Back to list of Stocks    See Also: Seasonal Analysis of HBCGenetic Algorithms Stock Portfolio Generator, and Fourier Calculator

Fourier Analysis of HBC (HSBC Holdings, plc. Common Stoc)


HBC (HSBC Holdings, plc. Common Stoc) appears to have interesting cyclic behaviour every 36 weeks (826.9409*sine), 20 weeks (587.3832*sine), and 33 weeks (577.2275*cosine).

HBC (HSBC Holdings, plc. Common Stoc) has an average price of 9,682.66 (topmost row, frequency = 0).



Click on the checkboxes shown on the right to see how the various frequencies contribute to the graph. Look for large magnitude coefficients (sine or cosine), as these are associated with frequencies which contribute most to the associated stock plot. If you find a large magnitude coefficient which dramatically changes the graph, look at the associated "Period" in weeks, as you may have found a significant recurring cycle for the stock of interest.

Right click on the graph above to see the menu of operations (download, full screen, etc.)

Fourier Analysis

Using data from 2/22/2010 to 1/9/2017 for HBC (HSBC Holdings, plc. Common Stoc), this program was able to calculate the following Fourier Series:
Sequence #Cosine Coefficients Sine Coefficients FrequenciesPeriod
09,682.658   0 
13,769.376 -4,581.847 (1*2π)/358358 weeks
22,166.839 -3,398.941 (2*2π)/358179 weeks
3968.4024 -2,435.398 (3*2π)/358119 weeks
4516.6068 -1,840.56 (4*2π)/35890 weeks
5548.9698 -2,193.638 (5*2π)/35872 weeks
6287.3477 -2,200.048 (6*2π)/35860 weeks
7-139.8457 -1,233.579 (7*2π)/35851 weeks
8-467.6763 -1,625.195 (8*2π)/35845 weeks
9-107.0301 -954.2974 (9*2π)/35840 weeks
10-496.5536 -826.9409 (10*2π)/35836 weeks
11-577.2275 -420.3143 (11*2π)/35833 weeks
12191.0593 -351.2676 (12*2π)/35830 weeks
13-134.2791 -483.7989 (13*2π)/35828 weeks
1482.05433 -417.493 (14*2π)/35826 weeks
1556.46 -478.8362 (15*2π)/35824 weeks
16-16.53339 -403.2226 (16*2π)/35822 weeks
1781.83299 -499.5282 (17*2π)/35821 weeks
18-102.9881 -587.3832 (18*2π)/35820 weeks
19-4.60066 -372.549 (19*2π)/35819 weeks
20-235.8157 -470.2579 (20*2π)/35818 weeks
21-51.78481 -195.8665 (21*2π)/35817 weeks
2283.70326 -387.0077 (22*2π)/35816 weeks
23-30.54053 -341.432 (23*2π)/35816 weeks
24-58.16932 -354.0251 (24*2π)/35815 weeks
25-60.6171 -391.683 (25*2π)/35814 weeks
26-32.4223 -241.9523 (26*2π)/35814 weeks
273.65211 -328.2323 (27*2π)/35813 weeks
28-26.09061 -362.4119 (28*2π)/35813 weeks
2980.80437 -361.0217 (29*2π)/35812 weeks
30-47.30824 -372.6083 (30*2π)/35812 weeks
31-94.65173 -330.6253 (31*2π)/35812 weeks
32-66.22115 -216.841 (32*2π)/35811 weeks
33-85.86283 -184.2562 (33*2π)/35811 weeks
34-2.27972 -228.768 (34*2π)/35811 weeks
35-20.59885 -214.5807 (35*2π)/35810 weeks
