Back to list of Stocks    See Also: Seasonal Analysis of HIIGenetic Algorithms Stock Portfolio Generator, and Fourier Calculator

Fourier Analysis of HII (Huntington Ingalls Industries, )


HII (Huntington Ingalls Industries, ) appears to have interesting cyclic behaviour every 31 weeks (8.5835*sine), 29 weeks (5.6535*sine), and 29 weeks (2.2167*cosine).

HII (Huntington Ingalls Industries, ) has an average price of 89.4 (topmost row, frequency = 0).



Click on the checkboxes shown on the right to see how the various frequencies contribute to the graph. Look for large magnitude coefficients (sine or cosine), as these are associated with frequencies which contribute most to the associated stock plot. If you find a large magnitude coefficient which dramatically changes the graph, look at the associated "Period" in weeks, as you may have found a significant recurring cycle for the stock of interest.

Right click on the graph above to see the menu of operations (download, full screen, etc.)

Fourier Analysis

Using data from 3/22/2011 to 3/20/2017 for HII (Huntington Ingalls Industries, ), this program was able to calculate the following Fourier Series:
Sequence #Cosine Coefficients Sine Coefficients FrequenciesPeriod
089.39624   0 
18.33875 -54.23716 (1*2π)/314314 weeks
210.99357 -22.31531 (2*2π)/314157 weeks
32.82426 -19.72754 (3*2π)/314105 weeks
41.0628 -16.73072 (4*2π)/31479 weeks
5-.32856 -6.75743 (5*2π)/31463 weeks
65.92174 -8.78893 (6*2π)/31452 weeks
7-.02691 -8.19096 (7*2π)/31445 weeks
81.9088 -5.83888 (8*2π)/31439 weeks
92.32829 -6.74 (9*2π)/31435 weeks
10-.56905 -8.58351 (10*2π)/31431 weeks
11-2.21669 -5.65351 (11*2π)/31429 weeks
12-.46743 -5.31026 (12*2π)/31426 weeks
13-1.80942 -4.32577 (13*2π)/31424 weeks
14-.82771 -3.06634 (14*2π)/31422 weeks
15-.20723 -4.20577 (15*2π)/31421 weeks
16-1.23499 -3.06237 (16*2π)/31420 weeks
17-.15061 -2.46022 (17*2π)/31418 weeks
181.1062 -2.93939 (18*2π)/31417 weeks
19.02389 -4.06401 (19*2π)/31417 weeks
20-1.0409 -2.9353 (20*2π)/31416 weeks
21-.0467 -2.47712 (21*2π)/31415 weeks
22-.632 -3.13205 (22*2π)/31414 weeks
23-.21794 -2.7709 (23*2π)/31414 weeks
24-1.07047 -3.3139 (24*2π)/31413 weeks
25-1.68417 -1.73461 (25*2π)/31413 weeks
26-.54412 -2.20745 (26*2π)/31412 weeks
27-.74125 -2.45374 (27*2π)/31412 weeks
28-.53877 -2.2026 (28*2π)/31411 weeks
29-1.32929 -1.79312 (29*2π)/31411 weeks
30-.70418 -1.33763 (30*2π)/31410 weeks
31-.75405 -1.59061 (31*2π)/31410 weeks
32-1.09556 -1.61136 (32*2π)/31410 weeks
33-.52751 -1.72471 (33*2π)/31410 weeks
34-.61483 -1.36586 (34*2π)/3149 weeks
35-.5034 -1.58336 (35*2π)/3149 weeks
36-.73331 -1.98477 (36*2π)/3149 weeks
37-.81822 -1.23355 (37*2π)/3148 weeks
