Back to list of Stocks    See Also: Seasonal Analysis of GEVOGenetic Algorithms Stock Portfolio Generator, and Fourier Calculator

Fourier Analysis of GEVO (Gevo, Inc.)


GEVO (Gevo, Inc.) appears to have interesting cyclic behaviour every 26 weeks (174.6698*sine), 24 weeks (159.4081*sine), and 31 weeks (153.7361*sine).

GEVO (Gevo, Inc.) has an average price of 1,032.46 (topmost row, frequency = 0).



Click on the checkboxes shown on the right to see how the various frequencies contribute to the graph. Look for large magnitude coefficients (sine or cosine), as these are associated with frequencies which contribute most to the associated stock plot. If you find a large magnitude coefficient which dramatically changes the graph, look at the associated "Period" in weeks, as you may have found a significant recurring cycle for the stock of interest.

Right click on the graph above to see the menu of operations (download, full screen, etc.)

Fourier Analysis

Using data from 2/9/2011 to 1/17/2017 for GEVO (Gevo, Inc.), this program was able to calculate the following Fourier Series:
Sequence #Cosine Coefficients Sine Coefficients FrequenciesPeriod
01,032.456   0 
11,041.735 990.0532 (1*2π)/311311 weeks
2516.0034 836.5909 (2*2π)/311156 weeks
3201.8515 618.7913 (3*2π)/311104 weeks
4260.9768 424.8007 (4*2π)/31178 weeks
5264.1158 508.4131 (5*2π)/31162 weeks
687.92723 574.9446 (6*2π)/31152 weeks
7-89.44255 448.6929 (7*2π)/31144 weeks
8-123.9065 279.113 (8*2π)/31139 weeks
9-56.84303 176.6148 (9*2π)/31135 weeks
10-19.57305 153.7361 (10*2π)/31131 weeks
1127.13251 143.213 (11*2π)/31128 weeks
1223.82994 174.6698 (12*2π)/31126 weeks
13-19.78438 159.4081 (13*2π)/31124 weeks
14-1.53467 106.9407 (14*2π)/31122 weeks
1534.85109 105.2069 (15*2π)/31121 weeks
1634.55142 142.002 (16*2π)/31119 weeks
1711.30057 140.7927 (17*2π)/31118 weeks
18-12.26493 145.0146 (18*2π)/31117 weeks
19-37.08956 114.5075 (19*2π)/31116 weeks
20-42.40743 84.51308 (20*2π)/31116 weeks
21-34.17208 55.41905 (21*2π)/31115 weeks
22-16.84446 35.50269 (22*2π)/31114 weeks
237.73814 20.68992 (23*2π)/31114 weeks
2431.59819 22.08483 (24*2π)/31113 weeks
2561.64588 45.14983 (25*2π)/31112 weeks
2648.0429 70.20201 (26*2π)/31112 weeks
2734.5876 79.36357 (27*2π)/31112 weeks
2815.35625 75.19234 (28*2π)/31111 weeks
2915.42134 48.92049 (29*2π)/31111 weeks
3045.10101 56.8069 (30*2π)/31110 weeks
3129.66096 88.28812 (31*2π)/31110 weeks
32-3.96165 83.54505 (32*2π)/31110 weeks
33-15.29463 48.49738 (33*2π)/3119 weeks
344.46793 31.57771 (34*2π)/3119 weeks
3521.63449 38.05447 (35*2π)/3119 weeks
3613.55304 44.57498 (36*2π)/3119 weeks
372.84031 42.27632 (37*2π)/3118 weeks
388.95501 12.28065 (38*2π)/3118 weeks
3930.67938 10.67362 (39*2π)/3118 weeks
4049.65907 17.63949 (40*2π)/3118 weeks
4159.69845 33.84273 (41*2π)/3118 weeks
4261.37191 47.67239 (42*2π)/3117 weeks
4355.45252 65.60408 (43*2π)/3117 weeks
4449.50932 75.97867 (44*2π)/3117 weeks
4528.24436 97.01599 (45*2π)/3117 weeks
46-10.9468 81.30518 (46*2π)/3117 weeks
