Back to list of Stocks    See Also: Seasonal Analysis of HPGenetic Algorithms Stock Portfolio Generator, and Fourier Calculator

Fourier Analysis of HP (Helmerich & Payne, Inc. Common )


HP (Helmerich & Payne, Inc. Common ) appears to have interesting cyclic behaviour every 136 weeks (3.3222*sine), 146 weeks (3.0947*cosine), and 158 weeks (2.8342*cosine).

HP (Helmerich & Payne, Inc. Common ) has an average price of 18.52 (topmost row, frequency = 0).



Click on the checkboxes shown on the right to see how the various frequencies contribute to the graph. Look for large magnitude coefficients (sine or cosine), as these are associated with frequencies which contribute most to the associated stock plot. If you find a large magnitude coefficient which dramatically changes the graph, look at the associated "Period" in weeks, as you may have found a significant recurring cycle for the stock of interest.

Right click on the graph above to see the menu of operations (download, full screen, etc.)

Fourier Analysis

Using data from 10/15/1980 to 3/13/2017 for HP (Helmerich & Payne, Inc. Common ), this program was able to calculate the following Fourier Series:
Sequence #Cosine Coefficients Sine Coefficients FrequenciesPeriod
018.52301   0 
114.00702 -18.09499 (1*2π)/19001,900 weeks
22.96125 -12.93216 (2*2π)/1900950 weeks
3.35814 -8.15216 (3*2π)/1900633 weeks
4.40995 -6.82679 (4*2π)/1900475 weeks
5-1.83124 -5.16733 (5*2π)/1900380 weeks
6-1.9301 -2.62535 (6*2π)/1900317 weeks
7-.49434 -1.68714 (7*2π)/1900271 weeks
8-.997 -1.74367 (8*2π)/1900238 weeks
9-.42536 -.20599 (9*2π)/1900211 weeks
10-.28829 .01115 (10*2π)/1900190 weeks
111.67114 .84634 (11*2π)/1900173 weeks
122.83416 -.12114 (12*2π)/1900158 weeks
133.09474 -2.33101 (13*2π)/1900146 weeks
14.57679 -3.32224 (14*2π)/1900136 weeks
15.31754 -1.72825 (15*2π)/1900127 weeks
16.888 -2.09197 (16*2π)/1900119 weeks
17-.06579 -2.71006 (17*2π)/1900112 weeks
18-1.10155 -1.59691 (18*2π)/1900106 weeks
19-.49434 -.78792 (19*2π)/1900100 weeks
20.27476 -1.01989 (20*2π)/190095 weeks
21-.30657 -1.72194 (21*2π)/190090 weeks
22-.91736 -.82635 (22*2π)/190086 weeks
23-.44942 -.16876 (23*2π)/190083 weeks
24.4452 .38689 (24*2π)/190079 weeks
251.38021 -.92939 (25*2π)/190076 weeks
26.5666 -1.69434 (26*2π)/190073 weeks
27-.23256 -1.52856 (27*2π)/190070 weeks
28-.15292 -.65677 (28*2π)/190068 weeks
29.58749 -.93016 (29*2π)/190066 weeks
30.08988 -1.95551 (30*2π)/190063 weeks
31-1.22636 -1.45115 (31*2π)/190061 weeks
32-.95299 -.25533 (32*2π)/190059 weeks
33-.341 -.11929 (33*2π)/190058 weeks
34-.12942 -.43291 (34*2π)/190056 weeks
35-.56964 -.00731 (35*2π)/190054 weeks
36.18513 .47086 (36*2π)/190053 weeks
37.99827 -.33772 (37*2π)/190051 weeks
38.41785 -.96022 (38*2π)/190050 weeks