36-66.86717 -230.451 (36*2π)/35810 weeks
37-41.91955 -167.2086 (37*2π)/35810 weeks
3846.8611 -270.106 (38*2π)/3589 weeks
39-40.93599 -283.5425 (39*2π)/3589 weeks
40-89.25889 -272.3704 (40*2π)/3589 weeks
41-106.9296 -226.3023 (41*2π)/3589 weeks
42-20.49171 -264.7968 (42*2π)/3589 weeks
43-71.9086 -213.7024 (43*2π)/3588 weeks
44-147.0883 -238.0047 (44*2π)/3588 weeks
45-71.05817 -105.1301 (45*2π)/3588 weeks
46-26.66112 -81.60655 (46*2π)/3588 weeks
47-32.01472 -149.1684 (47*2π)/3588 weeks
48-7.3148 -163.1718 (48*2π)/3587 weeks
49-55.43706 -145.5784 (49*2π)/3587 weeks
50-10.35727 -178.2358 (50*2π)/3587 weeks
5140.18256 -197.967 (51*2π)/3587 weeks
5218.00064 -210.9456 (52*2π)/3587 weeks
53-141.8087 -239.1589 (53*2π)/3587 weeks
54-111.3466 -180.1084 (54*2π)/3587 weeks
55-18.29411 -151.4491 (55*2π)/3587 weeks
56-137.4249 -180.1214 (56*2π)/3586 weeks
57-141.0945 -242.0479 (57*2π)/3586 weeks
58-107.6878 -207.2155 (58*2π)/3586 weeks
59-157.1205 -107.2944 (59*2π)/3586 weeks
60-145.8803 -148.6363 (60*2π)/3586 weeks
61-101.8166 -116.437 (61*2π)/3586 weeks
62-113.8113 -38.44662 (62*2π)/3586 weeks
63-67.17678 -117.7476 (63*2π)/3586 weeks
64-32.10683 -93.37098 (64*2π)/3586 weeks
65-57.52045 -100.4879 (65*2π)/3586 weeks
66-58.28751 -123.9221 (66*2π)/3585 weeks
67-68.90625 -105.4761 (67*2π)/3585 weeks
68-18.53291 -61.82561 (68*2π)/3585 weeks
69-67.37604 -148.6287 (69*2π)/3585 weeks
70-55.91021 -174.1483 (70*2π)/3585 weeks
71-73.63753 -149.4176 (71*2π)/3585 weeks
72-170.0524 -103.7929 (72*2π)/3585 weeks
73-37.81717 -96.29802 (73*2π)/3585 weeks
74-73.08969 -122.2006 (74*2π)/3585 weeks
75-88.14751 -133.0717 (75*2π)/3585 weeks
76-127.9024 -154.5614 (76*2π)/3585 weeks
77-139.9238 -39.34867 (77*2π)/3585 weeks
78-34.89497 -87.82361 (78*2π)/3585 weeks
79-92.31309 -154.5227 (79*2π)/3585 weeks
80-78.11195 -76.01465 (80*2π)/3584 weeks
81-111.5855 -69.2794 (81*2π)/3584 weeks
82-85.74778 -52.53551 (82*2π)/3584 weeks
83-87.34879 -28.50774 (83*2π)/3584 weeks
84-70.84633 -82.37929 (84*2π)/3584 weeks
85-83.43394 -51.07869 (85*2π)/3584 weeks
86-79.91171 -69.13003 (86*2π)/3584 weeks
87-7.11153 -47.17593 (87*2π)/3584 weeks
88-35.4539 -90.78291 (88*2π)/3584 weeks
89-72.80175 -80.92816 (89*2π)/3584 weeks
90-56.28985 -50.88744 (90*2π)/3584 weeks
91-59.76736 -97.84618 (91*2π)/3584 weeks
92-78.99583 -105.3535 (92*2π)/3584 weeks
93-102.7188 -117.643 (93*2π)/3584 weeks
94-118.2059 -99.78281 (94*2π)/3584 weeks
95-110.4116 -59.01534 (95*2π)/3584 weeks
96-52.43042 -68.39981 (96*2π)/3584 weeks
97-82.16726 -75.12226 (97*2π)/3584 weeks
98-85.20776 -86.94276 (98*2π)/3584 weeks
99-53.59488 -73.17449 (99*2π)/3584 weeks
100-60.06855 -36.06728 (100*2π)/3584 weeks
101-46.87034 -82.38177 (101*2π)/3584 weeks
102-67.77527 -81.95198 (102*2π)/3584 weeks