47-8.54125 47.05037 (47*2π)/3117 weeks
4810.73474 40.29595 (48*2π)/3116 weeks
4916.834 54.15158 (49*2π)/3116 weeks
503.47752 56.48235 (50*2π)/3116 weeks
51-8.26831 47.9703 (51*2π)/3116 weeks
52.53819 30.84011 (52*2π)/3116 weeks
5314.62226 32.69176 (53*2π)/3116 weeks
548.28805 48.46794 (54*2π)/3116 weeks
551.67671 42.1031 (55*2π)/3116 weeks
56.79983 42.03806 (56*2π)/3116 weeks
57-7.28525 36.47976 (57*2π)/3115 weeks
58-8.76366 32.72438 (58*2π)/3115 weeks
59-8.55961 19.80006 (59*2π)/3115 weeks
60-1.28681 18.74496 (60*2π)/3115 weeks
61-1.57886 13.25608 (61*2π)/3115 weeks
629.416 11.78892 (62*2π)/3115 weeks
638.49948 16.7959 (63*2π)/3115 weeks
647.90058 14.08232 (64*2π)/3115 weeks
6510.94357 11.76817 (65*2π)/3115 weeks
6617.776 15.36698 (66*2π)/3115 weeks
679.46748 16.45637 (67*2π)/3115 weeks
6813.5482 11.13942 (68*2π)/3115 weeks
6917.84827 7.52014 (69*2π)/3115 weeks
7028.09652 14.87045 (70*2π)/3114 weeks
7120.49011 25.08743 (71*2π)/3114 weeks
7214.81586 18.76156 (72*2π)/3114 weeks
7315.81291 16.44084 (73*2π)/3114 weeks
7423.68051 14.07367 (74*2π)/3114 weeks
7519.63905 27.48462 (75*2π)/3114 weeks
765.63524 22.48866 (76*2π)/3114 weeks
778.75658 2.04116 (77*2π)/3114 weeks
7828.52377 -1.44987 (78*2π)/3114 weeks
7939.32763 16.52168 (79*2π)/3114 weeks
8033.9548 28.25268 (80*2π)/3114 weeks
8122.71149 29.67586 (81*2π)/3114 weeks
8221.5841 29.15682 (82*2π)/3114 weeks
8320.29867 31.63066 (83*2π)/3114 weeks
849.7754 31.97621 (84*2π)/3114 weeks
854.5116 21.30998 (85*2π)/3114 weeks
8611.69818 11.71467 (86*2π)/3114 weeks
8725.40084 14.4039 (87*2π)/3114 weeks
8825.13554 25.51294 (88*2π)/3114 weeks
8919.4486 32.99548 (89*2π)/3113 weeks
908.32656 28.48785 (90*2π)/3113 weeks
9113.79653 22.64545 (91*2π)/3113 weeks
9215.89884 25.20839 (92*2π)/3113 weeks
9318.39577 35.60134 (93*2π)/3113 weeks
94.24414 43.08997 (94*2π)/3113 weeks
95-13.04159 29.19724 (95*2π)/3113 weeks
96-9.94465 17.2985 (96*2π)/3113 weeks
97-7.80957 16.17089 (97*2π)/3113 weeks
98-9.59477 6.039 (98*2π)/3113 weeks
99-2.19502 -.31952 (99*2π)/3113 weeks
1008.8579 2.7006 (100*2π)/3113 weeks
1018.75209 8.6203 (101*2π)/3113 weeks
1021.37112 11.81806 (102*2π)/3113 weeks
103-.77972 1.15351 (103*2π)/3113 weeks
10410.03328 2.26855 (104*2π)/3113 weeks
1054.90559 3.64462 (105*2π)/3113 weeks
1066.96063 5.19822 (106*2π)/3113 weeks
107.34509 -.14064 (107*2π)/3113 weeks
1087.20008 -9.3116 (108*2π)/3113 weeks
10918.58567 -9.61375 (109*2π)/3113 weeks
11025.33522 2.98951 (110*2π)/3113 weeks
11116.34501 11.42554 (111*2π)/3113 weeks
1128.17775 7.32031 (112*2π)/3113 weeks
1136.0161 1.94179 (113*2π)/3113 weeks
1148.19334 -5.33287 (114*2π)/3113 weeks
11513.84815 -9.49704 (115*2π)/3113 weeks
11621.40492 -8.13231 (116*2π)/3113 weeks
11724.66009 -5.81108 (117*2π)/3113 weeks
11832.52051 -1.12344 (118*2π)/3113 weeks
11929.74767 13.74026 (119*2π)/3113 weeks
12013.42917 10.83471 (120*2π)/3113 weeks
12116.68287 1.21041 (121*2π)/3113 weeks
12222.63656 -4.12184 (122*2π)/3113 weeks
12333.75989 6.79105 (123*2π)/3113 weeks
