Back to list of Stocks    See Also: Seasonal Analysis of HMHGenetic Algorithms Stock Portfolio Generator, and Fourier Calculator

Fourier Analysis of HMH (Houghton Mifflin Harcourt Compa)


HMH (Houghton Mifflin Harcourt Compa) appears to have interesting cyclic behaviour every 10 weeks (440.0949*sine), 7 weeks (334.3817*sine), and 11 weeks (275.3719*sine).

HMH (Houghton Mifflin Harcourt Compa) has an average price of 17,011.81 (topmost row, frequency = 0).



Click on the checkboxes shown on the right to see how the various frequencies contribute to the graph. Look for large magnitude coefficients (sine or cosine), as these are associated with frequencies which contribute most to the associated stock plot. If you find a large magnitude coefficient which dramatically changes the graph, look at the associated "Period" in weeks, as you may have found a significant recurring cycle for the stock of interest.

Right click on the graph above to see the menu of operations (download, full screen, etc.)

Fourier Analysis

Using data from 12/4/2014 to 1/9/2017 for HMH (Houghton Mifflin Harcourt Compa), this program was able to calculate the following Fourier Series:
Sequence #Cosine Coefficients Sine Coefficients FrequenciesPeriod
017,011.81   0 
11,740.775 2,925.605 (1*2π)/111111 weeks
2-210.203 1,846.855 (2*2π)/11156 weeks
3-11.03555 944.001 (3*2π)/11137 weeks
4-167.5078 828.9828 (4*2π)/11128 weeks
5231.2132 205.3547 (5*2π)/11122 weeks
668.3278 597.0255 (6*2π)/11119 weeks
7177.5926 497.4124 (7*2π)/11116 weeks
837.41258 549.6469 (8*2π)/11114 weeks
9-68.67538 172.1286 (9*2π)/11112 weeks
10208.0849 275.3719 (10*2π)/11111 weeks
1173.32288 440.0949 (11*2π)/11110 weeks
12-44.33266 219.0509 (12*2π)/1119 weeks
1388.29338 268.6491 (13*2π)/1119 weeks
1417.25329 183.1036 (14*2π)/1118 weeks
15239.8951 45.32556 (15*2π)/1117 weeks
16161.796 334.3817 (16*2π)/1117 weeks
1790.07726 243.8444 (17*2π)/1117 weeks
1841.75111 118.5074 (18*2π)/1116 weeks
19-17.97256 123.2959 (19*2π)/1116 weeks
20202.9835 152.2841 (20*2π)/1116 weeks
216.39462 220.6345 (21*2π)/1115 weeks
2292.61723 85.74235 (22*2π)/1115 weeks
23160.2389 139.5842 (23*2π)/1115 weeks
24105.5475 65.83929 (24*2π)/1115 weeks
25214.0486 163.0293 (25*2π)/1114 weeks
2641.06113 149.6169 (26*2π)/1114 weeks
2792.21796 87.52943 (27*2π)/1114 weeks
28105.7164 19.19835 (28*2π)/1114 weeks
29128.3013 8.06301 (29*2π)/1114 weeks
30175.1071 63.73551 (30*2π)/1114 weeks
3177.26306 90.79539 (31*2π)/1114 weeks
3298.62148 55.0296 (32*2π)/1113 weeks
3386.06829 69.04189 (33*2π)/1113 weeks
3484.08788 85.90166 (34*2π)/1113 weeks
35100.2614 100.5974 (35*2π)/1113 weeks
3626.97048 54.488 (36*2π)/1113 weeks
37103.7595 -12.16774 (37*2π)/1113 weeks
38126.7606 47.52295 (38*2π)/1113 weeks
39121.3956 30.53217 (39*2π)/1113 weeks
40109.0641 91.34595 (40*2π)/1113 weeks
41109.4583 38.1231 (41*2π)/1113 weeks
4283.02772 40.59333 (42*2π)/1113 weeks
