Back to list of Stocks    See Also: Seasonal Analysis of GEVOGenetic Algorithms Stock Portfolio Generator, and Best Months to Buy/Sell Stocks

Fourier Analysis of GEVO (Gevo)


GEVO (Gevo) appears to have interesting cyclic behaviour every 38 weeks (197.568*sine), 25 weeks (147.14*sine), and 34 weeks (143.7336*sine).

GEVO (Gevo) has an average price of 854.05 (topmost row, frequency = 0).



Click on the checkboxes shown on the right to see how the various frequencies contribute to the graph. Look for large magnitude coefficients (sine or cosine), as these are associated with frequencies which contribute most to the associated stock plot. If you find a large magnitude coefficient which dramatically changes the graph, look at the associated "Period" in weeks, as you may have found a significant recurring cycle for the stock of interest.

Right click on the graph above to see the menu of operations (download, full screen, etc.)

Fourier Analysis

Using data from 2/9/2011 to 4/16/2018 for GEVO (Gevo), this program was able to calculate the following Fourier Series:
Sequence #Cosine Coefficients Sine Coefficients FrequenciesPeriod
0854.0482   0 
11,018.732 817.7962 (1*2π)/376376 weeks
2533.4695 721.4396 (2*2π)/376188 weeks
3278.0999 634.7597 (3*2π)/376125 weeks
4152.3811 431.2177 (4*2π)/37694 weeks
5226.9376 356.0083 (5*2π)/37675 weeks
6220.6978 417.2887 (6*2π)/37663 weeks
7113.3294 478.0487 (7*2π)/37654 weeks
8-31.12402 424.1465 (8*2π)/37647 weeks
9-98.20215 306.0511 (9*2π)/37642 weeks
10-93.72772 197.568 (10*2π)/37638 weeks
11-41.44061 143.7336 (11*2π)/37634 weeks
12-17.78376 129.3146 (12*2π)/37631 weeks
1312.86539 114.2246 (13*2π)/37629 weeks
1427.69677 136.1591 (14*2π)/37627 weeks
156.76174 147.14 (15*2π)/37625 weeks
16-20.09249 118.9532 (16*2π)/37624 weeks
17.77737 87.68597 (17*2π)/37622 weeks
1825.21403 85.36759 (18*2π)/37621 weeks
1935.31377 110.7741 (19*2π)/37620 weeks
2015.15655 119.0797 (20*2π)/37619 weeks
216.1459 117.4402 (21*2π)/37618 weeks
22-16.9521 117.0649 (22*2π)/37617 weeks
23-30.84996 94.07025 (23*2π)/37616 weeks
24-35.01821 73.94591 (24*2π)/37616 weeks
25-31.5153 53.01855 (25*2π)/37615 weeks
26-21.16345 36.34316 (26*2π)/37614 weeks
27-9.08063 24.53124 (27*2π)/37614 weeks
2810.50671 17.12914 (28*2π)/37613 weeks
2925.82473 18.27221 (29*2π)/37613 weeks
3048.93571 30.43757 (30*2π)/37613 weeks
3144.40213 54.78878 (31*2π)/37612 weeks
3235.65314 61.89925 (32*2π)/37612 weeks
3324.01486 66.07489 (33*2π)/37611 weeks
3410.83497 60.37077 (34*2π)/37611 weeks
3511.79415 41.37485 (35*2π)/37611 weeks
3633.22363 41.24963 (36*2π)/37610 weeks
3734.60266 65.83835 (37*2π)/37610 weeks
3812.31652 74.62375 (38*2π)/37610 weeks
39-9.3078 63.30622 (39*2π)/37610 weeks