12424.5197 14.7957 (124*2π)/3113 weeks
12519.98387 11.63849 (125*2π)/3112 weeks
12621.59636 6.92073 (126*2π)/3112 weeks
12728.10973 14.21305 (127*2π)/3112 weeks
12822.0155 20.62475 (128*2π)/3112 weeks
12916.68102 22.06514 (129*2π)/3112 weeks
1306.59259 24.75778 (130*2π)/3112 weeks
131-.79077 12.28272 (131*2π)/3112 weeks
1323.44713 5.26018 (132*2π)/3112 weeks
1338.13851 -.23249 (133*2π)/3112 weeks
13416.40175 3.96968 (134*2π)/3112 weeks
13514.11313 9.0448 (135*2π)/3112 weeks
13611.62343 11.92475 (136*2π)/3112 weeks
1371.0803 8.96033 (137*2π)/3112 weeks
1384.55555 -2.67363 (138*2π)/3112 weeks
13913.50139 -3.1761 (139*2π)/3112 weeks
14017.18068 1.95735 (140*2π)/3112 weeks
14115.29317 9.19544 (141*2π)/3112 weeks
1426.58906 9.67515 (142*2π)/3112 weeks
1432.38792 .47323 (143*2π)/3112 weeks
14410.68319 -4.09616 (144*2π)/3112 weeks
14510.41954 5.09266 (145*2π)/3112 weeks
1462.97749 -4.19644 (146*2π)/3112 weeks
1478.22572 -9.89244 (147*2π)/3112 weeks
14818.53148 -12.81866 (148*2π)/3112 weeks
14926.14742 -2.48068 (149*2π)/3112 weeks
15019.48027 3.41083 (150*2π)/3112 weeks
15117.1512 4.87147 (151*2π)/3112 weeks
15213.54117 2.72172 (152*2π)/3112 weeks
15316.03859 .19309 (153*2π)/3112 weeks
15416.31214 6.66877 (154*2π)/3112 weeks
1556.14102 6.6431 (155*2π)/3112 weeks
1566.14102 -6.6431 (156*2π)/3112 weeks
15716.31214 -6.66877 (157*2π)/3112 weeks
15816.03859 -.19309 (158*2π)/3112 weeks
15913.54117 -2.72172 (159*2π)/3112 weeks
16017.1512 -4.87147 (160*2π)/3112 weeks
16119.48027 -3.41083 (161*2π)/3112 weeks
16226.14742 2.48068 (162*2π)/3112 weeks
16318.53148 12.81866 (163*2π)/3112 weeks
1648.22572 9.89244 (164*2π)/3112 weeks
1652.97749 4.19644 (165*2π)/3112 weeks
16610.41954 -5.09266 (166*2π)/3112 weeks
16710.68319 4.09616 (167*2π)/3112 weeks
1682.38792 -.47323 (168*2π)/3112 weeks
1696.58906 -9.67515 (169*2π)/3112 weeks
17015.29317 -9.19544 (170*2π)/3112 weeks
17117.18068 -1.95735 (171*2π)/3112 weeks
17213.50139 3.1761 (172*2π)/3112 weeks
1734.55555 2.67363 (173*2π)/3112 weeks
1741.0803 -8.96033 (174*2π)/3112 weeks
17511.62343 -11.92475 (175*2π)/3112 weeks
17614.11313 -9.0448 (176*2π)/3112 weeks
17716.40175 -3.96968 (177*2π)/3112 weeks
1788.13851 .23249 (178*2π)/3112 weeks
1793.44713 -5.26018 (179*2π)/3112 weeks
180-.79077 -12.28272 (180*2π)/3112 weeks
1816.59259 -24.75778 (181*2π)/3112 weeks
18216.68102 -22.06514 (182*2π)/3112 weeks
18322.0155 -20.62475 (183*2π)/3112 weeks
18428.10973 -14.21305 (184*2π)/3112 weeks
18521.59636 -6.92073 (185*2π)/3112 weeks
18619.98387 -11.63849 (186*2π)/3112 weeks
18724.5197 -14.7957 (187*2π)/3112 weeks
18833.75989 -6.79105 (188*2π)/3112 weeks
18922.63656 4.12184 (189*2π)/3112 weeks
19016.68287 -1.21041 (190*2π)/3112 weeks
19113.42917 -10.83471 (191*2π)/3112 weeks
19229.74767 -13.74026 (192*2π)/3112 weeks
19332.52051 1.12344 (193*2π)/3112 weeks
19424.66009 5.81108 (194*2π)/3112 weeks
19521.40492 8.13231 (195*2π)/3112 weeks
19613.84815 9.49704 (196*2π)/3112 weeks
1978.19334 5.33287 (197*2π)/3112 weeks