39-.01904 -.78587 (39*2π)/190049 weeks
40-.24718 -.24202 (40*2π)/190048 weeks
41.616 -.06048 (41*2π)/190046 weeks
42.6105 -.85317 (42*2π)/190045 weeks
43.455 -1.04067 (43*2π)/190044 weeks
44-.13434 -1.11444 (44*2π)/190043 weeks
45-.10079 -.77276 (45*2π)/190042 weeks
46-.17728 -.96061 (46*2π)/190041 weeks
47-.4695 -.85759 (47*2π)/190040 weeks
48-.54379 -.45601 (48*2π)/190040 weeks
49-.2993 -.10611 (49*2π)/190039 weeks
50.29672 -.24396 (50*2π)/190038 weeks
51-.09739 -.79524 (51*2π)/190037 weeks
52-.31553 -.43465 (52*2π)/190037 weeks
53-.2711 -.15572 (53*2π)/190036 weeks
54.16543 -.17593 (54*2π)/190035 weeks
55.1571 -.32852 (55*2π)/190035 weeks
56.17327 -.49712 (56*2π)/190034 weeks
57-.03051 -.5893 (57*2π)/190033 weeks
58-.0452 -.46228 (58*2π)/190033 weeks
59.06547 -.56589 (59*2π)/190032 weeks
60-.18818 -.66426 (60*2π)/190032 weeks
61-.27916 -.40757 (61*2π)/190031 weeks
62-.12933 -.35993 (62*2π)/190031 weeks
63.13298 -.41271 (63*2π)/190030 weeks
64-.05211 -.78936 (64*2π)/190030 weeks
65-.41376 -.52146 (65*2π)/190029 weeks
66-.24853 -.43258 (66*2π)/190029 weeks
67-.39685 -.44005 (67*2π)/190028 weeks
68-.47332 -.24716 (68*2π)/190028 weeks
69-.37583 -.07002 (69*2π)/190028 weeks
70-.14591 .01032 (70*2π)/190027 weeks
71.05056 -.11626 (71*2π)/190027 weeks
72-.12095 -.37335 (72*2π)/190026 weeks
73-.15197 -.28894 (73*2π)/190026 weeks
74-.27385 -.16006 (74*2π)/190026 weeks
75-.0122 -.05383 (75*2π)/190025 weeks
76-.15186 -.2069 (76*2π)/190025 weeks
77-.03154 -.05786 (77*2π)/190025 weeks
78.07203 -.17961 (78*2π)/190024 weeks
79.10664 -.35102 (79*2π)/190024 weeks
80-.15285 -.35159 (80*2π)/190024 weeks
81-.08296 -.26385 (81*2π)/190023 weeks
82-.14727 -.26187 (82*2π)/190023 weeks
83-.10352 -.20486 (83*2π)/190023 weeks
84-.04344 -.2329 (84*2π)/190023 weeks
85-.09378 -.35323 (85*2π)/190022 weeks
86-.19681 -.21307 (86*2π)/190022 weeks
87-.12867 -.17033 (87*2π)/190022 weeks
88-.04223 -.24495 (88*2π)/190022 weeks
89-.18824 -.3243 (89*2π)/190021 weeks
90-.16935 -.18567 (90*2π)/190021 weeks
91-.13478 -.23156 (91*2π)/190021 weeks
92-.23235 -.21916 (92*2π)/190021 weeks
93-.28316 -.08961 (93*2π)/190020 weeks
94-.21238 .0185 (94*2π)/190020 weeks
95-.11443 .06278 (95*2π)/190020 weeks
96.01905 .07004 (96*2π)/190020 weeks
97.17759 -.05998 (97*2π)/190020 weeks
98.04522 -.36588 (98*2π)/190019 weeks
99-.24764 -.1836 (99*2π)/190019 weeks
100-.20126 -.04332 (100*2π)/190019 weeks
101-.09962 .0963 (101*2π)/190019 weeks
102.07546 .0226 (102*2π)/190019 weeks
103.10122 -.09189 (103*2π)/190018 weeks
104.00105 -.19616 (104*2π)/190018 weeks
105-.10872 -.07118 (105*2π)/190018 weeks
106.00267 -.01281 (106*2π)/190018 weeks
107.14239 -.03792 (107*2π)/190018 weeks
108.13679 -.2095 (108*2π)/190018 weeks
109.05204 -.25414 (109*2π)/190017 weeks
