (106*2π)/220421 weeks
107.00686 -.32275 (107*2π)/220421 weeks
108-.10244 -.30919 (108*2π)/220420 weeks
109-.19906 -.23875 (109*2π)/220420 weeks
110-.14916 -.12527 (110*2π)/220420 weeks
111-.03758 -.08723 (111*2π)/220420 weeks
112.01145 -.21732 (112*2π)/220420 weeks
113-.04459 -.20055 (113*2π)/220420 weeks
114.01716 -.27184 (114*2π)/220419 weeks
115-.13571 -.34993 (115*2π)/220419 weeks
116-.22361 -.20495 (116*2π)/220419 weeks
117-.07877 -.13023 (117*2π)/220419 weeks
118-.12842 -.26393 (118*2π)/220419 weeks
119-.19347 -.1426 (119*2π)/220419 weeks
120-.07897 -.11829 (120*2π)/220418 weeks
121-.1283 -.22361 (121*2π)/220418 weeks
122-.16681 -.06971 (122*2π)/220418 weeks
123-.0416 -.1888 (123*2π)/220418 weeks
124-.2453 -.11885 (124*2π)/220418 weeks
125-.07317 .02702 (125*2π)/220418 weeks
126.04877 -.13271 (126*2π)/220417 weeks
127-.1118 -.15152 (127*2π)/220417 weeks
128.00819 -.13465 (128*2π)/220417 weeks
129-.12447 -.22002 (129*2π)/220417 weeks
130-.11957 -.09838 (130*2π)/220417 weeks
131-.13047 -.10736 (131*2π)/220417 weeks
132-.03732 -.04418 (132*2π)/220417 weeks
133-.00452 -.1336 (133*2π)/220417 weeks
134-.07441 -.19086 (134*2π)/220416 weeks
135-.07852 -.1168 (135*2π)/220416 weeks
136-.08266 -.17453 (136*2π)/220416 weeks
137-.143 -.16029 (137*2π)/220416 weeks
138-.16066 -.0572 (138*2π)/220416 weeks
139-.0541 -.03065 (139*2π)/220416 weeks
140-.0497 -.12974 (140*2π)/220416 weeks
141-.08896 -.08005 (141*2π)/220416 weeks
142-.08243 -.15689 (142*2π)/220416 weeks
143-.18841 -.05002 (143*2π)/220415 weeks
144-.09744 -.00053 (144*2π)/220415 weeks
145-.04973 -.00477 (145*2π)/220415 weeks
146-.07244 -.02672 (146*2π)/220415 weeks
147-.00249 .01992 (147*2π)/220415 weeks
148-.01194 -.04449 (148*2π)/220415 weeks
149.02298 -.01045 (149*2π)/220415 weeks
150.06614 -.05845 (150*2π)/220415 weeks
151.03769 -.12376 (151*2π)/220415 weeks
152.01805 -.12699 (152*2π)/220415 weeks
153-.02398 -.15775 (153*2π)/220414 weeks
154-.07055 -.10776 (154*2π)/220414 weeks
155-.03294 -.10668 (155*2π)/220414 weeks
156-.10583 -.08025 (156*2π)/220414 weeks
157.00548 -.01829 (157*2π)/220414 weeks
158-.02732 -.12498 (158*2π)/220414 weeks
159-.06379 -.05977 (159*2π)/220414 weeks
160-.02241 -.06109 (160*2π)/220414 weeks
161-.05141 -.05169 (161*2π)/220414 weeks
162-.01355 -.02045 (162*2π)/220414 weeks
163.0075 -.0603 (163*2π)/220414 weeks
164-.00722 -.014 (164*2π)/220413 weeks
165.07578 -.07672 (165*2π)/220413 weeks
166-.00809 -.09088 (166*2π)/220413 weeks
167.0684 -.08076 (167*2π)/220413 weeks
168-.05545 -.17097 (168*2π)/220413 weeks
169.00312 .01564 (169*2π)/220413 weeks
170.04559 -.13846 (170*2π)/220413 weeks
171-.01165 -.0959 (171*2π)/220413 weeks
172.00584 -.05383 (172*2π)/220413 weeks
173.06638 -.15394 (173*2π)/220413 weeks
174-.08788 -.09938 (174*2π)/220413 weeks
175.07392 -.07449 (175*2π)/220413 weeks
176-.06118 -.16236 (176*2π)/220413 weeks
177-.01608 -.04919 (177*2π)/220412 weeks
178.00578 -.12723 (178*2π)/220412 weeks
179-.08393 -.10458 (179*2π)/220412 weeks
180-.01861 -.01298 (180*2π)/220412 weeks
181.00361 -.08615 (181*2π)/220412 weeks
182-.00237 -.04357 (182*2π)/220412 weeks
183.01967 -.13403 (183*2π)/220412 weeks
