Back to list of Stocks    See Also: Seasonal Analysis of HIVEGenetic Algorithms Stock Portfolio Generator, and Best Months to Buy/Sell Stocks

Fourier Analysis of HIVE (Aerohive Networks)


HIVE (Aerohive Networks) appears to have interesting cyclic behaviour every 19 weeks (.2905*sine), 17 weeks (.2289*sine), and 12 weeks (.1096*cosine).

HIVE (Aerohive Networks) has an average price of 5.97 (topmost row, frequency = 0).



Click on the checkboxes shown on the right to see how the various frequencies contribute to the graph. Look for large magnitude coefficients (sine or cosine), as these are associated with frequencies which contribute most to the associated stock plot. If you find a large magnitude coefficient which dramatically changes the graph, look at the associated "Period" in weeks, as you may have found a significant recurring cycle for the stock of interest.

Right click on the graph above to see the menu of operations (download, full screen, etc.)

Fourier Analysis

Using data from 3/28/2014 to 10/16/2017 for HIVE (Aerohive Networks), this program was able to calculate the following Fourier Series:
Sequence #Cosine Coefficients Sine Coefficients FrequenciesPeriod
05.97273   0 
1.16474 .48577 (1*2π)/187187 weeks
2.53187 .7448 (2*2π)/18794 weeks
3.8598 1.25262 (3*2π)/18762 weeks
4-.51244 .60344 (4*2π)/18747 weeks
5.02598 .31318 (5*2π)/18737 weeks
6.06472 .18776 (6*2π)/18731 weeks
7-.115 .41884 (7*2π)/18727 weeks
8.14738 .32563 (8*2π)/18723 weeks
9.42584 .41174 (9*2π)/18721 weeks
10.04521 .29049 (10*2π)/18719 weeks
11.05756 .22888 (11*2π)/18717 weeks
12-.07654 .1009 (12*2π)/18716 weeks
13.02919 .01565 (13*2π)/18714 weeks
14-.00859 .03555 (14*2π)/18713 weeks
15.06823 -.00983 (15*2π)/18712 weeks
16.10962 .1793 (16*2π)/18712 weeks
17-.04051 .1447 (17*2π)/18711 weeks
18-.01045 .03368 (18*2π)/18710 weeks
19.07567 .1468 (19*2π)/18710 weeks
20.01515 .05038 (20*2π)/1879 weeks
21.09934 .11645 (21*2π)/1879 weeks
22.01781 .16049 (22*2π)/1879 weeks
23.07971 .18555 (23*2π)/1878 weeks
24.00843 .19015 (24*2π)/1878 weeks
25-.07275 .12015 (25*2π)/1877 weeks
26-.01908 .02673 (26*2π)/1877 weeks
27.0316 .01058 (27*2π)/1877 weeks
28.03398 .02108 (28*2π)/1877 weeks
29.02733 .05737 (29*2π)/1876 weeks
30.04028 .08884 (30*2π)/1876 weeks
31.02986 .01459 (31*2π)/1876 weeks
32-.00797 .03919 (32*2π)/1876 weeks
33.01833 .04724 (33*2π)/1876 weeks
34-.01421 .00431 (34*2π)/1876 weeks
35.04484 .00754 (35*2π)/1875 weeks
36.02103 .06091 (36*2π)/1875 weeks
37.0477 .08169 (37*2π)/1875 weeks
38.05843 .01004 (38*2π)/1875 weeks
39.05683 .08032 (39*2π)/1875 weeks
40.06467 .04764 (40*2π)/1875 weeks
41.07074 .07664 (41*2π)/1875 weeks