40-11.56903 37.90849 (40*2π)/3769 weeks
412.2767 26.55413 (41*2π)/3769 weeks
4215.67884 27.85355 (42*2π)/3769 weeks
4314.64098 37.8243 (43*2π)/3769 weeks
4410.20785 36.43743 (44*2π)/3769 weeks
45-1.02821 30.44533 (45*2π)/3768 weeks
468.61754 9.68428 (46*2π)/3768 weeks
4723.64001 8.9078 (47*2π)/3768 weeks
4837.01677 11.50846 (48*2π)/3768 weeks
4946.52308 20.90911 (49*2π)/3768 weeks
5049.37386 32.7771 (50*2π)/3768 weeks
5151.28426 42.30739 (51*2π)/3767 weeks
5245.75042 54.36595 (52*2π)/3767 weeks
5341.49664 60.71411 (53*2π)/3767 weeks
5432.86819 75.40346 (54*2π)/3767 weeks
555.65712 79.47433 (55*2π)/3767 weeks
56-12.57003 56.58068 (56*2π)/3767 weeks
57-4.71702 36.65282 (57*2π)/3767 weeks
588.50216 33.23832 (58*2π)/3766 weeks
5914.98419 42.02084 (59*2π)/3766 weeks
606.29205 48.0309 (60*2π)/3766 weeks
61-.86506 45.35124 (61*2π)/3766 weeks
62-7.61217 34.16225 (62*2π)/3766 weeks
631.77867 25.35636 (63*2π)/3766 weeks
6411.28555 26.35081 (64*2π)/3766 weeks
6510.72481 39.34903 (65*2π)/3766 weeks
661.92084 36.56824 (66*2π)/3766 weeks
671.30244 33.84865 (67*2π)/3766 weeks
68-1.07428 35.29504 (68*2π)/3766 weeks
69-5.95618 29.56827 (69*2π)/3765 weeks
70-6.54494 27.56421 (70*2π)/3765 weeks
71-8.92376 19.10682 (71*2π)/3765 weeks
72-2.48073 14.75659 (72*2π)/3765 weeks
73-1.65913 15.12356 (73*2π)/3765 weeks
74.05691 9.47473 (74*2π)/3765 weeks
758.0213 9.99298 (75*2π)/3765 weeks
767.329 13.98845 (76*2π)/3765 weeks
776.30736 12.65312 (77*2π)/3765 weeks
787.90987 10.58103 (78*2π)/3765 weeks
7910.90618 9.02191 (79*2π)/3765 weeks
8014.28671 14.35659 (80*2π)/3765 weeks
817.84221 13.65441 (81*2π)/3765 weeks
8210.66722 9.30238 (82*2π)/3765 weeks
8312.49177 7.60827 (83*2π)/3765 weeks
8419.90734 6.985 (84*2π)/3764 weeks
8522.89761 15.91379 (85*2π)/3764 weeks
8615.54112 20.66423 (86*2π)/3764 weeks
8712.19476 15.69471 (87*2π)/3764 weeks
8813.21827 14.20931 (88*2π)/3764 weeks
8915.49715 10.6907 (89*2π)/3764 weeks
9021.59564 17.20455 (90*2π)/3764 weeks
9112.88128 22.84529 (91*2π)/3764 weeks
923.69579 17.36766 (92*2π)/3764 weeks
936.11456 2.59155 (93*2π)/3764 weeks
9419.04775 -1.78501 (94*2π)/3764 weeks
9531.98158 6.45078 (95*2π)/3764 weeks
9630.82461 18.14528 (96*2π)/3764 weeks
9726.05356 25.2691 (97*2π)/3764 weeks
9818.66352 24.24435 (98*2π)/3764 weeks
9918.19134 24.06072 (99*2π)/3764 weeks
10017.36261 24.58611 (100*2π)/3764 weeks
10112.38706 28.0649 (101*2π)/3764 weeks
1025.57093 23.95067 (102*2π)/3764 weeks
1034.23944 15.48549 (103*2π)/3764 weeks
1049.84418 9.59727 (104*2π)/3764 weeks
10519.66011 10.32771 (105*2π)/3764 weeks
10621.66312 19.01888 (106*2π)/3764 weeks
10719.40713 24.17768 (107*2π)/3764 weeks
10812.54998 28.01076 (108*2π)/3763 weeks
1096.75566 21.92915 (109*2π)/3763 weeks
