Back to list of Stocks    See Also: Seasonal Analysis of GMANGenetic Algorithms Stock Portfolio Generator, and Fourier Calculator

Fourier Analysis of GMAN (Gordmans Stores, Inc.)


GMAN (Gordmans Stores, Inc.) appears to have interesting cyclic behaviour every 35 weeks (.3514*sine), 17 weeks (.3498*sine), and 20 weeks (.3028*sine).

GMAN (Gordmans Stores, Inc.) has an average price of 7.29 (topmost row, frequency = 0).



Click on the checkboxes shown on the right to see how the various frequencies contribute to the graph. Look for large magnitude coefficients (sine or cosine), as these are associated with frequencies which contribute most to the associated stock plot. If you find a large magnitude coefficient which dramatically changes the graph, look at the associated "Period" in weeks, as you may have found a significant recurring cycle for the stock of interest.

Right click on the graph above to see the menu of operations (download, full screen, etc.)

Fourier Analysis

Using data from 8/5/2010 to 3/20/2017 for GMAN (Gordmans Stores, Inc.), this program was able to calculate the following Fourier Series:
Sequence #Cosine Coefficients Sine Coefficients FrequenciesPeriod
07.29338   0 
1-1.01692 5.07852 (1*2π)/347347 weeks
2-.95399 1.01168 (2*2π)/347174 weeks
3-.30301 1.75444 (3*2π)/347116 weeks
4.52929 .8475 (4*2π)/34787 weeks
5-1.32408 .63109 (5*2π)/34769 weeks
6-.30594 -.03497 (6*2π)/34758 weeks
7.38471 .20217 (7*2π)/34750 weeks
8.22499 -.0726 (8*2π)/34743 weeks
9-.20667 .57287 (9*2π)/34739 weeks
10-.09869 .35144 (10*2π)/34735 weeks
11-.01968 -.01863 (11*2π)/34732 weeks
12-.137 .05753 (12*2π)/34729 weeks
13.03073 .24265 (13*2π)/34727 weeks
14.01198 -.00405 (14*2π)/34725 weeks
15.10146 -.15643 (15*2π)/34723 weeks
16.29222 .26048 (16*2π)/34722 weeks
17.06289 .30281 (17*2π)/34720 weeks
18-.11784 .00759 (18*2π)/34719 weeks
19.10833 .131 (19*2π)/34718 weeks
20.242 .26908 (20*2π)/34717 weeks
21.04666 .34978 (21*2π)/34717 weeks
22-.18587 .08154 (22*2π)/34716 weeks
23.03642 .29272 (23*2π)/34715 weeks
24-.10769 .13116 (24*2π)/34714 weeks
25-.14013 -.07893 (25*2π)/34714 weeks
26-.09846 .09116 (26*2π)/34713 weeks
27.10447 .05113 (27*2π)/34713 weeks
28.16881 .05269 (28*2π)/34712 weeks
29-.1668 .21584 (29*2π)/34712 weeks
30-.18448 .06607 (30*2π)/34712 weeks
31.13297 -.07181 (31*2π)/34711 weeks
32-.00049 -.01996 (32*2π)/34711 weeks
33.0083 .06575 (33*2π)/34711 weeks
34.04416 -.00589 (34*2π)/34710 weeks
35.07578 -.06704 (35*2π)/34710 weeks
36.18077 .11235 (36*2π)/34710 weeks
37.10912 .18256 (37*2π)/3479 weeks
38-.00853 .01176 (38*2π)/3479 weeks
39-.02086 .13582 (39*2π)/3479 weeks
40.05303 .00711 (40*2π)/3479 weeks
41.06819 .10377 (41*2π)/3478 weeks
42.04153 .03513 (42*2π)/3478 weeks
43.00874 .13526 (43*2π)/3478 weeks
44.1175 .06022 (44*2π)/3478 weeks
45-.03885 .16488 (45*2π)/3478 weeks