103-80.91171 -42.25636 (103*2π)/3583 weeks
104-88.62363 -59.17208 (104*2π)/3583 weeks
105-78.12349 -67.44381 (105*2π)/3583 weeks
106-78.55026 -89.65473 (106*2π)/3583 weeks
107-98.15737 -79.14874 (107*2π)/3583 weeks
108-79.82319 -58.55681 (108*2π)/3583 weeks
109-75.82188 -61.91478 (109*2π)/3583 weeks
110-111.2242 -46.478 (110*2π)/3583 weeks
111-78.35545 -28.13534 (111*2π)/3583 weeks
112-82.69522 -18.45114 (112*2π)/3583 weeks
113-68.61855 -17.76237 (113*2π)/3583 weeks
114-41.20843 -74.28909 (114*2π)/3583 weeks
115-83.25059 -78.86252 (115*2π)/3583 weeks
116-61.40923 -45.49646 (116*2π)/3583 weeks
117-94.47659 -62.31022 (117*2π)/3583 weeks
118-54.22674 -32.12263 (118*2π)/3583 weeks
119-61.47182 -78.42022 (119*2π)/3583 weeks
120-97.42645 -59.65046 (120*2π)/3583 weeks
121-76.95174 -44.87814 (121*2π)/3583 weeks
122-112.2624 -54.72499 (122*2π)/3583 weeks
123-78.17735 -34.45792 (123*2π)/3583 weeks
124-79.05369 -67.72726 (124*2π)/3583 weeks
125-102.3697 -30.76257 (125*2π)/3583 weeks
126-120.0415 -41.25259 (126*2π)/3583 weeks
127-69.21748 -27.84831 (127*2π)/3583 weeks
128-47.40281 -34.50929 (128*2π)/3583 weeks
129-89.00115 -76.24577 (129*2π)/3583 weeks
130-110.6273 -27.51738 (130*2π)/3583 weeks
131-45.20729 -8.07912 (131*2π)/3583 weeks
132-40.45874 -43.68825 (132*2π)/3583 weeks
133-73.81847 -46.74917 (133*2π)/3583 weeks
134-105.2756 -45.19926 (134*2π)/3583 weeks
135-84.65887 -18.03239 (135*2π)/3583 weeks
136-75.75864 -40.08955 (136*2π)/3583 weeks
137-84.37456 -27.49225 (137*2π)/3583 weeks
138-103.3359 -22.2469 (138*2π)/3583 weeks
139-88.85828 .41182 (139*2π)/3583 weeks
140-49.86963 -1.77085 (140*2π)/3583 weeks
141-38.64695 -18.49499 (141*2π)/3583 weeks
142-85.51202 -27.65386 (142*2π)/3583 weeks
143-54.07954 -28.28086 (143*2π)/3583 weeks
144-99.37429 -6.32562 (144*2π)/3582 weeks
145-48.14167 -3.73417 (145*2π)/3582 weeks
146-60.69298 -43.2326 (146*2π)/3582 weeks
147-122.3948 -61.75641 (147*2π)/3582 weeks
148-114.6418 2.74369 (148*2π)/3582 weeks
149-89.81021 17.16643 (149*2π)/3582 weeks
150-41.01815 -5.93691 (150*2π)/3582 weeks
151-71.71498 -43.1497 (151*2π)/3582 weeks
152-79.54949 -27.95971 (152*2π)/3582 weeks
153-50.33926 3.61251 (153*2π)/3582 weeks
154-45.77496 -41.31421 (154*2π)/3582 weeks
155-49.63851 -55.82441 (155*2π)/3582 weeks
156-58.45421 -73.00114 (156*2π)/3582 weeks
157-98.05475 -62.96434 (157*2π)/3582 weeks
158-74.22014 -66.81544 (158*2π)/3582 weeks
159-109.3846 -72.51528 (159*2π)/3582 weeks
160-120.5849 -15.46623 (160*2π)/3582 weeks
161-102.4542 -28.43112 (161*2π)/3582 weeks
162-87.7326 9.67314 (162*2π)/3582 weeks
163-102.0787 -7.0552 (163*2π)/3582 weeks
164-109.0218 -32.22715 (164*2π)/3582 weeks
165-130.1233 27.37225 (165*2π)/3582 weeks
166-113.9362 44.4503 (166*2π)/3582 weeks
