Back to list of Stocks    See Also: Seasonal Analysis of HMHGenetic Algorithms Stock Portfolio Generator, and Fourier Calculator

Fourier Analysis of HMH (Houghton Mifflin Harcourt Compa)


HMH (Houghton Mifflin Harcourt Compa) appears to have interesting cyclic behaviour every 10 weeks (369.1567*sine), 7 weeks (249.5857*cosine), and 7 weeks (209.543*sine).

HMH (Houghton Mifflin Harcourt Compa) has an average price of 16,134.21 (topmost row, frequency = 0).



Click on the checkboxes shown on the right to see how the various frequencies contribute to the graph. Look for large magnitude coefficients (sine or cosine), as these are associated with frequencies which contribute most to the associated stock plot. If you find a large magnitude coefficient which dramatically changes the graph, look at the associated "Period" in weeks, as you may have found a significant recurring cycle for the stock of interest.

Right click on the graph above to see the menu of operations (download, full screen, etc.)

Fourier Analysis

Using data from 12/4/2014 to 3/20/2017 for HMH (Houghton Mifflin Harcourt Compa), this program was able to calculate the following Fourier Series:
Sequence #Cosine Coefficients Sine Coefficients FrequenciesPeriod
016,134.21   0 
11,684.527 2,680.925 (1*2π)/121121 weeks
2-52.40462 1,996.308 (2*2π)/12161 weeks
3-19.2589 968.3221 (3*2π)/12140 weeks
447.58137 834.52 (4*2π)/12130 weeks
5-98.89387 287.1753 (5*2π)/12124 weeks
6371.7295 514.9322 (6*2π)/12120 weeks
7131.7848 360.7187 (7*2π)/12117 weeks
8150.1138 434.6307 (8*2π)/12115 weeks
9-26.86167 441.3158 (9*2π)/12113 weeks
1033.43741 96.80418 (10*2π)/12112 weeks
11201.5655 235.7759 (11*2π)/12111 weeks
1275.48945 369.1567 (12*2π)/12110 weeks
13-33.1569 194.2916 (13*2π)/1219 weeks
14114.6438 197.0699 (14*2π)/1219 weeks
1537.97743 152.6345 (15*2π)/1218 weeks
1697.23359 -11.3256 (16*2π)/1218 weeks
17249.5857 209.543 (17*2π)/1217 weeks
1858.47466 203.1106 (18*2π)/1217 weeks
1914.32346 193.4186 (19*2π)/1216 weeks
2083.32609 114.3755 (20*2π)/1216 weeks
2113.14762 4.81255 (21*2π)/1216 weeks
22141.5094 151.3583 (22*2π)/1216 weeks
23-34.50835 163.4287 (23*2π)/1215 weeks
2463.85192 79.27579 (24*2π)/1215 weeks
25138.1498 117.9582 (25*2π)/1215 weeks
2677.54668 71.1369 (26*2π)/1215 weeks
27190.9008 87.52766 (27*2π)/1214 weeks
2860.31393 162.4695 (28*2π)/1214 weeks
2949.81744 51.91528 (29*2π)/1214 weeks
3031.64884 46.19165 (30*2π)/1214 weeks
3184.53789 40.6775 (31*2π)/1214 weeks
32134.3173 27.58694 (32*2π)/1214 weeks
33149.8129 88.8493 (33*2π)/1214 weeks
3468.51676 58.76518 (34*2π)/1214 weeks
3584.40805 42.53195 (35*2π)/1213 weeks
3665.83454 57.40353 (36*2π)/1213 weeks
3769.11903 80.40689 (37*2π)/1213 weeks
3891.68581 81.75623 (38*2π)/1213 weeks
3928.29114 68.76269 (39*2π)/1213 weeks
4058.9134 -12.9144 (40*2π)/1213 weeks
41116.4021 21.08927 (41*2π)/1213 weeks
4291.50777 36.7571 (42*2π)/1213 weeks
43122.7949 44.76396 (43*2π)/1213 weeks
4463.62919 60.60215 (44*2π)/1213 weeks
4597.31403 51.61801 (45*2π)/1213 weeks
4682.15878 32.35199 (46*2π)/1213 weeks
4738.33231 -5.12874 (47*2π)/1213 weeks