46-.03287 .0192 (46*2π)/3478 weeks
47-.02375 .06623 (47*2π)/3477 weeks
48.04081 .0068 (48*2π)/3477 weeks
49.01529 .06285 (49*2π)/3477 weeks
50.04162 .06526 (50*2π)/3477 weeks
51-.01104 .03439 (51*2π)/3477 weeks
52.03641 .00366 (52*2π)/3477 weeks
53.06184 .12543 (53*2π)/3477 weeks
54.02473 .08513 (54*2π)/3476 weeks
55-.05212 .08642 (55*2π)/3476 weeks
56-.01849 .02278 (56*2π)/3476 weeks
57-.03171 .04933 (57*2π)/3476 weeks
58-.00918 -.05785 (58*2π)/3476 weeks
59.05811 .02966 (59*2π)/3476 weeks
60.04976 -.00098 (60*2π)/3476 weeks
61.05535 .03105 (61*2π)/3476 weeks
62.00072 .04459 (62*2π)/3476 weeks
63.08067 .04086 (63*2π)/3476 weeks
64.06171 .07899 (64*2π)/3475 weeks
65-.00053 .08665 (65*2π)/3475 weeks
66-.02958 .07528 (66*2π)/3475 weeks
67-.05198 .00801 (67*2π)/3475 weeks
68.05653 -.07669 (68*2π)/3475 weeks
69.08756 .12505 (69*2π)/3475 weeks
70-.07587 .09013 (70*2π)/3475 weeks
71-.0515 -.06708 (71*2π)/3475 weeks
72.02697 -.04745 (72*2π)/3475 weeks
73.02402 .01168 (73*2π)/3475 weeks
74.07055 -.02315 (74*2π)/3475 weeks
75.06997 .03604 (75*2π)/3475 weeks
76.06227 .00941 (76*2π)/3475 weeks
77.03985 .04507 (77*2π)/3475 weeks
78.04876 .01419 (78*2π)/3474 weeks
79.03444 .09451 (79*2π)/3474 weeks
80-.0145 .02925 (80*2π)/3474 weeks
81.00586 .00813 (81*2π)/3474 weeks
82.04939 .02947 (82*2π)/3474 weeks
83-.01495 .01465 (83*2π)/3474 weeks
84.02765 -.05133 (84*2π)/3474 weeks
85.08938 .04502 (85*2π)/3474 weeks
86.03115 .04329 (86*2π)/3474 weeks
87-.00819 .07022 (87*2π)/3474 weeks
88.00246 -.0111 (88*2π)/3474 weeks
89.02654 .03898 (89*2π)/3474 weeks
90.03166 .00553 (90*2π)/3474 weeks
91-.0263 .01006 (91*2π)/3474 weeks
92.00058 -.03819 (92*2π)/3474 weeks
93.05291 -.01413 (93*2π)/3474 weeks
94.03776 .02706 (94*2π)/3474 weeks
95.01506 .02398 (95*2π)/3474 weeks
96.05639 -.01232 (96*2π)/3474 weeks
97.0452 .03804 (97*2π)/3474 weeks
98-.01117 .0059 (98*2π)/3474 weeks
99.01337 .03093 (99*2π)/3474 weeks
100.03924 -.0352 (100*2π)/3473 weeks
101.05008 -.01298 (101*2π)/3473 weeks
102.04968 .04406 (102*2π)/3473 weeks
103.00805 .04083 (103*2π)/3473 weeks
104.03371 .00059 (104*2π)/3473 weeks
105.01957 .02528 (105*2π)/3473 weeks
106.01545 .00984 (106*2π)/3473 weeks
107.01683 .00289 (107*2π)/3473 weeks
108.01188 -.00321 (108*2π)/3473 weeks
109.05393 .01064 (109*2π)/3473 weeks
110.05457 .01561 (110*2π)/3473 weeks
111.01345 .01435 (111*2π)/3473 weeks
112.03195 .00722 (112*2π)/3473 weeks
113.0317 .04135 (113*2π)/3473 weeks
114.05185 .00641 (114*2π)/3473 weeks
115.01195 .06023 (115*2π)/3473 weeks
116-.00037 .00839 (116*2π)/3473 weeks
117-.01829 .02259 (117*2π)/3473 weeks
118.01225 -.02586 (118*2π)/3473 weeks
119.03925 -.00844 (119*2π)/3473 weeks
120.0771 .00802 (120*2π)/3473 weeks
121.02128 .06088 (121*2π)/3473 weeks
122-.04227 .01648 (122*2π)/3473 weeks
123-.00385 -.04127 (123*2π)/3473 weeks
124.06255 -.03233 (124*2π)/3473 weeks