167-75.89908 26.44826 (167*2π)/3582 weeks
168-46.31794 2.00632 (168*2π)/3582 weeks
169-60.29271 -13.92987 (169*2π)/3582 weeks
170-91.26418 -4.9406 (170*2π)/3582 weeks
171-66.51315 -9.66594 (171*2π)/3582 weeks
172-87.85773 15.93176 (172*2π)/3582 weeks
173-72.92372 7.12269 (173*2π)/3582 weeks
174-72.46676 -.38457 (174*2π)/3582 weeks
175-59.38612 27.56618 (175*2π)/3582 weeks
176-76.24464 -2.63071 (176*2π)/3582 weeks
177-83.63127 -14.73205 (177*2π)/3582 weeks
178-43.65655 1.59266 (178*2π)/3582 weeks
179-121.1564   (179*2π)/3582 weeks
180-43.65655 -1.59266 (180*2π)/3582 weeks
181-83.63127 14.73205 (181*2π)/3582 weeks
182-76.24464 2.63071 (182*2π)/3582 weeks
183-59.38612 -27.56618 (183*2π)/3582 weeks
184-72.46676 .38457 (184*2π)/3582 weeks
185-72.92372 -7.12269 (185*2π)/3582 weeks
186-87.85773 -15.93176 (186*2π)/3582 weeks
187-66.51315 9.66594 (187*2π)/3582 weeks
188-91.26418 4.9406 (188*2π)/3582 weeks
189-60.29271 13.92987 (189*2π)/3582 weeks
190-46.31794 -2.00632 (190*2π)/3582 weeks
191-75.89908 -26.44826 (191*2π)/3582 weeks
192-113.9362 -44.4503 (192*2π)/3582 weeks
193-130.1233 -27.37225 (193*2π)/3582 weeks
194-109.0218 32.22715 (194*2π)/3582 weeks
195-102.0787 7.0552 (195*2π)/3582 weeks
196-87.7326 -9.67314 (196*2π)/3582 weeks
197-102.4542 28.43112 (197*2π)/3582 weeks
198-120.5849 15.46623 (198*2π)/3582 weeks
199-109.3846 72.51528 (199*2π)/3582 weeks
200-74.22014 66.81544 (200*2π)/3582 weeks
201-98.05475 62.96434 (201*2π)/3582 weeks
202-58.45421 73.00114 (202*2π)/3582 weeks
203-49.63851 55.82441 (203*2π)/3582 weeks
204-45.77496 41.31421 (204*2π)/3582 weeks
205-50.33926 -3.61251 (205*2π)/3582 weeks
206-79.54949 27.95971 (206*2π)/3582 weeks
207-71.71498 43.1497 (207*2π)/3582 weeks
208-41.01815 5.93691 (208*2π)/3582 weeks
209-89.81021 -17.16643 (209*2π)/3582 weeks
210-114.6418 -2.74369 (210*2π)/3582 weeks
211-122.3948 61.75641 (211*2π)/3582 weeks
212-60.69298 43.2326 (212*2π)/3582 weeks
213-48.14167 3.73417 (213*2π)/3582 weeks
214-99.37429 6.32562 (214*2π)/3582 weeks
215-54.07954 28.28086 (215*2π)/3582 weeks
216-85.51202 27.65386 (216*2π)/3582 weeks
217-38.64695 18.49499 (217*2π)/3582 weeks
218-49.86963 1.77085 (218*2π)/3582 weeks
219-88.85828 -.41182 (219*2π)/3582 weeks
220-103.3359 22.2469 (220*2π)/3582 weeks
221-84.37456 27.49225 (221*2π)/3582 weeks
222-75.75864 40.08955 (222*2π)/3582 weeks
223-84.65887 18.03239 (223*2π)/3582 weeks
224-105.2756 45.19926 (224*2π)/3582 weeks
225-73.81847 46.74917 (225*2π)/3582 weeks
226-40.45874 43.68825 (226*2π)/3582 weeks
227-45.20729 8.07912 (227*2π)/3582 weeks
228-110.6273 27.51738 (228*2π)/3582 weeks
229-89.00115 76.24577 (229*2π)/3582 weeks
230-47.40281 34.50929 (230*2π)/3582 weeks
231-69.21748 27.84831 (231*2π)/3582 weeks