11011.32011 18.69157 (110*2π)/3763 weeks
11112.67177 20.65717 (111*2π)/3763 weeks
11215.84359 24.68876 (112*2π)/3763 weeks
1139.77397 34.9026 (113*2π)/3763 weeks
114-4.44755 33.54737 (114*2π)/3763 weeks
115-10.96033 22.48816 (115*2π)/3763 weeks
116-8.45546 14.61375 (116*2π)/3763 weeks
117-5.69996 13.31102 (117*2π)/3763 weeks
118-9.16649 9.15682 (118*2π)/3763 weeks
119-5.24925 2.4686 (119*2π)/3763 weeks
120.6879 -1.2425 (120*2π)/3763 weeks
1217.47987 2.96564 (121*2π)/3763 weeks
1227.24258 6.70069 (122*2π)/3763 weeks
1233.46901 10.44066 (123*2π)/3763 weeks
124-1.65017 5.32296 (124*2π)/3763 weeks
1253.10917 -1.47822 (125*2π)/3763 weeks
1267.89143 3.85708 (126*2π)/3763 weeks
1274.16164 2.76402 (127*2π)/3763 weeks
1286.23019 3.79751 (128*2π)/3763 weeks
1291.15972 2.61786 (129*2π)/3763 weeks
1302.10955 -5.16435 (130*2π)/3763 weeks
1318.96401 -8.48978 (131*2π)/3763 weeks
13217.30932 -6.88127 (132*2π)/3763 weeks
13320.93869 2.53249 (133*2π)/3763 weeks
13415.11759 9.09406 (134*2π)/3763 weeks
1358.16129 7.85464 (135*2π)/3763 weeks
1365.89121 3.80971 (136*2π)/3763 weeks
1374.71336 -.37616 (137*2π)/3763 weeks
1387.35962 -4.93136 (138*2π)/3763 weeks
13911.25322 -7.78472 (139*2π)/3763 weeks
14016.78427 -7.35451 (140*2π)/3763 weeks
14119.4199 -4.95769 (141*2π)/3763 weeks
14223.02221 -4.4036 (142*2π)/3763 weeks
14327.95631 2.26047 (143*2π)/3763 weeks
14423.24343 12.32885 (144*2π)/3763 weeks
14511.54272 9.82059 (145*2π)/3763 weeks
14612.73224 1.65344 (146*2π)/3763 weeks
14715.35765 -1.14492 (147*2π)/3763 weeks
14824.40309 -2.26439 (148*2π)/3763 weeks
14926.78322 8.73758 (149*2π)/3763 weeks
15019.77634 12.19033 (150*2π)/3763 weeks
15116.6431 9.85822 (151*2π)/3762 weeks
15216.40542 6.86926 (152*2π)/3762 weeks
15322.34019 7.35537 (153*2π)/3762 weeks
15421.70715 14.74585 (154*2π)/3762 weeks
15517.09544 17.50109 (155*2π)/3762 weeks
15613.73761 18.2848 (156*2π)/3762 weeks
1577.28897 20.88434 (157*2π)/3762 weeks
158-.47946 13.79313 (158*2π)/3762 weeks
1591.25601 6.08297 (159*2π)/3762 weeks
1603.52863 2.99374 (160*2π)/3762 weeks
1618.16754 -.57147 (161*2π)/3762 weeks
16213.56472 3.25574 (162*2π)/3762 weeks
16312.15692 7.10204 (163*2π)/3762 weeks
16410.55451 8.56337 (164*2π)/3762 weeks
1655.7042 11.00248 (165*2π)/3762 weeks
166.21309 3.83793 (166*2π)/3762 weeks
1674.76469 -2.78512 (167*2π)/3762 weeks
16810.97083 -2.73881 (168*2π)/3762 weeks
16913.78085 .67061 (169*2π)/3762 weeks
17014.38359 5.29911 (170*2π)/3762 weeks
1719.48363 8.82911 (171*2π)/3762 weeks
1723.68984 6.74344 (172*2π)/3762 weeks
1732.29767 -.43472 (173*2π)/3762 weeks
1748.22413 -3.55443 (174*2π)/3762 weeks
17510.90558 2.49516 (175*2π)/3762 weeks
1762.50796 1.38991 (176*2π)/3762 weeks
1774.5781 -5.94531 (177*2π)/3762 weeks