38-.85508 -1.62757 (38*2π)/3148 weeks
39-.59939 -1.07163 (39*2π)/3148 weeks
40-.47505 -1.22297 (40*2π)/3148 weeks
41-.68987 -1.72904 (41*2π)/3148 weeks
42-1.24549 -.86805 (42*2π)/3147 weeks
43-.06148 -.82874 (43*2π)/3147 weeks
44-1.17631 -1.48848 (44*2π)/3147 weeks
45-.96815 -.78008 (45*2π)/3147 weeks
46-.97728 -.93066 (46*2π)/3147 weeks
47-.75292 -.8222 (47*2π)/3147 weeks
48-.62531 -.68406 (48*2π)/3147 weeks
49-.18578 -.7187 (49*2π)/3146 weeks
50-.52644 -.73529 (50*2π)/3146 weeks
51-.35903 -.77073 (51*2π)/3146 weeks
52-.21082 -.61555 (52*2π)/3146 weeks
53-.07606 -.9493 (53*2π)/3146 weeks
54-.6021 -1.13148 (54*2π)/3146 weeks
55-.35432 -.91017 (55*2π)/3146 weeks
56-.65894 -1.18068 (56*2π)/3146 weeks
57-.6408 -.57033 (57*2π)/3146 weeks
58-.50019 -.86626 (58*2π)/3145 weeks
59-.67222 -.6894 (59*2π)/3145 weeks
60-.56769 -.83532 (60*2π)/3145 weeks
61-.71147 -.61021 (61*2π)/3145 weeks
62-.37682 -.40279 (62*2π)/3145 weeks
63-.55552 -.86709 (63*2π)/3145 weeks
64-.54422 -.39799 (64*2π)/3145 weeks
65-.24042 -.63831 (65*2π)/3145 weeks
66-.28762 -.65318 (66*2π)/3145 weeks
67-.60932 -.95126 (67*2π)/3145 weeks
68-.38514 -.63903 (68*2π)/3145 weeks
69-.49609 -.94339 (69*2π)/3145 weeks
70-.60406 -1.08415 (70*2π)/3144 weeks
71-.73786 -.46239 (71*2π)/3144 weeks
72-.47324 -.58855 (72*2π)/3144 weeks
73-.60132 -.57143 (73*2π)/3144 weeks
74-.43076 -.48746 (74*2π)/3144 weeks
75-.53804 -.90068 (75*2π)/3144 weeks
76-.82131 -.33075 (76*2π)/3144 weeks
77-.33146 -.3837 (77*2π)/3144 weeks
78-.68301 -.72291 (78*2π)/3144 weeks
79-1.00174 -.38987 (79*2π)/3144 weeks
80-.52697 .02131 (80*2π)/3144 weeks
81-.28152 -.48581 (81*2π)/3144 weeks
82-.18392 -.71158 (82*2π)/3144 weeks
83-.42774 -.8442 (83*2π)/3144 weeks
84-.72862 -.4288 (84*2π)/3144 weeks
85-.28387 -.59931 (85*2π)/3144 weeks
86-.63038 -.64926 (86*2π)/3144 weeks
87-.53339 -.41345 (87*2π)/3144 weeks
88-.56896 -.42701 (88*2π)/3144 weeks
89-.63148 -.42545 (89*2π)/3144 weeks
90-.55517 -.33137 (90*2π)/3143 weeks
91-.74652 -.46389 (91*2π)/3143 weeks
92-.66733 -.35428 (92*2π)/3143 weeks
93-.77382 -.23015 (93*2π)/3143 weeks
94-.35947 -.26854 (94*2π)/3143 weeks
95-.65112 -.45534 (95*2π)/3143 weeks
96-.72866 -.34256 (96*2π)/3143 weeks
97-.48118 -.2115 (97*2π)/3143 weeks
98-.23352 -.46379 (98*2π)/3143 weeks
99-.53915 -.45582 (99*2π)/3143 weeks
100-.54691 -.395 (100*2π)/3143 weeks
101-.53606 -.42778 (101*2π)/3143 weeks
102-.78903 -.37719 (102*2π)/3143 weeks
103-.57833 -.25144 (103*2π)/3143 weeks
104-.76925 -.42818 (104*2π)/3143 weeks
105-.79186 .00452 (105*2π)/3143 weeks
106-.32945 .01624 (106*2π)/3143 weeks
107-.54365 -.37581 (107*2π)/3143 weeks
108-.66342 -.01361 (108*2π)/3143 weeks
109-.42295 -.12993 (109*2π)/3143 weeks