110.07186 -.26223 (110*2π)/190017 weeks
111-.02254 -.34963 (111*2π)/190017 weeks
112-.1579 -.28094 (112*2π)/190017 weeks
113-.19181 -.17079 (113*2π)/190017 weeks
114-.13676 -.04233 (114*2π)/190017 weeks
115.00038 -.05632 (115*2π)/190017 weeks
116.04106 -.12093 (116*2π)/190016 weeks
117.00608 -.27442 (117*2π)/190016 weeks
118-.1795 -.23525 (118*2π)/190016 weeks
119-.13496 -.03954 (119*2π)/190016 weeks
120.04137 -.06606 (120*2π)/190016 weeks
121.031 -.1904 (121*2π)/190016 weeks
122-.00982 -.21014 (122*2π)/190016 weeks
123-.03354 -.18608 (123*2π)/190015 weeks
124-.02578 -.25857 (124*2π)/190015 weeks
125-.21238 -.23301 (125*2π)/190015 weeks
126-.17221 -.05687 (126*2π)/190015 weeks
127-.07647 -.0955 (127*2π)/190015 weeks
128-.10027 -.08572 (128*2π)/190015 weeks
129-.06608 -.08077 (129*2π)/190015 weeks
130-.06132 -.04513 (130*2π)/190015 weeks
131-.09647 -.06274 (131*2π)/190015 weeks
132-.04743 .03437 (132*2π)/190014 weeks
133.05476 .0201 (133*2π)/190014 weeks
134.09166 -.04716 (134*2π)/190014 weeks
135.06178 -.13809 (135*2π)/190014 weeks
136.03389 -.0607 (136*2π)/190014 weeks
137.11578 -.15473 (137*2π)/190014 weeks
138.00108 -.22768 (138*2π)/190014 weeks
139-.12446 -.15349 (139*2π)/190014 weeks
140-.02748 .00827 (140*2π)/190014 weeks
141.08507 -.05585 (141*2π)/190013 weeks
142.07365 -.11371 (142*2π)/190013 weeks
143.03353 -.20241 (143*2π)/190013 weeks
144-.04784 -.11963 (144*2π)/190013 weeks
145-.00478 -.06003 (145*2π)/190013 weeks
146.04161 -.08076 (146*2π)/190013 weeks
147.0668 -.10701 (147*2π)/190013 weeks
148.05564 -.14652 (148*2π)/190013 weeks
149-.0159 -.12861 (149*2π)/190013 weeks
150.02629 -.15603 (150*2π)/190013 weeks
151-.0469 -.15392 (151*2π)/190013 weeks
152-.00917 -.07884 (152*2π)/190013 weeks
153.01419 -.09371 (153*2π)/190012 weeks
154.02558 -.17824 (154*2π)/190012 weeks
155-.08508 -.13743 (155*2π)/190012 weeks
156-.01791 .00004 (156*2π)/190012 weeks
157.11202 -.04437 (157*2π)/190012 weeks
158.12561 -.18774 (158*2π)/190012 weeks
159.01518 -.1792 (159*2π)/190012 weeks
160.04481 -.11287 (160*2π)/190012 weeks
161.13022 -.2156 (161*2π)/190012 weeks
162.04633 -.29232 (162*2π)/190012 weeks
163-.07911 -.2924 (163*2π)/190012 weeks
164-.15613 -.20606 (164*2π)/190012 weeks
165-.14739 -.06604 (165*2π)/190012 weeks
166.01268 -.09298 (166*2π)/190011 weeks
167-.03547 -.13318 (167*2π)/190011 weeks
168-.02617 -.10812 (168*2π)/190011 weeks
169-.0432 -.05764 (169*2π)/190011 weeks
170.04473 -.07397 (170*2π)/190011 weeks
171.05863 -.11261 (171*2π)/190011 weeks
172.10027 -.16251 (172*2π)/190011 weeks
173.02397 -.23311 (173*2π)/190011 weeks
174-.00382 -.19423 (174*2π)/190011 weeks
175-.0698 -.22735 (175*2π)/190011 weeks
176-.07187 -.11604 (176*2π)/190011 weeks
177-.03278 -.15475 (177*2π)/190011 weeks
178-.04662 -.11448 (178*2π)/190011 weeks