1787.97803 -9.4166 (178*2π)/3762 weeks
17915.89396 -10.42543 (179*2π)/3762 weeks
18021.62679 -3.44551 (180*2π)/3762 weeks
18117.53384 2.94313 (181*2π)/3762 weeks
18215.45948 3.03239 (182*2π)/3762 weeks
18312.6233 3.89121 (183*2π)/3762 weeks
18411.1404 1.75423 (184*2π)/3762 weeks
18513.37035 .11833 (185*2π)/3762 weeks
18614.2743 4.71343 (186*2π)/3762 weeks
1878.26469 6.89556 (187*2π)/3762 weeks
1882.49541   (188*2π)/3762 weeks
1898.26469 -6.89556 (189*2π)/3762 weeks
19014.2743 -4.71343 (190*2π)/3762 weeks
19113.37035 -.11833 (191*2π)/3762 weeks
19211.1404 -1.75423 (192*2π)/3762 weeks
19312.6233 -3.89121 (193*2π)/3762 weeks
19415.45948 -3.03239 (194*2π)/3762 weeks
19517.53384 -2.94313 (195*2π)/3762 weeks
19621.62679 3.44551 (196*2π)/3762 weeks
19715.89396 10.42543 (197*2π)/3762 weeks
1987.97803 9.4166 (198*2π)/3762 weeks
1994.5781 5.94531 (199*2π)/3762 weeks
2002.50796 -1.38991 (200*2π)/3762 weeks
20110.90558 -2.49516 (201*2π)/3762 weeks
2028.22413 3.55443 (202*2π)/3762 weeks
2032.29767 .43472 (203*2π)/3762 weeks
2043.68984 -6.74344 (204*2π)/3762 weeks
2059.48363 -8.82911 (205*2π)/3762 weeks
20614.38359 -5.29911 (206*2π)/3762 weeks
20713.78085 -.67061 (207*2π)/3762 weeks
20810.97083 2.73881 (208*2π)/3762 weeks
2094.76469 2.78512 (209*2π)/3762 weeks
210.21309 -3.83793 (210*2π)/3762 weeks
2115.7042 -11.00248 (211*2π)/3762 weeks
21210.55451 -8.56337 (212*2π)/3762 weeks
21312.15692 -7.10204 (213*2π)/3762 weeks
21413.56472 -3.25574 (214*2π)/3762 weeks
2158.16754 .57147 (215*2π)/3762 weeks
2163.52863 -2.99374 (216*2π)/3762 weeks
2171.25601 -6.08297 (217*2π)/3762 weeks
218-.47946 -13.79313 (218*2π)/3762 weeks
2197.28897 -20.88434 (219*2π)/3762 weeks
22013.73761 -18.2848 (220*2π)/3762 weeks
22117.09544 -17.50109 (221*2π)/3762 weeks
22221.70715 -14.74585 (222*2π)/3762 weeks
22322.34019 -7.35537 (223*2π)/3762 weeks
22416.40542 -6.86926 (224*2π)/3762 weeks
22516.6431 -9.85822 (225*2π)/3762 weeks
22619.77634 -12.19033 (226*2π)/3762 weeks
22726.78322 -8.73758 (227*2π)/3762 weeks
22824.40309 2.26439 (228*2π)/3762 weeks
22915.35765 1.14492 (229*2π)/3762 weeks
23012.73224 -1.65344 (230*2π)/3762 weeks
23111.54272 -9.82059 (231*2π)/3762 weeks
23223.24343 -12.32885 (232*2π)/3762 weeks
23327.95631 -2.26047 (233*2π)/3762 weeks
23423.02221 4.4036 (234*2π)/3762 weeks
23519.4199 4.95769 (235*2π)/3762 weeks
23616.78427 7.35451 (236*2π)/3762 weeks
23711.25322 7.78472 (237*2π)/3762 weeks
2387.35962 4.93136 (238*2π)/3762 weeks
2394.71336 .37616 (239*2π)/3762 weeks
2405.89121 -3.80971 (240*2π)/3762 weeks
2418.16129 -7.85464 (241*2π)/3762 weeks
24215.11759 -9.09406 (242*2π)/3762 weeks
24320.93869 -2.53249 (243*2π)/3762 weeks
24417.30932 6.88127 (244*2π)/3762 weeks