110-.49443 -.26743 (110*2π)/3143 weeks
111-.59918 -.27622 (111*2π)/3143 weeks
112-.16461 -.11363 (112*2π)/3143 weeks
113-.49582 -.24891 (113*2π)/3143 weeks
114-.2748 -.28251 (114*2π)/3143 weeks
115-.57384 -.30195 (115*2π)/3143 weeks
116-.60557 -.38913 (116*2π)/3143 weeks
117-.80654 -.28309 (117*2π)/3143 weeks
118-.46212 -.03815 (118*2π)/3143 weeks
119-.54152 -.33834 (119*2π)/3143 weeks
120-.71671 -.23926 (120*2π)/3143 weeks
121-.74361 -.00418 (121*2π)/3143 weeks
122-.46582 -.05784 (122*2π)/3143 weeks
123-.66125 -.0025 (123*2π)/3143 weeks
124-.51585 .07691 (124*2π)/3143 weeks
125-.46106 .00653 (125*2π)/3143 weeks
126-.44794 .00032 (126*2π)/3142 weeks
127-.2581 -.00172 (127*2π)/3142 weeks
128-.22056 -.20654 (128*2π)/3142 weeks
129-.35978 -.3589 (129*2π)/3142 weeks
130-.50452 -.36952 (130*2π)/3142 weeks
131-.74464 -.26892 (131*2π)/3142 weeks
132-.53721 .11463 (132*2π)/3142 weeks
133-.61173 -.19671 (133*2π)/3142 weeks
134-.57988 -.13315 (134*2π)/3142 weeks
135-.55897 -.27472 (135*2π)/3142 weeks
136-.96548 .04753 (136*2π)/3142 weeks
137-.49 .04014 (137*2π)/3142 weeks
138-.53104 -.02031 (138*2π)/3142 weeks
139-.63816 .0227 (139*2π)/3142 weeks
140-.4561 .15702 (140*2π)/3142 weeks
141-.27079 -.17305 (141*2π)/3142 weeks
142-.6173 -.01542 (142*2π)/3142 weeks
143-.38561 -.04619 (143*2π)/3142 weeks
144-.56106 -.05924 (144*2π)/3142 weeks
145-.50642 -.15531 (145*2π)/3142 weeks
146-.66526 -.07762 (146*2π)/3142 weeks
147-.49734 .02447 (147*2π)/3142 weeks
148-.65404 -.10256 (148*2π)/3142 weeks
149-.67768 -.0572 (149*2π)/3142 weeks
150-.72417 .34541 (150*2π)/3142 weeks
151-.48094 .24724 (151*2π)/3142 weeks
152-.46351 .07843 (152*2π)/3142 weeks
153-.58177 .31966 (153*2π)/3142 weeks
154-.28239 .4479 (154*2π)/3142 weeks
155-.09779 -.00411 (155*2π)/3142 weeks
156-.3173 .01636 (156*2π)/3142 weeks
157-.29495   (157*2π)/3142 weeks
158-.3173 -.01636 (158*2π)/3142 weeks
159-.09779 .00411 (159*2π)/3142 weeks
160-.28239 -.4479 (160*2π)/3142 weeks
161-.58177 -.31966 (161*2π)/3142 weeks
162-.46351 -.07843 (162*2π)/3142 weeks
163-.48094 -.24724 (163*2π)/3142 weeks
164-.72417 -.34541 (164*2π)/3142 weeks
165-.67768 .0572 (165*2π)/3142 weeks
166-.65404 .10256 (166*2π)/3142 weeks
167-.49734 -.02447 (167*2π)/3142 weeks
168-.66526 .07762 (168*2π)/3142 weeks
169-.50642 .15531 (169*2π)/3142 weeks
170-.56106 .05924 (170*2π)/3142 weeks
171-.38561 .04619 (171*2π)/3142 weeks
172-.6173 .01542 (172*2π)/3142 weeks
173-.27079 .17305 (173*2π)/3142 weeks
174-.4561 -.15702 (174*2π)/3142 weeks
175-.63816 -.0227 (175*2π)/3142 weeks
176-.53104 .02031 (176*2π)/3142 weeks
177-.49 -.04014 (177*2π)/3142 weeks
178-.96548 -.04753 (178*2π)/3142 weeks