232-120.0415 41.25259 (232*2π)/3582 weeks
233-102.3697 30.76257 (233*2π)/3582 weeks
234-79.05369 67.72726 (234*2π)/3582 weeks
235-78.17735 34.45792 (235*2π)/3582 weeks
236-112.2624 54.72499 (236*2π)/3582 weeks
237-76.95174 44.87814 (237*2π)/3582 weeks
238-97.42645 59.65046 (238*2π)/3582 weeks
239-61.47182 78.42022 (239*2π)/3581 weeks
240-54.22674 32.12263 (240*2π)/3581 weeks
241-94.47659 62.31022 (241*2π)/3581 weeks
242-61.40923 45.49646 (242*2π)/3581 weeks
243-83.25059 78.86252 (243*2π)/3581 weeks
244-41.20843 74.28909 (244*2π)/3581 weeks
245-68.61855 17.76237 (245*2π)/3581 weeks
246-82.69522 18.45114 (246*2π)/3581 weeks
247-78.35545 28.13534 (247*2π)/3581 weeks
248-111.2242 46.478 (248*2π)/3581 weeks
249-75.82188 61.91478 (249*2π)/3581 weeks
250-79.82319 58.55681 (250*2π)/3581 weeks
251-98.15737 79.14874 (251*2π)/3581 weeks
252-78.55026 89.65473 (252*2π)/3581 weeks
253-78.12349 67.44381 (253*2π)/3581 weeks
254-88.62363 59.17208 (254*2π)/3581 weeks
255-80.91171 42.25636 (255*2π)/3581 weeks
256-67.77527 81.95198 (256*2π)/3581 weeks
257-46.87034 82.38177 (257*2π)/3581 weeks
258-60.06855 36.06728 (258*2π)/3581 weeks
259-53.59488 73.17449 (259*2π)/3581 weeks
260-85.20776 86.94276 (260*2π)/3581 weeks
261-82.16726 75.12226 (261*2π)/3581 weeks
262-52.43042 68.39981 (262*2π)/3581 weeks
263-110.4116 59.01534 (263*2π)/3581 weeks
264-118.2059 99.78281 (264*2π)/3581 weeks
265-102.7188 117.643 (265*2π)/3581 weeks
266-78.99583 105.3535 (266*2π)/3581 weeks
267-59.76736 97.84618 (267*2π)/3581 weeks
268-56.28985 50.88744 (268*2π)/3581 weeks
269-72.80175 80.92816 (269*2π)/3581 weeks
270-35.4539 90.78291 (270*2π)/3581 weeks
271-7.11153 47.17593 (271*2π)/3581 weeks
272-79.91171 69.13003 (272*2π)/3581 weeks
273-83.43394 51.07869 (273*2π)/3581 weeks
274-70.84633 82.37929 (274*2π)/3581 weeks
275-87.34879 28.50774 (275*2π)/3581 weeks
276-85.74778 52.53551 (276*2π)/3581 weeks
277-111.5855 69.2794 (277*2π)/3581 weeks
278-78.11195 76.01465 (278*2π)/3581 weeks
279-92.31309 154.5227 (279*2π)/3581 weeks
280-34.89497 87.82361 (280*2π)/3581 weeks
281-139.9238 39.34867 (281*2π)/3581 weeks
282-127.9024 154.5614 (282*2π)/3581 weeks
283-88.14751 133.0717 (283*2π)/3581 weeks
284-73.08969 122.2006 (284*2π)/3581 weeks
285-37.81717 96.29802 (285*2π)/3581 weeks
286-170.0524 103.7929 (286*2π)/3581 weeks
287-73.63753 149.4176 (287*2π)/3581 weeks
288-55.91021 174.1483 (288*2π)/3581 weeks
289-67.37604 148.6287 (289*2π)/3581 weeks
290-18.53291 61.82561 (290*2π)/3581 weeks
291-68.90625 105.4761 (291*2π)/3581 weeks
292-58.28751 123.9221 (292*2π)/3581 weeks
293-57.52045 100.4879 (293*2π)/3581 weeks
294-32.10683 93.37098 (294*2π)/3581 weeks
295-67.17678 117.7476 (295*2π)/3581 weeks
296-113.8113 38.44662 (296*2π)/3581 weeks