2458.96401 8.48978 (245*2π)/3762 weeks
2462.10955 5.16435 (246*2π)/3762 weeks
2471.15972 -2.61786 (247*2π)/3762 weeks
2486.23019 -3.79751 (248*2π)/3762 weeks
2494.16164 -2.76402 (249*2π)/3762 weeks
2507.89143 -3.85708 (250*2π)/3762 weeks
2513.10917 1.47822 (251*2π)/3761 weeks
252-1.65017 -5.32296 (252*2π)/3761 weeks
2533.46901 -10.44066 (253*2π)/3761 weeks
2547.24258 -6.70069 (254*2π)/3761 weeks
2557.47987 -2.96564 (255*2π)/3761 weeks
256.6879 1.2425 (256*2π)/3761 weeks
257-5.24925 -2.4686 (257*2π)/3761 weeks
258-9.16649 -9.15682 (258*2π)/3761 weeks
259-5.69996 -13.31102 (259*2π)/3761 weeks
260-8.45546 -14.61375 (260*2π)/3761 weeks
261-10.96033 -22.48816 (261*2π)/3761 weeks
262-4.44755 -33.54737 (262*2π)/3761 weeks
2639.77397 -34.9026 (263*2π)/3761 weeks
26415.84359 -24.68876 (264*2π)/3761 weeks
26512.67177 -20.65717 (265*2π)/3761 weeks
26611.32011 -18.69157 (266*2π)/3761 weeks
2676.75566 -21.92915 (267*2π)/3761 weeks
26812.54998 -28.01076 (268*2π)/3761 weeks
26919.40713 -24.17768 (269*2π)/3761 weeks
27021.66312 -19.01888 (270*2π)/3761 weeks
27119.66011 -10.32771 (271*2π)/3761 weeks
2729.84418 -9.59727 (272*2π)/3761 weeks
2734.23944 -15.48549 (273*2π)/3761 weeks
2745.57093 -23.95067 (274*2π)/3761 weeks
27512.38706 -28.0649 (275*2π)/3761 weeks
27617.36261 -24.58611 (276*2π)/3761 weeks
27718.19134 -24.06072 (277*2π)/3761 weeks
27818.66352 -24.24435 (278*2π)/3761 weeks
27926.05356 -25.2691 (279*2π)/3761 weeks
28030.82461 -18.14528 (280*2π)/3761 weeks
28131.98158 -6.45078 (281*2π)/3761 weeks
28219.04775 1.78501 (282*2π)/3761 weeks
2836.11456 -2.59155 (283*2π)/3761 weeks
2843.69579 -17.36766 (284*2π)/3761 weeks
28512.88128 -22.84529 (285*2π)/3761 weeks
28621.59564 -17.20455 (286*2π)/3761 weeks
28715.49715 -10.6907 (287*2π)/3761 weeks
28813.21827 -14.20931 (288*2π)/3761 weeks
28912.19476 -15.69471 (289*2π)/3761 weeks
29015.54112 -20.66423 (290*2π)/3761 weeks
29122.89761 -15.91379 (291*2π)/3761 weeks
29219.90734 -6.985 (292*2π)/3761 weeks
29312.49177 -7.60827 (293*2π)/3761 weeks
29410.66722 -9.30238 (294*2π)/3761 weeks
2957.84221 -13.65441 (295*2π)/3761 weeks
29614.28671 -14.35659 (296*2π)/3761 weeks
29710.90618 -9.02191 (297*2π)/3761 weeks
2987.90987 -10.58103 (298*2π)/3761 weeks
2996.30736 -12.65312 (299*2π)/3761 weeks
3007.329 -13.98845 (300*2π)/3761 weeks
3018.0213 -9.99298 (301*2π)/3761 weeks
302.05691 -9.47473 (302*2π)/3761 weeks
303-1.65913 -15.12356 (303*2π)/3761 weeks
304-2.48073 -14.75659 (304*2π)/3761 weeks
305-8.92376 -19.10682 (305*2π)/3761 weeks
306-6.54494 -27.56421 (306*2π)/3761 weeks
307-5.95618 -29.56827 (307*2π)/3761 weeks
308-1.07428 -35.29504 (308*2π)/3761 weeks
3091.30244 -33.84865 (309*2π)/3761 weeks
3101.92084 -36.56824 (310*2π)/3761 weeks