4341.75425 22.51897 (43*2π)/1113 weeks
44149.9061 -7.10468 (44*2π)/1113 weeks
4596.98603 75.56652 (45*2π)/1112 weeks
4621.95927 -13.142 (46*2π)/1112 weeks
47183.8698 -4.00096 (47*2π)/1112 weeks
4845.70734 79.42294 (48*2π)/1112 weeks
49118.944 -13.83625 (49*2π)/1112 weeks
50127.3248 44.04212 (50*2π)/1112 weeks
51-4.2758 63.43714 (51*2π)/1112 weeks
52103.7902 -111.975 (52*2π)/1112 weeks
53122.6532 31.97309 (53*2π)/1112 weeks
5480.7266 -2.03464 (54*2π)/1112 weeks
5598.78436 11.91923 (55*2π)/1112 weeks
5698.78436 -11.91923 (56*2π)/1112 weeks
5780.7266 2.03464 (57*2π)/1112 weeks
58122.6532 -31.97309 (58*2π)/1112 weeks
59103.7902 111.975 (59*2π)/1112 weeks
60-4.2758 -63.43714 (60*2π)/1112 weeks
61127.3248 -44.04212 (61*2π)/1112 weeks
62118.944 13.83625 (62*2π)/1112 weeks
6345.70734 -79.42294 (63*2π)/1112 weeks
64183.8698 4.00096 (64*2π)/1112 weeks
6521.95927 13.142 (65*2π)/1112 weeks
6696.98603 -75.56652 (66*2π)/1112 weeks
67149.9061 7.10468 (67*2π)/1112 weeks
6841.75425 -22.51897 (68*2π)/1112 weeks
6983.02772 -40.59333 (69*2π)/1112 weeks
70109.4583 -38.1231 (70*2π)/1112 weeks
71109.0641 -91.34595 (71*2π)/1112 weeks
72121.3956 -30.53217 (72*2π)/1112 weeks
73126.7606 -47.52295 (73*2π)/1112 weeks
74103.7595 12.16774 (74*2π)/1112 weeks
7526.97048 -54.488 (75*2π)/1111 weeks
76100.2614 -100.5974 (76*2π)/1111 weeks
7784.08788 -85.90166 (77*2π)/1111 weeks
7886.06829 -69.04189 (78*2π)/1111 weeks
7998.62148 -55.0296 (79*2π)/1111 weeks
8077.26306 -90.79539 (80*2π)/1111 weeks
81175.1071 -63.73551 (81*2π)/1111 weeks
82128.3013 -8.06301 (82*2π)/1111 weeks
83105.7164 -19.19835 (83*2π)/1111 weeks
8492.21796 -87.52943 (84*2π)/1111 weeks
8541.06113 -149.6169 (85*2π)/1111 weeks
86214.0486 -163.0293 (86*2π)/1111 weeks
87105.5475 -65.83929 (87*2π)/1111 weeks
88160.2389 -139.5842 (88*2π)/1111 weeks
8992.61723 -85.74235 (89*2π)/1111 weeks
906.39462 -220.6345 (90*2π)/1111 weeks
91202.9835 -152.2841 (91*2π)/1111 weeks
92-17.97256 -123.2959 (92*2π)/1111 weeks
9341.75111 -118.5074 (93*2π)/1111 weeks
9490.07726 -243.8444 (94*2π)/1111 weeks
95161.796 -334.3817 (95*2π)/1111 weeks
96239.8951 -45.32556 (96*2π)/1111 weeks
9717.25329 -183.1036 (97*2π)/1111 weeks
9888.29338 -268.6491 (98*2π)/1111 weeks
99-44.33266 -219.0509 (99*2π)/1111 weeks
10073.32288 -440.0949 (100*2π)/1111 weeks
101208.0849 -275.3719 (101*2π)/1111 weeks
102-68.67538 -172.1286 (102*2π)/1111 weeks
10337.41258 -549.6469 (103*2π)/1111 weeks
104177.5926 -497.4124 (104*2π)/1111 weeks
10568.3278 -597.0255 (105*2π)/1111 weeks
106231.2132 -205.3547 (106*2π)/1111 weeks
107-167.5078 -828.9828 (107*2π)/1111 weeks
108-11.03555 -944.001 (108*2π)/1111 weeks
109-210.203 -1,846.855 (109*2π)/1111 weeks

Problems, Comments, Suggestions? Click here to contact Greg Thatcher

Please read my Disclaimer





Copyright (c) 2013 Thatcher Development Software, LLC. All rights reserved. No claim to original U.S. Gov't works.