42.07036 .08278 (42*2π)/1874 weeks
43.04177 .04107 (43*2π)/1874 weeks
44-.01158 .0265 (44*2π)/1874 weeks
45-.00045 .044 (45*2π)/1874 weeks
46.00757 -.01088 (46*2π)/1874 weeks
47.03885 -.01738 (47*2π)/1874 weeks
48.01693 .04362 (48*2π)/1874 weeks
49.08335 .04584 (49*2π)/1874 weeks
50-.00913 .0834 (50*2π)/1874 weeks
51.00959 .0088 (51*2π)/1874 weeks
52.0442 .04614 (52*2π)/1874 weeks
53.03646 .0286 (53*2π)/1874 weeks
54.05893 -.00642 (54*2π)/1873 weeks
55.05899 .04036 (55*2π)/1873 weeks
56.04927 .04462 (56*2π)/1873 weeks
57.01822 .07624 (57*2π)/1873 weeks
58.02722 .00562 (58*2π)/1873 weeks
59.02743 .00478 (59*2π)/1873 weeks
60.01919 .0193 (60*2π)/1873 weeks
61.05555 -.00538 (61*2π)/1873 weeks
62.03303 .02519 (62*2π)/1873 weeks
63.04249 .02893 (63*2π)/1873 weeks
64-.01471 .04504 (64*2π)/1873 weeks
65.00187 .00808 (65*2π)/1873 weeks
66.01807 -.01684 (66*2π)/1873 weeks
67.0396 .01249 (67*2π)/1873 weeks
68.05062 .01711 (68*2π)/1873 weeks
69.0608 .03887 (69*2π)/1873 weeks
70.03346 .05002 (70*2π)/1873 weeks
71.02064 .04522 (71*2π)/1873 weeks
72.02037 -.01724 (72*2π)/1873 weeks
73.02738 .00914 (73*2π)/1873 weeks
74.02126 -.003 (74*2π)/1873 weeks
75.04962 -.01236 (75*2π)/1872 weeks
76.0289 -.00375 (76*2π)/1872 weeks
77.04102 -.00845 (77*2π)/1872 weeks
78.05184 .01408 (78*2π)/1872 weeks
79.03642 .03986 (79*2π)/1872 weeks
80.04755 .06403 (80*2π)/1872 weeks
81.02202 .05138 (81*2π)/1872 weeks
82.02245 .01285 (82*2π)/1872 weeks
83.034 .03486 (83*2π)/1872 weeks
84.00142 .00212 (84*2π)/1872 weeks
85.03708 .02098 (85*2π)/1872 weeks
86.05975 -.00648 (86*2π)/1872 weeks
87.03961 -.00785 (87*2π)/1872 weeks
88.03073 .0176 (88*2π)/1872 weeks
89.03291 .01932 (89*2π)/1872 weeks
90.01766 .04054 (90*2π)/1872 weeks
91.00211 .01302 (91*2π)/1872 weeks
92-.00524 .00702 (92*2π)/1872 weeks
93-.01447 .00735 (93*2π)/1872 weeks
94-.01447 -.00735 (94*2π)/1872 weeks
95-.00524 -.00702 (95*2π)/1872 weeks
96.00211 -.01302 (96*2π)/1872 weeks
97.01766 -.04054 (97*2π)/1872 weeks
98.03291 -.01932 (98*2π)/1872 weeks
99.03073 -.0176 (99*2π)/1872 weeks
100.03961 .00785 (100*2π)/1872 weeks
101.05975 .00648 (101*2π)/1872 weeks
102.03708 -.02098 (102*2π)/1872 weeks
103.00142 -.00212 (103*2π)/1872 weeks
104.034 -.03486 (104*2π)/1872 weeks
105.02245 -.01285 (105*2π)/1872 weeks
106.02202 -.05138 (106*2π)/1872 weeks
107.04755 -.06403 (107*2π)/1872 weeks
108.03642 -.03986 (108*2π)/1872 weeks
109.05184 -.01408 (109*2π)/1872 weeks
110.04102 .00845 (110*2π)/1872 weeks
111.0289 .00375 (111*2π)/1872 weeks
112.04962 .01236 (112*2π)/1872 weeks
113.02126 .003 (113*2π)/1872 weeks
114.02738 -.00914 (114*2π)/1872 weeks
115.02037 .01724 (115*2π)/1872 weeks
116.02064 -.04522 (116*2π)/1872 weeks