179.02585 -.09392 (179*2π)/190011 weeks
180.0273 -.20867 (180*2π)/190011 weeks
181-.12784 -.21765 (181*2π)/190010 weeks
182-.12589 -.07547 (182*2π)/190010 weeks
183-.00581 -.04032 (183*2π)/190010 weeks
184.03838 -.16771 (184*2π)/190010 weeks
185-.10423 -.18463 (185*2π)/190010 weeks
186-.06057 -.03227 (186*2π)/190010 weeks
187.0779 -.13574 (187*2π)/190010 weeks
188-.02493 -.20961 (188*2π)/190010 weeks
189-.06974 -.19558 (189*2π)/190010 weeks
190-.09171 -.14894 (190*2π)/190010 weeks
191-.02742 -.1316 (191*2π)/190010 weeks
192-.06208 -.21618 (192*2π)/190010 weeks
193-.16393 -.22838 (193*2π)/190010 weeks
194-.27917 -.07099 (194*2π)/190010 weeks
195-.12213 .07273 (195*2π)/190010 weeks
196.00354 -.00056 (196*2π)/190010 weeks
197-.02145 -.1339 (197*2π)/190010 weeks
198-.119 -.08367 (198*2π)/190010 weeks
199-.10402 -.00236 (199*2π)/190010 weeks
200.012 .00354 (200*2π)/190010 weeks
201-.00265 -.09078 (201*2π)/19009 weeks
202-.01809 -.0774 (202*2π)/19009 weeks
203-.03587 -.04838 (203*2π)/19009 weeks
204.06766 -.06235 (204*2π)/19009 weeks
205.01351 -.14654 (205*2π)/19009 weeks
206-.04731 -.17181 (206*2π)/19009 weeks
207-.11944 -.08921 (207*2π)/19009 weeks
208-.02956 -.02193 (208*2π)/19009 weeks
209.04518 -.09309 (209*2π)/19009 weeks
210.00553 -.15585 (210*2π)/19009 weeks
211-.06028 -.13519 (211*2π)/19009 weeks
212-.02857 -.09056 (212*2π)/19009 weeks
213-.00267 -.15703 (213*2π)/19009 weeks
214-.07991 -.13961 (214*2π)/19009 weeks
215-.04059 -.10968 (215*2π)/19009 weeks
216-.03921 -.1192 (216*2π)/19009 weeks
217-.05254 -.14857 (217*2π)/19009 weeks
218-.1155 -.17943 (218*2π)/19009 weeks
219-.1784 -.08267 (219*2π)/19009 weeks
220-.09067 -.05572 (220*2π)/19009 weeks
221-.14422 -.06546 (221*2π)/19009 weeks
222-.09245 -.02001 (222*2π)/19009 weeks
223-.16622 -.05149 (223*2π)/19009 weeks
224-.13279 .10908 (224*2π)/19008 weeks
225-.00127 .05526 (225*2π)/19008 weeks
226-.00419 .00974 (226*2π)/19008 weeks
227-.01451 .00815 (227*2π)/19008 weeks
228.01383 .03885 (228*2π)/19008 weeks
229.07421 .01547 (229*2π)/19008 weeks
230.10965 -.06161 (230*2π)/19008 weeks
231.07722 -.12741 (231*2π)/19008 weeks
232-.01232 -.16204 (232*2π)/19008 weeks
233-.06971 -.10707 (233*2π)/19008 weeks
234-.06416 -.0624 (234*2π)/19008 weeks
235-.05549 -.04748 (235*2π)/19008 weeks
236-.02999 -.00962 (236*2π)/19008 weeks
237.04027 -.02243 (237*2π)/19008 weeks
238.03199 -.12814 (238*2π)/19008 weeks
239-.08881 -.10076 (239*2π)/19008 weeks
240-.09 -.02378 (240*2π)/19008 weeks
241-.06308 .03226 (241*2π)/19008 weeks
242.021 .0632 (242*2π)/19008 weeks
243.10376 .05828 (243*2π)/19008 weeks
244.19475 -.04775 (244*2π)/19008 weeks
245.09934 -.18892 (245*2π)/19008 weeks
246.00018 -.12347 (246*2π)/19008 weeks
247.05782 -.04113 (247*2π)/19008 weeks