31110.72481 -39.34903 (311*2π)/3761 weeks
31211.28555 -26.35081 (312*2π)/3761 weeks
3131.77867 -25.35636 (313*2π)/3761 weeks
314-7.61217 -34.16225 (314*2π)/3761 weeks
315-.86506 -45.35124 (315*2π)/3761 weeks
3166.29205 -48.0309 (316*2π)/3761 weeks
31714.98419 -42.02084 (317*2π)/3761 weeks
3188.50216 -33.23832 (318*2π)/3761 weeks
319-4.71702 -36.65282 (319*2π)/3761 weeks
320-12.57003 -56.58068 (320*2π)/3761 weeks
3215.65712 -79.47433 (321*2π)/3761 weeks
32232.86819 -75.40346 (322*2π)/3761 weeks
32341.49664 -60.71411 (323*2π)/3761 weeks
32445.75042 -54.36595 (324*2π)/3761 weeks
32551.28426 -42.30739 (325*2π)/3761 weeks
32649.37386 -32.7771 (326*2π)/3761 weeks
32746.52308 -20.90911 (327*2π)/3761 weeks
32837.01677 -11.50846 (328*2π)/3761 weeks
32923.64001 -8.9078 (329*2π)/3761 weeks
3308.61754 -9.68428 (330*2π)/3761 weeks
331-1.02821 -30.44533 (331*2π)/3761 weeks
33210.20785 -36.43743 (332*2π)/3761 weeks
33314.64098 -37.8243 (333*2π)/3761 weeks
33415.67884 -27.85355 (334*2π)/3761 weeks
3352.2767 -26.55413 (335*2π)/3761 weeks
336-11.56903 -37.90849 (336*2π)/3761 weeks
337-9.3078 -63.30622 (337*2π)/3761 weeks
33812.31652 -74.62375 (338*2π)/3761 weeks
33934.60266 -65.83835 (339*2π)/3761 weeks
34033.22363 -41.24963 (340*2π)/3761 weeks
34111.79415 -41.37485 (341*2π)/3761 weeks
34210.83497 -60.37077 (342*2π)/3761 weeks
34324.01486 -66.07489 (343*2π)/3761 weeks
34435.65314 -61.89925 (344*2π)/3761 weeks
34544.40213 -54.78878 (345*2π)/3761 weeks
34648.93571 -30.43757 (346*2π)/3761 weeks
34725.82473 -18.27221 (347*2π)/3761 weeks
34810.50671 -17.12914 (348*2π)/3761 weeks
349-9.08063 -24.53124 (349*2π)/3761 weeks
350-21.16345 -36.34316 (350*2π)/3761 weeks
351-31.5153 -53.01855 (351*2π)/3761 weeks
352-35.01821 -73.94591 (352*2π)/3761 weeks
353-30.84996 -94.07025 (353*2π)/3761 weeks
354-16.9521 -117.0649 (354*2π)/3761 weeks
3556.1459 -117.4402 (355*2π)/3761 weeks
35615.15655 -119.0797 (356*2π)/3761 weeks
35735.31377 -110.7741 (357*2π)/3761 weeks
35825.21403 -85.36759 (358*2π)/3761 weeks
359.77737 -87.68597 (359*2π)/3761 weeks
360-20.09249 -118.9532 (360*2π)/3761 weeks
3616.76174 -147.14 (361*2π)/3761 weeks
36227.69677 -136.1591 (362*2π)/3761 weeks
36312.86539 -114.2246 (363*2π)/3761 weeks
364-17.78376 -129.3146 (364*2π)/3761 weeks
365-41.44061 -143.7336 (365*2π)/3761 weeks
366-93.72772 -197.568 (366*2π)/3761 weeks
367-98.20215 -306.0511 (367*2π)/3761 weeks
368-31.12402 -424.1465 (368*2π)/3761 weeks
369113.3294 -478.0487 (369*2π)/3761 weeks
370220.6978 -417.2887 (370*2π)/3761 weeks
371226.9376 -356.0083 (371*2π)/3761 weeks
372152.3811 -431.2177 (372*2π)/3761 weeks
373278.0999 -634.7597 (373*2π)/3761 weeks
374533.4695 -721.4396 (374*2π)/3761 weeks



Back to list of Stocks