184-.12768 -.01643 (184*2π)/220412 weeks
185.12469 .03131 (185*2π)/220412 weeks
186.00667 -.13659 (186*2π)/220412 weeks
187.017 .00811 (187*2π)/220412 weeks
188.15007 -.07274 (188*2π)/220412 weeks
189.03625 -.17339 (189*2π)/220412 weeks
190.03731 -.11299 (190*2π)/220412 weeks
191.01968 -.14944 (191*2π)/220412 weeks
192-.01666 -.12647 (192*2π)/220411 weeks
193-.0095 -.09945 (193*2π)/220411 weeks
194.02513 -.09174 (194*2π)/220411 weeks
195-.01606 -.13269 (195*2π)/220411 weeks
196.02158 -.06865 (196*2π)/220411 weeks
197.02935 -.15757 (197*2π)/220411 weeks
198-.05419 -.09613 (198*2π)/220411 weeks
199.04099 -.0892 (199*2π)/220411 weeks
200.02299 -.13894 (200*2π)/220411 weeks
201-.07085 -.16275 (201*2π)/220411 weeks
202-.02591 -.01475 (202*2π)/220411 weeks
203.03608 -.11671 (203*2π)/220411 weeks
204-.01033 -.08089 (204*2π)/220411 weeks
205.04804 -.12455 (205*2π)/220411 weeks
206-.04883 -.1128 (206*2π)/220411 weeks
207.04776 -.05915 (207*2π)/220411 weeks
208.04167 -.16083 (208*2π)/220411 weeks
209-.02046 -.14022 (209*2π)/220411 weeks
210-.00931 -.11235 (210*2π)/220410 weeks
211.00301 -.14953 (211*2π)/220410 weeks
212-.05259 -.11236 (212*2π)/220410 weeks
213-.02233 -.10693 (213*2π)/220410 weeks
214-.00209 -.08345 (214*2π)/220410 weeks
215-.00564 -.13319 (215*2π)/220410 weeks
216-.04117 -.11382 (216*2π)/220410 weeks
217-.00876 -.0817 (217*2π)/220410 weeks
218-.01125 -.11728 (218*2π)/220410 weeks
219-.0272 -.1148 (219*2π)/220410 weeks
220-.02657 -.07764 (220*2π)/220410 weeks
221.00285 -.11144 (221*2π)/220410 weeks
222-.02469 -.11259 (222*2π)/220410 weeks
223-.03508 -.08453 (223*2π)/220410 weeks
224.0022 -.06121 (224*2π)/220410 weeks
225.05867 -.1257 (225*2π)/220410 weeks
226-.05008 -.17666 (226*2π)/220410 weeks
227-.06277 -.05223 (227*2π)/220410 weeks
228.0384 -.09466 (228*2π)/220410 weeks
229-.00273 -.12052 (229*2π)/220410 weeks
230-.02032 -.14111 (230*2π)/220410 weeks
231-.01149 -.09621 (231*2π)/220410 weeks
232-.00269 -.14506 (232*2π)/220410 weeks
233-.04937 -.13367 (233*2π)/22049 weeks
234-.01619 -.12108 (234*2π)/22049 weeks
235-.06639 -.15843 (235*2π)/22049 weeks
236-.08256 -.08159 (236*2π)/22049 weeks
237-.02574 -.08129 (237*2π)/22049 weeks
238-.05575 -.11559 (238*2π)/22049 weeks
239-.0473 -.05254 (239*2π)/22049 weeks
240.01108 -.08644 (240*2π)/22049 weeks
241-.02552 -.11181 (241*2π)/22049 weeks
242-.00735 -.10779 (242*2π)/22049 weeks
243-.02565 -.14461 (243*2π)/22049 weeks
244-.08364 -.12839 (244*2π)/22049 weeks
245-.04172 -.05744 (245*2π)/22049 weeks
246-.01011 -.13711 (246*2π)/22049 weeks
247-.09756 -.12202 (247*2π)/22049 weeks
248-.06677 -.05403 (248*2π)/22049 weeks
249-.0083 -.06924 (249*2π)/22049 weeks
250-.04492 -.13948 (250*2π)/22049 weeks
251-.06593 -.05817 (251*2π)/22049 weeks
252-.01767 -.11965 (252*2π)/22049 weeks
253-.09893 -.10086 (253*2π)/22049 weeks
254-.04775 -.03688 (254*2π)/22049 weeks
255-.03894 -.09986 (255*2π)/22049 weeks
256-.04172 -.03735 (256*2π)/22049 weeks
257.02677 -.10914 (257*2π)/22049 weeks
258-.10215 -.16792 (258*2π)/22049 weeks
259-.07264 -.00985 (259*2π)/22049 weeks
260-.04326 -.1273 (260*2π)/22048 weeks
261-.10697 -.01836 (261*2π)/22048 weeks
262-.00271 -.03789 (262*2π)/2204