248.11831 -.12651 (248*2π)/19008 weeks
249.03635 -.18761 (249*2π)/19008 weeks
250.02042 -.15035 (250*2π)/19008 weeks
251.01879 -.13514 (251*2π)/19008 weeks
252.0372 -.19628 (252*2π)/19008 weeks
253-.06609 -.23286 (253*2π)/19008 weeks
254-.14184 -.12842 (254*2π)/19007 weeks
255-.08721 -.01153 (255*2π)/19007 weeks
256.03057 .00193 (256*2π)/19007 weeks
257.11766 -.09606 (257*2π)/19007 weeks
258.04392 -.21292 (258*2π)/19007 weeks
259-.07464 -.20382 (259*2π)/19007 weeks
260-.1004 -.09813 (260*2π)/19007 weeks
261-.02094 -.05807 (261*2π)/19007 weeks
262.04174 -.12001 (262*2π)/19007 weeks
263-.00628 -.20915 (263*2π)/19007 weeks
264-.06746 -.19741 (264*2π)/19007 weeks
265-.09764 -.21117 (265*2π)/19007 weeks
266-.17939 -.17609 (266*2π)/19007 weeks
267-.1914 -.0487 (267*2π)/19007 weeks
268-.09725 .00102 (268*2π)/19007 weeks
269-.01557 -.03382 (269*2π)/19007 weeks
270-.05956 -.10855 (270*2π)/19007 weeks
271-.10219 -.0699 (271*2π)/19007 weeks
272-.09341 -.01293 (272*2π)/19007 weeks
273-.04261 .02164 (273*2π)/19007 weeks
274.0362 .00067 (274*2π)/19007 weeks
275.06495 -.09589 (275*2π)/19007 weeks
276.01389 -.14398 (276*2π)/19007 weeks
277-.03299 -.16082 (277*2π)/19007 weeks
278-.05948 -.12324 (278*2π)/19007 weeks
279-.05623 -.10564 (279*2π)/19007 weeks
280-.09023 -.114 (280*2π)/19007 weeks
281-.05739 -.06703 (281*2π)/19007 weeks
282-.05769 -.10352 (282*2π)/19007 weeks
283-.03891 -.08173 (283*2π)/19007 weeks
284-.05583 -.14931 (284*2π)/19007 weeks
285-.13689 -.14904 (285*2π)/19007 weeks
286-.16929 -.0482 (286*2π)/19007 weeks
287-.08886 .02585 (287*2π)/19007 weeks
288-.02137 -.01333 (288*2π)/19007 weeks
289-.00025 -.0733 (289*2π)/19007 weeks
290-.03305 -.10448 (290*2π)/19007 weeks
291-.06275 -.12668 (291*2π)/19007 weeks
292-.12463 -.10031 (292*2π)/19007 weeks
293-.11269 -.01577 (293*2π)/19006 weeks
294-.01272 -.00036 (294*2π)/19006 weeks
295.02568 -.06804 (295*2π)/19006 weeks
296-.02845 -.14839 (296*2π)/19006 weeks
297-.10814 -.13884 (297*2π)/19006 weeks
298-.13862 -.07197 (298*2π)/19006 weeks
299-.10471 -.00535 (299*2π)/19006 weeks
300-.03176 -.0426 (300*2π)/19006 weeks
301-.06822 -.08929 (301*2π)/19006 weeks
302-.13732 -.03599 (302*2π)/19006 weeks
303-.06165 .02545 (303*2π)/19006 weeks
304-.00634 -.04373 (304*2π)/19006 weeks
305-.05259 -.06922 (305*2π)/19006 weeks
306-.11822 -.03179 (306*2π)/19006 weeks
307-.07051 .03613 (307*2π)/19006 weeks
308-.03551 -.00674 (308*2π)/19006 weeks
309-.01189 .00328 (309*2π)/19006 weeks
310-.04252 -.0446 (310*2π)/19006 weeks
311-.06008 .00517 (311*2π)/19006 weeks
312.00283 .02848 (312*2π)/19006 weeks
313.03752 -.02988 (313*2π)/19006 weeks
314-.02042 -.08272 (314*2π)/19006 weeks
315-.04835 -.02586 (315*2π)/19006 weeks
316-.00383 -.0244 (316*2π)/19006 weeks
317-.01293 -.05806 (317*2π)/19006 weeks