125.04393 .02596 (125*2π)/3473 weeks
126.03791 -.02759 (126*2π)/3473 weeks
127.05714 .06414 (127*2π)/3473 weeks
128-.00619 .01117 (128*2π)/3473 weeks
129.00475 -.0002 (129*2π)/3473 weeks
130.05456 -.02275 (130*2π)/3473 weeks
131.02718 .0504 (131*2π)/3473 weeks
132.00778 .00063 (132*2π)/3473 weeks
133.01593 .00673 (133*2π)/3473 weeks
134.04525 -.00505 (134*2π)/3473 weeks
135.00767 .01608 (135*2π)/3473 weeks
136.04627 .01564 (136*2π)/3473 weeks
137-.00763 .01109 (137*2π)/3473 weeks
138.0148 -.00904 (138*2π)/3473 weeks
139.03479 .00298 (139*2π)/3472 weeks
140.02647 .02137 (140*2π)/3472 weeks
141-.00557 -.04361 (141*2π)/3472 weeks
142.05887 -.01456 (142*2π)/3472 weeks
143.0544 .05043 (143*2π)/3472 weeks
144.03527 .01484 (144*2π)/3472 weeks
145.02053 .00196 (145*2π)/3472 weeks
146.0389 .02197 (146*2π)/3472 weeks
147.02471 .05333 (147*2π)/3472 weeks
148.00344 .03557 (148*2π)/3472 weeks
149-.03472 -.01375 (149*2π)/3472 weeks
150.01776 -.04419 (150*2π)/3472 weeks
151.04383 -.01756 (151*2π)/3472 weeks
152.07287 .01283 (152*2π)/3472 weeks
153.00951 .04173 (153*2π)/3472 weeks
154.02057 -.02048 (154*2π)/3472 weeks
155.02046 .01499 (155*2π)/3472 weeks
156.02825 .00847 (156*2π)/3472 weeks
157-.00559 .01217 (157*2π)/3472 weeks
158.03024 -.03293 (158*2π)/3472 weeks
159.01 -.01425 (159*2π)/3472 weeks
160.03906 -.01258 (160*2π)/3472 weeks
161.06109 -.02594 (161*2π)/3472 weeks
162.04194 .00959 (162*2π)/3472 weeks
163.02652 .01015 (163*2π)/3472 weeks
164.05338 -.00336 (164*2π)/3472 weeks
165.03741 .02901 (165*2π)/3472 weeks
166.01187 -.01279 (166*2π)/3472 weeks
167.03918 .00723 (167*2π)/3472 weeks
168.03448 .02913 (168*2π)/3472 weeks
169.00305 .0088 (169*2π)/3472 weeks
170.01136 -.00905 (170*2π)/3472 weeks
171.02333 .01035 (171*2π)/3472 weeks
172.02042 -.02491 (172*2π)/3472 weeks
173.05306 -.0093 (173*2π)/3472 weeks
174.05306 .0093 (174*2π)/3472 weeks
175.02042 .02491 (175*2π)/3472 weeks
176.02333 -.01035 (176*2π)/3472 weeks
177.01136 .00905 (177*2π)/3472 weeks
178.00305 -.0088 (178*2π)/3472 weeks
179.03448 -.02913 (179*2π)/3472 weeks
180.03918 -.00723 (180*2π)/3472 weeks
181.01187 .01279 (181*2π)/3472 weeks
182.03741 -.02901 (182*2π)/3472 weeks
183.05338 .00336 (183*2π)/3472 weeks
184.02652 -.01015 (184*2π)/3472 weeks
185.04194 -.00959 (185*2π)/3472 weeks
186.06109 .02594 (186*2π)/3472 weeks
187.03906 .01258 (187*2π)/3472 weeks
188.01 .01425 (188*2π)/3472 weeks
189.03024 .03293 (189*2π)/3472 weeks
190-.00559 -.01217 (190*2π)/3472 weeks
191.02825 -.00847 (191*2π)/3472 weeks
192.02046 -.01499 (192*2π)/3472 weeks
193.02057 .02048 (193*2π)/3472 weeks
194.00951 -.04173 (194*2π)/3472 weeks
195.07287 -.01283 (195*2π)/3472 weeks
196.04383 .01756 (196*2π)/3472 weeks
197.01776 .04419 (197*2π)/3472 weeks
198-.03472 .01375 (198*2π)/3472 weeks
199.00344 -.03557 (199*2π)/3472 weeks
200.02471 -.05333 (200*2π)/3472 weeks
201.0389 -.02197 (201*2π)/3472 weeks