297-101.8166 116.437 (297*2π)/3581 weeks
298-145.8803 148.6363 (298*2π)/3581 weeks
299-157.1205 107.2944 (299*2π)/3581 weeks
300-107.6878 207.2155 (300*2π)/3581 weeks
301-141.0945 242.0479 (301*2π)/3581 weeks
302-137.4249 180.1214 (302*2π)/3581 weeks
303-18.29411 151.4491 (303*2π)/3581 weeks
304-111.3466 180.1084 (304*2π)/3581 weeks
305-141.8087 239.1589 (305*2π)/3581 weeks
30618.00064 210.9456 (306*2π)/3581 weeks
30740.18256 197.967 (307*2π)/3581 weeks
308-10.35727 178.2358 (308*2π)/3581 weeks
309-55.43706 145.5784 (309*2π)/3581 weeks
310-7.3148 163.1718 (310*2π)/3581 weeks
311-32.01472 149.1684 (311*2π)/3581 weeks
312-26.66112 81.60655 (312*2π)/3581 weeks
313-71.05817 105.1301 (313*2π)/3581 weeks
314-147.0883 238.0047 (314*2π)/3581 weeks
315-71.9086 213.7024 (315*2π)/3581 weeks
316-20.49171 264.7968 (316*2π)/3581 weeks
317-106.9296 226.3023 (317*2π)/3581 weeks
318-89.25889 272.3704 (318*2π)/3581 weeks
319-40.93599 283.5425 (319*2π)/3581 weeks
32046.8611 270.106 (320*2π)/3581 weeks
321-41.91955 167.2086 (321*2π)/3581 weeks
322-66.86717 230.451 (322*2π)/3581 weeks
323-20.59885 214.5807 (323*2π)/3581 weeks
324-2.27972 228.768 (324*2π)/3581 weeks
325-85.86283 184.2562 (325*2π)/3581 weeks
326-66.22115 216.841 (326*2π)/3581 weeks
327-94.65173 330.6253 (327*2π)/3581 weeks
328-47.30824 372.6083 (328*2π)/3581 weeks
32980.80437 361.0217 (329*2π)/3581 weeks
330-26.09061 362.4119 (330*2π)/3581 weeks
3313.65211 328.2323 (331*2π)/3581 weeks
332-32.4223 241.9523 (332*2π)/3581 weeks
333-60.6171 391.683 (333*2π)/3581 weeks
334-58.16932 354.0251 (334*2π)/3581 weeks
335-30.54053 341.432 (335*2π)/3581 weeks
33683.70326 387.0077 (336*2π)/3581 weeks
337-51.78481 195.8665 (337*2π)/3581 weeks
338-235.8157 470.2579 (338*2π)/3581 weeks
339-4.60066 372.549 (339*2π)/3581 weeks
340-102.9881 587.3832 (340*2π)/3581 weeks
34181.83299 499.5282 (341*2π)/3581 weeks
342-16.53339 403.2226 (342*2π)/3581 weeks
34356.46 478.8362 (343*2π)/3581 weeks
34482.05433 417.493 (344*2π)/3581 weeks
345-134.2791 483.7989 (345*2π)/3581 weeks
346191.0593 351.2676 (346*2π)/3581 weeks
347-577.2275 420.3143 (347*2π)/3581 weeks
348-496.5536 826.9409 (348*2π)/3581 weeks
349-107.0301 954.2974 (349*2π)/3581 weeks
350-467.6763 1,625.195 (350*2π)/3581 weeks
351-139.8457 1,233.579 (351*2π)/3581 weeks
352287.3477 2,200.048 (352*2π)/3581 weeks
353548.9698 2,193.638 (353*2π)/3581 weeks
354516.6068 1,840.56 (354*2π)/3581 weeks
355968.4024 2,435.398 (355*2π)/3581 weeks
3562,166.839 3,398.941 (356*2π)/3581 weeks

Problems, Comments, Suggestions? Click here to contact Greg Thatcher

Please read my Disclaimer





Copyright (c) 2013 Thatcher Development Software, LLC. All rights reserved. No claim to original U.S. Gov't works.