48129.8316 -15.24007 (48*2π)/1213 weeks
4978.38188 54.56754 (49*2π)/1212 weeks
50.56706 3.679 (50*2π)/1212 weeks
51124.2712 -39.46524 (51*2π)/1212 weeks
5277.2241 98.24166 (52*2π)/1212 weeks
5347.4817 -13.53064 (53*2π)/1212 weeks
54102.2907 32.10899 (54*2π)/1212 weeks
5583.85249 89.96785 (55*2π)/1212 weeks
56-20.8842 -14.58988 (56*2π)/1212 weeks
57148.2343 -57.04755 (57*2π)/1212 weeks
5895.29578 24.25206 (58*2π)/1212 weeks
5973.28687 -10.58132 (59*2π)/1212 weeks
6081.14381 9.28136 (60*2π)/1212 weeks
6181.14381 -9.28136 (61*2π)/1212 weeks
6273.28687 10.58132 (62*2π)/1212 weeks
6395.29578 -24.25206 (63*2π)/1212 weeks
64148.2343 57.04755 (64*2π)/1212 weeks
65-20.8842 14.58988 (65*2π)/1212 weeks
6683.85249 -89.96785 (66*2π)/1212 weeks
67102.2907 -32.10899 (67*2π)/1212 weeks
6847.4817 13.53064 (68*2π)/1212 weeks
6977.2241 -98.24166 (69*2π)/1212 weeks
70124.2712 39.46524 (70*2π)/1212 weeks
71.56706 -3.679 (71*2π)/1212 weeks
7278.38188 -54.56754 (72*2π)/1212 weeks
73129.8316 15.24007 (73*2π)/1212 weeks
7438.33231 5.12874 (74*2π)/1212 weeks
7582.15878 -32.35199 (75*2π)/1212 weeks
7697.31403 -51.61801 (76*2π)/1212 weeks
7763.62919 -60.60215 (77*2π)/1212 weeks
78122.7949 -44.76396 (78*2π)/1212 weeks
7991.50777 -36.7571 (79*2π)/1212 weeks
80116.4021 -21.08927 (80*2π)/1212 weeks
8158.9134 12.9144 (81*2π)/1211 weeks
8228.29114 -68.76269 (82*2π)/1211 weeks
8391.68581 -81.75623 (83*2π)/1211 weeks
8469.11903 -80.40689 (84*2π)/1211 weeks
8565.83454 -57.40353 (85*2π)/1211 weeks
8684.40805 -42.53195 (86*2π)/1211 weeks
8768.51676 -58.76518 (87*2π)/1211 weeks
88149.8129 -88.8493 (88*2π)/1211 weeks
89134.3173 -27.58694 (89*2π)/1211 weeks
9084.53789 -40.6775 (90*2π)/1211 weeks
9131.64884 -46.19165 (91*2π)/1211 weeks
9249.81744 -51.91528 (92*2π)/1211 weeks
9360.31393 -162.4695 (93*2π)/1211 weeks
94190.9008 -87.52766 (94*2π)/1211 weeks
9577.54668 -71.1369 (95*2π)/1211 weeks
96138.1498 -117.9582 (96*2π)/1211 weeks
9763.85192 -79.27579 (97*2π)/1211 weeks
98-34.50835 -163.4287 (98*2π)/1211 weeks
99141.5094 -151.3583 (99*2π)/1211 weeks
10013.14762 -4.81255 (100*2π)/1211 weeks
10183.32609 -114.3755 (101*2π)/1211 weeks
10214.32346 -193.4186 (102*2π)/1211 weeks
10358.47466 -203.1106 (103*2π)/1211 weeks
104249.5857 -209.543 (104*2π)/1211 weeks
10597.23359 11.3256 (105*2π)/1211 weeks
10637.97743 -152.6345 (106*2π)/1211 weeks
107114.6438 -197.0699 (107*2π)/1211 weeks
108-33.1569 -194.2916 (108*2π)/1211 weeks
10975.48945 -369.1567 (109*2π)/1211 weeks
110201.5655 -235.7759 (110*2π)/1211 weeks
11133.43741 -96.80418 (111*2π)/1211 weeks
112-26.86167 -441.3158 (112*2π)/1211 weeks
113150.1138 -434.6307 (113*2π)/1211 weeks
114131.7848 -360.7187 (114*2π)/1211 weeks
115371.7295 -514.9322 (115*2π)/1211 weeks
116-98.89387 -287.1753 (116*2π)/1211 weeks
11747.58137 -834.52 (117*2π)/1211 weeks
118-19.2589 -968.3221 (118*2π)/1211 weeks
119-52.40462 -1,996.308 (119*2π)/1211 weeks

Problems, Comments, Suggestions? Click here to contact Greg Thatcher

Please read my Disclaimer





Copyright (c) 2013 Thatcher Development Software, LLC. All rights reserved. No claim to original U.S. Gov't works.