202.02053 -.00196 (202*2π)/3472 weeks
203.03527 -.01484 (203*2π)/3472 weeks
204.0544 -.05043 (204*2π)/3472 weeks
205.05887 .01456 (205*2π)/3472 weeks
206-.00557 .04361 (206*2π)/3472 weeks
207.02647 -.02137 (207*2π)/3472 weeks
208.03479 -.00298 (208*2π)/3472 weeks
209.0148 .00904 (209*2π)/3472 weeks
210-.00763 -.01109 (210*2π)/3472 weeks
211.04627 -.01564 (211*2π)/3472 weeks
212.00767 -.01608 (212*2π)/3472 weeks
213.04525 .00505 (213*2π)/3472 weeks
214.01593 -.00673 (214*2π)/3472 weeks
215.00778 -.00063 (215*2π)/3472 weeks
216.02718 -.0504 (216*2π)/3472 weeks
217.05456 .02275 (217*2π)/3472 weeks
218.00475 .0002 (218*2π)/3472 weeks
219-.00619 -.01117 (219*2π)/3472 weeks
220.05714 -.06414 (220*2π)/3472 weeks
221.03791 .02759 (221*2π)/3472 weeks
222.04393 -.02596 (222*2π)/3472 weeks
223.06255 .03233 (223*2π)/3472 weeks
224-.00385 .04127 (224*2π)/3472 weeks
225-.04227 -.01648 (225*2π)/3472 weeks
226.02128 -.06088 (226*2π)/3472 weeks
227.0771 -.00802 (227*2π)/3472 weeks
228.03925 .00844 (228*2π)/3472 weeks
229.01225 .02586 (229*2π)/3472 weeks
230-.01829 -.02259 (230*2π)/3472 weeks
231-.00037 -.00839 (231*2π)/3472 weeks
232.01195 -.06023 (232*2π)/3471 weeks
233.05185 -.00641 (233*2π)/3471 weeks
234.0317 -.04135 (234*2π)/3471 weeks
235.03195 -.00722 (235*2π)/3471 weeks
236.01345 -.01435 (236*2π)/3471 weeks
237.05457 -.01561 (237*2π)/3471 weeks
238.05393 -.01064 (238*2π)/3471 weeks
239.01188 .00321 (239*2π)/3471 weeks
240.01683 -.00289 (240*2π)/3471 weeks
241.01545 -.00984 (241*2π)/3471 weeks
242.01957 -.02528 (242*2π)/3471 weeks
243.03371 -.00059 (243*2π)/3471 weeks
244.00805 -.04083 (244*2π)/3471 weeks
245.04968 -.04406 (245*2π)/3471 weeks
246.05008 .01298 (246*2π)/3471 weeks
247.03924 .0352 (247*2π)/3471 weeks
248.01337 -.03093 (248*2π)/3471 weeks
249-.01117 -.0059 (249*2π)/3471 weeks
250.0452 -.03804 (250*2π)/3471 weeks
251.05639 .01232 (251*2π)/3471 weeks
252.01506 -.02398 (252*2π)/3471 weeks
253.03776 -.02706 (253*2π)/3471 weeks
254.05291 .01413 (254*2π)/3471 weeks
255.00058 .03819 (255*2π)/3471 weeks
256-.0263 -.01006 (256*2π)/3471 weeks
257.03166 -.00553 (257*2π)/3471 weeks
258.02654 -.03898 (258*2π)/3471 weeks
259.00246 .0111 (259*2π)/3471 weeks
260-.00819 -.07022 (260*2π)/3471 weeks
261.03115 -.04329 (261*2π)/3471 weeks
262.08938 -.04502 (262*2π)/3471 weeks
263.02765 .05133 (263*2π)/3471 weeks
264-.01495 -.01465 (264*2π)/3471 weeks
265.04939 -.02947 (265*2π)/3471 weeks
266.00586 -.00813 (266*2π)/3471 weeks
267-.0145 -.02925 (267*2π)/3471 weeks
268.03444 -.09451 (268*2π)/3471 weeks
269.04876 -.01419 (269*2π)/3471 weeks
270.03985 -.04507 (270*2π)/3471 weeks
271.06227 -.00941 (271*2π)/3471 weeks
272.06997 -.03604 (272*2π)/3471 weeks
273.07055 .02315 (273*2π)/3471 weeks
274.02402 -.01168 (274*2π)/3471 weeks
275.02697 .04745 (275*2π)/3471 weeks
276-.0515 .06708 (276*2π)/3471 weeks