117.03346 -.05002 (117*2π)/1872 weeks
118.0608 -.03887 (118*2π)/1872 weeks
119.05062 -.01711 (119*2π)/1872 weeks
120.0396 -.01249 (120*2π)/1872 weeks
121.01807 .01684 (121*2π)/1872 weeks
122.00187 -.00808 (122*2π)/1872 weeks
123-.01471 -.04504 (123*2π)/1872 weeks
124.04249 -.02893 (124*2π)/1872 weeks
125.03303 -.02519 (125*2π)/1871 weeks
126.05555 .00538 (126*2π)/1871 weeks
127.01919 -.0193 (127*2π)/1871 weeks
128.02743 -.00478 (128*2π)/1871 weeks
129.02722 -.00562 (129*2π)/1871 weeks
130.01822 -.07624 (130*2π)/1871 weeks
131.04927 -.04462 (131*2π)/1871 weeks
132.05899 -.04036 (132*2π)/1871 weeks
133.05893 .00642 (133*2π)/1871 weeks
134.03646 -.0286 (134*2π)/1871 weeks
135.0442 -.04614 (135*2π)/1871 weeks
136.00959 -.0088 (136*2π)/1871 weeks
137-.00913 -.0834 (137*2π)/1871 weeks
138.08335 -.04584 (138*2π)/1871 weeks
139.01693 -.04362 (139*2π)/1871 weeks
140.03885 .01738 (140*2π)/1871 weeks
141.00757 .01088 (141*2π)/1871 weeks
142-.00045 -.044 (142*2π)/1871 weeks
143-.01158 -.0265 (143*2π)/1871 weeks
144.04177 -.04107 (144*2π)/1871 weeks
145.07036 -.08278 (145*2π)/1871 weeks
146.07074 -.07664 (146*2π)/1871 weeks
147.06467 -.04764 (147*2π)/1871 weeks
148.05683 -.08032 (148*2π)/1871 weeks
149.05843 -.01004 (149*2π)/1871 weeks
150.0477 -.08169 (150*2π)/1871 weeks
151.02103 -.06091 (151*2π)/1871 weeks
152.04484 -.00754 (152*2π)/1871 weeks
153-.01421 -.00431 (153*2π)/1871 weeks
154.01833 -.04724 (154*2π)/1871 weeks
155-.00797 -.03919 (155*2π)/1871 weeks
156.02986 -.01459 (156*2π)/1871 weeks
157.04028 -.08884 (157*2π)/1871 weeks
158.02733 -.05737 (158*2π)/1871 weeks
159.03398 -.02108 (159*2π)/1871 weeks
160.0316 -.01058 (160*2π)/1871 weeks
161-.01908 -.02673 (161*2π)/1871 weeks
162-.07275 -.12015 (162*2π)/1871 weeks
163.00843 -.19015 (163*2π)/1871 weeks
164.07971 -.18555 (164*2π)/1871 weeks
165.01781 -.16049 (165*2π)/1871 weeks
166.09934 -.11645 (166*2π)/1871 weeks
167.01515 -.05038 (167*2π)/1871 weeks
168.07567 -.1468 (168*2π)/1871 weeks
169-.01045 -.03368 (169*2π)/1871 weeks
170-.04051 -.1447 (170*2π)/1871 weeks
171.10962 -.1793 (171*2π)/1871 weeks
172.06823 .00983 (172*2π)/1871 weeks
173-.00859 -.03555 (173*2π)/1871 weeks
174.02919 -.01565 (174*2π)/1871 weeks
175-.07654 -.1009 (175*2π)/1871 weeks
176.05756 -.22888 (176*2π)/1871 weeks
177.04521 -.29049 (177*2π)/1871 weeks
178.42584 -.41174 (178*2π)/1871 weeks
179.14738 -.32563 (179*2π)/1871 weeks
180-.115 -.41884 (180*2π)/1871 weeks
181.06472 -.18776 (181*2π)/1871 weeks
182.02598 -.31318 (182*2π)/1871 weeks
183-.51244 -.60344 (183*2π)/1871 weeks
184.8598 -1.25262 (184*2π)/1871 weeks
185.53187 -.7448 (185*2π)/1871 weeks



Back to list of Stocks