179-.55897 .27472 (179*2π)/3142 weeks
180-.57988 .13315 (180*2π)/3142 weeks
181-.61173 .19671 (181*2π)/3142 weeks
182-.53721 -.11463 (182*2π)/3142 weeks
183-.74464 .26892 (183*2π)/3142 weeks
184-.50452 .36952 (184*2π)/3142 weeks
185-.35978 .3589 (185*2π)/3142 weeks
186-.22056 .20654 (186*2π)/3142 weeks
187-.2581 .00172 (187*2π)/3142 weeks
188-.44794 -.00032 (188*2π)/3142 weeks
189-.46106 -.00653 (189*2π)/3142 weeks
190-.51585 -.07691 (190*2π)/3142 weeks
191-.66125 .0025 (191*2π)/3142 weeks
192-.46582 .05784 (192*2π)/3142 weeks
193-.74361 .00418 (193*2π)/3142 weeks
194-.71671 .23926 (194*2π)/3142 weeks
195-.54152 .33834 (195*2π)/3142 weeks
196-.46212 .03815 (196*2π)/3142 weeks
197-.80654 .28309 (197*2π)/3142 weeks
198-.60557 .38913 (198*2π)/3142 weeks
199-.57384 .30195 (199*2π)/3142 weeks
200-.2748 .28251 (200*2π)/3142 weeks
201-.49582 .24891 (201*2π)/3142 weeks
202-.16461 .11363 (202*2π)/3142 weeks
203-.59918 .27622 (203*2π)/3142 weeks
204-.49443 .26743 (204*2π)/3142 weeks
205-.42295 .12993 (205*2π)/3142 weeks
206-.66342 .01361 (206*2π)/3142 weeks
207-.54365 .37581 (207*2π)/3142 weeks
208-.32945 -.01624 (208*2π)/3142 weeks
209-.79186 -.00452 (209*2π)/3142 weeks
210-.76925 .42818 (210*2π)/3141 weeks
211-.57833 .25144 (211*2π)/3141 weeks
212-.78903 .37719 (212*2π)/3141 weeks
213-.53606 .42778 (213*2π)/3141 weeks
214-.54691 .395 (214*2π)/3141 weeks
215-.53915 .45582 (215*2π)/3141 weeks
216-.23352 .46379 (216*2π)/3141 weeks
217-.48118 .2115 (217*2π)/3141 weeks
218-.72866 .34256 (218*2π)/3141 weeks
219-.65112 .45534 (219*2π)/3141 weeks
220-.35947 .26854 (220*2π)/3141 weeks
221-.77382 .23015 (221*2π)/3141 weeks
222-.66733 .35428 (222*2π)/3141 weeks
223-.74652 .46389 (223*2π)/3141 weeks
224-.55517 .33137 (224*2π)/3141 weeks
225-.63148 .42545 (225*2π)/3141 weeks
226-.56896 .42701 (226*2π)/3141 weeks
227-.53339 .41345 (227*2π)/3141 weeks
228-.63038 .64926 (228*2π)/3141 weeks
229-.28387 .59931 (229*2π)/3141 weeks
230-.72862 .4288 (230*2π)/3141 weeks
231-.42774 .8442 (231*2π)/3141 weeks
232-.18392 .71158 (232*2π)/3141 weeks
233-.28152 .48581 (233*2π)/3141 weeks
234-.52697 -.02131 (234*2π)/3141 weeks
235-1.00174 .38987 (235*2π)/3141 weeks
236-.68301 .72291 (236*2π)/3141 weeks
237-.33146 .3837 (237*2π)/3141 weeks
238-.82131 .33075 (238*2π)/3141 weeks
239-.53804 .90068 (239*2π)/3141 weeks
240-.43076 .48746 (240*2π)/3141 weeks
241-.60132 .57143 (241*2π)/3141 weeks
242-.47324 .58855 (242*2π)/3141 weeks
243-.73786 .46239 (243*2π)/3141 weeks
244-.60406 1.08415 (244*2π)/3141 weeks
245-.49609 .94339 (245*2π)/3141 weeks
246-.38514 .63903 (246*2π)/3141 weeks
247-.60932 .95126 (247*2π)/3141 weeks
248-.28762 .65318 (248*2π)/3141 weeks