277-.07587 -.09013 (277*2π)/3471 weeks
278.08756 -.12505 (278*2π)/3471 weeks
279.05653 .07669 (279*2π)/3471 weeks
280-.05198 -.00801 (280*2π)/3471 weeks
281-.02958 -.07528 (281*2π)/3471 weeks
282-.00053 -.08665 (282*2π)/3471 weeks
283.06171 -.07899 (283*2π)/3471 weeks
284.08067 -.04086 (284*2π)/3471 weeks
285.00072 -.04459 (285*2π)/3471 weeks
286.05535 -.03105 (286*2π)/3471 weeks
287.04976 .00098 (287*2π)/3471 weeks
288.05811 -.02966 (288*2π)/3471 weeks
289-.00918 .05785 (289*2π)/3471 weeks
290-.03171 -.04933 (290*2π)/3471 weeks
291-.01849 -.02278 (291*2π)/3471 weeks
292-.05212 -.08642 (292*2π)/3471 weeks
293.02473 -.08513 (293*2π)/3471 weeks
294.06184 -.12543 (294*2π)/3471 weeks
295.03641 -.00366 (295*2π)/3471 weeks
296-.01104 -.03439 (296*2π)/3471 weeks
297.04162 -.06526 (297*2π)/3471 weeks
298.01529 -.06285 (298*2π)/3471 weeks
299.04081 -.0068 (299*2π)/3471 weeks
300-.02375 -.06623 (300*2π)/3471 weeks
301-.03287 -.0192 (301*2π)/3471 weeks
302-.03885 -.16488 (302*2π)/3471 weeks
303.1175 -.06022 (303*2π)/3471 weeks
304.00874 -.13526 (304*2π)/3471 weeks
305.04153 -.03513 (305*2π)/3471 weeks
306.06819 -.10377 (306*2π)/3471 weeks
307.05303 -.00711 (307*2π)/3471 weeks
308-.02086 -.13582 (308*2π)/3471 weeks
309-.00853 -.01176 (309*2π)/3471 weeks
310.10912 -.18256 (310*2π)/3471 weeks
311.18077 -.11235 (311*2π)/3471 weeks
312.07578 .06704 (312*2π)/3471 weeks
313.04416 .00589 (313*2π)/3471 weeks
314.0083 -.06575 (314*2π)/3471 weeks
315-.00049 .01996 (315*2π)/3471 weeks
316.13297 .07181 (316*2π)/3471 weeks
317-.18448 -.06607 (317*2π)/3471 weeks
318-.1668 -.21584 (318*2π)/3471 weeks
319.16881 -.05269 (319*2π)/3471 weeks
320.10447 -.05113 (320*2π)/3471 weeks
321-.09846 -.09116 (321*2π)/3471 weeks
322-.14013 .07893 (322*2π)/3471 weeks
323-.10769 -.13116 (323*2π)/3471 weeks
324.03642 -.29272 (324*2π)/3471 weeks
325-.18587 -.08154 (325*2π)/3471 weeks
326.04666 -.34978 (326*2π)/3471 weeks
327.242 -.26908 (327*2π)/3471 weeks
328.10833 -.131 (328*2π)/3471 weeks
329-.11784 -.00759 (329*2π)/3471 weeks
330.06289 -.30281 (330*2π)/3471 weeks
331.29222 -.26048 (331*2π)/3471 weeks
332.10146 .15643 (332*2π)/3471 weeks
333.01198 .00405 (333*2π)/3471 weeks
334.03073 -.24265 (334*2π)/3471 weeks
335-.137 -.05753 (335*2π)/3471 weeks
336-.01968 .01863 (336*2π)/3471 weeks
337-.09869 -.35144 (337*2π)/3471 weeks
338-.20667 -.57287 (338*2π)/3471 weeks
339.22499 .0726 (339*2π)/3471 weeks
340.38471 -.20217 (340*2π)/3471 weeks
341-.30594 .03497 (341*2π)/3471 weeks
342-1.32408 -.63109 (342*2π)/3471 weeks
343.52929 -.8475 (343*2π)/3471 weeks
344-.30301 -1.75444 (344*2π)/3471 weeks
345-.95399 -1.01168 (345*2π)/3471 weeks

Problems, Comments, Suggestions? Click here to contact Greg Thatcher

Please read my Disclaimer





Copyright (c) 2013 Thatcher Development Software, LLC. All rights reserved. No claim to original U.S. Gov't works.