318-.03233 -.04022 (318*2π)/19006 weeks
319-.03791 -.04558 (319*2π)/19006 weeks
320-.02977 -.0016 (320*2π)/19006 weeks
321.00909 -.00289 (321*2π)/19006 weeks
322.03951 -.03489 (322*2π)/19006 weeks
323.02677 -.05737 (323*2π)/19006 weeks
324.0135 -.07128 (324*2π)/19006 weeks
325-.00474 -.07157 (325*2π)/19006 weeks
326.00746 -.06475 (326*2π)/19006 weeks
327-.02495 -.07568 (327*2π)/19006 weeks
328-.00195 -.05131 (328*2π)/19006 weeks
329.02513 -.05738 (329*2π)/19006 weeks
330.01972 -.12526 (330*2π)/19006 weeks
331-.05034 -.1271 (331*2π)/19006 weeks
332-.06997 -.09075 (332*2π)/19006 weeks
333-.05134 -.0867 (333*2π)/19006 weeks
334-.05039 -.09181 (334*2π)/19006 weeks
335-.08852 -.11261 (335*2π)/19006 weeks
336-.14693 -.0496 (336*2π)/19006 weeks
337-.08147 .00993 (337*2π)/19006 weeks
338-.03696 -.00759 (338*2π)/19006 weeks
339-.00989 -.06921 (339*2π)/19006 weeks
340-.11855 -.09323 (340*2π)/19006 weeks
341-.11215 .0276 (341*2π)/19006 weeks
342-.0294 .02102 (342*2π)/19006 weeks
343-.0025 -.02191 (343*2π)/19006 weeks
344-.03981 -.07301 (344*2π)/19006 weeks
345-.08019 -.03468 (345*2π)/19006 weeks
346-.05052 .01332 (346*2π)/19005 weeks
347-.02782 -.01656 (347*2π)/19005 weeks
348-.02393 -.01987 (348*2π)/19005 weeks
349-.03188 -.01565 (349*2π)/19005 weeks
350-.008 .00882 (350*2π)/19005 weeks
351.01098 -.02974 (351*2π)/19005 weeks
352-.0024 -.05887 (352*2π)/19005 weeks
353-.04237 -.0276 (353*2π)/19005 weeks
354.00983 .01847 (354*2π)/19005 weeks
355.05233 -.04965 (355*2π)/19005 weeks
356.0273 -.08192 (356*2π)/19005 weeks
357.00511 -.11629 (357*2π)/19005 weeks
358-.05993 -.08236 (358*2π)/19005 weeks
359-.02698 -.05324 (359*2π)/19005 weeks
360-.02595 -.05668 (360*2π)/19005 weeks
361-.0345 -.05538 (361*2π)/19005 weeks
362-.02393 -.04563 (362*2π)/19005 weeks
363-.02763 -.04986 (363*2π)/19005 weeks
364-.00627 -.07115 (364*2π)/19005 weeks
365-.05512 -.08805 (365*2π)/19005 weeks
366-.06164 -.06579 (366*2π)/19005 weeks
367-.07617 -.03274 (367*2π)/19005 weeks
368-.02023 -.01643 (368*2π)/19005 weeks
369-.03016 -.0441 (369*2π)/19005 weeks
370-.01836 -.02706 (370*2π)/19005 weeks
371-.0274 -.06009 (371*2π)/19005 weeks
372-.04203 -.02975 (372*2π)/19005 weeks
373-.03476 -.03758 (373*2π)/19005 weeks
374-.04537 -.01943 (374*2π)/19005 weeks
375-.05323 -.03429 (375*2π)/19005 weeks
376-.05971 .02715 (376*2π)/19005 weeks
377.01698 .03301 (377*2π)/19005 weeks
378.04925 -.01729 (378*2π)/19005 weeks
379.00616 -.06661 (379*2π)/19005 weeks
380-.01972 -.03738 (380*2π)/19005 weeks
381.0004 -.01132 (381*2π)/19005 weeks
382.03562 -.04615 (382*2π)/19005 weeks
383.0014 -.07151 (383*2π)/19005 weeks
384-.01323 -.06269 (384*2π)/19005 weeks
385-.01493 -.0394 (385*2π)/19005 weeks
386.02507 -.03697 (386*2π)/19005 weeks
387.02102 -.10696