249-.24042 .63831 (249*2π)/3141 weeks
250-.54422 .39799 (250*2π)/3141 weeks
251-.55552 .86709 (251*2π)/3141 weeks
252-.37682 .40279 (252*2π)/3141 weeks
253-.71147 .61021 (253*2π)/3141 weeks
254-.56769 .83532 (254*2π)/3141 weeks
255-.67222 .6894 (255*2π)/3141 weeks
256-.50019 .86626 (256*2π)/3141 weeks
257-.6408 .57033 (257*2π)/3141 weeks
258-.65894 1.18068 (258*2π)/3141 weeks
259-.35432 .91017 (259*2π)/3141 weeks
260-.6021 1.13148 (260*2π)/3141 weeks
261-.07606 .9493 (261*2π)/3141 weeks
262-.21082 .61555 (262*2π)/3141 weeks
263-.35903 .77073 (263*2π)/3141 weeks
264-.52644 .73529 (264*2π)/3141 weeks
265-.18578 .7187 (265*2π)/3141 weeks
266-.62531 .68406 (266*2π)/3141 weeks
267-.75292 .8222 (267*2π)/3141 weeks
268-.97728 .93066 (268*2π)/3141 weeks
269-.96815 .78008 (269*2π)/3141 weeks
270-1.17631 1.48848 (270*2π)/3141 weeks
271-.06148 .82874 (271*2π)/3141 weeks
272-1.24549 .86805 (272*2π)/3141 weeks
273-.68987 1.72904 (273*2π)/3141 weeks
274-.47505 1.22297 (274*2π)/3141 weeks
275-.59939 1.07163 (275*2π)/3141 weeks
276-.85508 1.62757 (276*2π)/3141 weeks
277-.81822 1.23355 (277*2π)/3141 weeks
278-.73331 1.98477 (278*2π)/3141 weeks
279-.5034 1.58336 (279*2π)/3141 weeks
280-.61483 1.36586 (280*2π)/3141 weeks
281-.52751 1.72471 (281*2π)/3141 weeks
282-1.09556 1.61136 (282*2π)/3141 weeks
283-.75405 1.59061 (283*2π)/3141 weeks
284-.70418 1.33763 (284*2π)/3141 weeks
285-1.32929 1.79312 (285*2π)/3141 weeks
286-.53877 2.2026 (286*2π)/3141 weeks
287-.74125 2.45374 (287*2π)/3141 weeks
288-.54412 2.20745 (288*2π)/3141 weeks
289-1.68417 1.73461 (289*2π)/3141 weeks
290-1.07047 3.3139 (290*2π)/3141 weeks
291-.21794 2.7709 (291*2π)/3141 weeks
292-.632 3.13205 (292*2π)/3141 weeks
293-.0467 2.47712 (293*2π)/3141 weeks
294-1.0409 2.9353 (294*2π)/3141 weeks
295.02389 4.06401 (295*2π)/3141 weeks
2961.1062 2.93939 (296*2π)/3141 weeks
297-.15061 2.46022 (297*2π)/3141 weeks
298-1.23499 3.06237 (298*2π)/3141 weeks
299-.20723 4.20577 (299*2π)/3141 weeks
300-.82771 3.06634 (300*2π)/3141 weeks
301-1.80942 4.32577 (301*2π)/3141 weeks
302-.46743 5.31026 (302*2π)/3141 weeks
303-2.21669 5.65351 (303*2π)/3141 weeks
304-.56905 8.58351 (304*2π)/3141 weeks
3052.32829 6.74 (305*2π)/3141 weeks
3061.9088 5.83888 (306*2π)/3141 weeks
307-.02691 8.19096 (307*2π)/3141 weeks
3085.92174 8.78893 (308*2π)/3141 weeks
309-.32856 6.75743 (309*2π)/3141 weeks
3101.0628 16.73072 (310*2π)/3141 weeks
3112.82426 19.72754 (311*2π)/3141 weeks
31210.99357 22.31531 (312*2π)/3141 weeks

Problems, Comments, Suggestions? Click here to contact Greg Thatcher

Please read my Disclaimer





Copyright (c) 2013 Thatcher Development Software, LLC. All rights reserved. No claim to original U.S. Gov't works.