1986.0161 -1.94179 (198*2π)/3112 weeks
1998.17775 -7.32031 (199*2π)/3112 weeks
20016.34501 -11.42554 (200*2π)/3112 weeks
20125.33522 -2.98951 (201*2π)/3112 weeks
20218.58567 9.61375 (202*2π)/3112 weeks
2037.20008 9.3116 (203*2π)/3112 weeks
204.34509 .14064 (204*2π)/3112 weeks
2056.96063 -5.19822 (205*2π)/3112 weeks
2064.90559 -3.64462 (206*2π)/3112 weeks
20710.03328 -2.26855 (207*2π)/3112 weeks
208-.77972 -1.15351 (208*2π)/3111 weeks
2091.37112 -11.81806 (209*2π)/3111 weeks
2108.75209 -8.6203 (210*2π)/3111 weeks
2118.8579 -2.7006 (211*2π)/3111 weeks
212-2.19502 .31952 (212*2π)/3111 weeks
213-9.59477 -6.039 (213*2π)/3111 weeks
214-7.80957 -16.17089 (214*2π)/3111 weeks
215-9.94465 -17.2985 (215*2π)/3111 weeks
216-13.04159 -29.19724 (216*2π)/3111 weeks
217.24414 -43.08997 (217*2π)/3111 weeks
21818.39577 -35.60134 (218*2π)/3111 weeks
21915.89884 -25.20839 (219*2π)/3111 weeks
22013.79653 -22.64545 (220*2π)/3111 weeks
2218.32656 -28.48785 (221*2π)/3111 weeks
22219.4486 -32.99548 (222*2π)/3111 weeks
22325.13554 -25.51294 (223*2π)/3111 weeks
22425.40084 -14.4039 (224*2π)/3111 weeks
22511.69818 -11.71467 (225*2π)/3111 weeks
2264.5116 -21.30998 (226*2π)/3111 weeks
2279.7754 -31.97621 (227*2π)/3111 weeks
22820.29867 -31.63066 (228*2π)/3111 weeks
22921.5841 -29.15682 (229*2π)/3111 weeks
23022.71149 -29.67586 (230*2π)/3111 weeks
23133.9548 -28.25268 (231*2π)/3111 weeks
23239.32763 -16.52168 (232*2π)/3111 weeks
23328.52377 1.44987 (233*2π)/3111 weeks
2348.75658 -2.04116 (234*2π)/3111 weeks
2355.63524 -22.48866 (235*2π)/3111 weeks
23619.63905 -27.48462 (236*2π)/3111 weeks
23723.68051 -14.07367 (237*2π)/3111 weeks
23815.81291 -16.44084 (238*2π)/3111 weeks
23914.81586 -18.76156 (239*2π)/3111 weeks
24020.49011 -25.08743 (240*2π)/3111 weeks
24128.09652 -14.87045 (241*2π)/3111 weeks
24217.84827 -7.52014 (242*2π)/3111 weeks
24313.5482 -11.13942 (243*2π)/3111 weeks
2449.46748 -16.45637 (244*2π)/3111 weeks
24517.776 -15.36698 (245*2π)/3111 weeks
24610.94357 -11.76817 (246*2π)/3111 weeks
2477.90058 -14.08232 (247*2π)/3111 weeks
2488.49948 -16.7959 (248*2π)/3111 weeks
2499.416 -11.78892 (249*2π)/3111 weeks
250-1.57886 -13.25608 (250*2π)/3111 weeks
251-1.28681 -18.74496 (251*2π)/3111 weeks
252-8.55961 -19.80006 (252*2π)/3111 weeks
253-8.76366 -32.72438 (253*2π)/3111 weeks
254-7.28525 -36.47976 (254*2π)/3111 weeks
255.79983 -42.03806 (255*2π)/3111 weeks
2561.67671 -42.1031 (256*2π)/3111 weeks
2578.28805 -48.46794 (257*2π)/3111 weeks
25814.62226 -32.69176 (258*2π)/3111 weeks
259.53819 -30.84011 (259*2π)/3111 weeks
260-8.26831 -47.9703 (260*2π)/3111 weeks
2613.47752 -56.48235 (261*2π)/3111 weeks
26216.834 -54.15158 (262*2π)/3111 weeks
26310.73474 -40.29595 (263*2π)/3111 weeks
264-8.54125 -47.05037 (264*2π)/3111 weeks
265-10.9468 -81.30518 (265*2π)/3111 weeks
26628.24436 -97.01599 (266*2π)/3111 weeks
26749.50932 -75.97867 (267*2π)/3111 weeks
26855.45252 -65.60408 (268*2π)/3111 weeks
26961.37191 -47.67239 (269*2π)/3111 weeks
27059.69845 -33.84273 (270*2π)/3111 weeks
27149.65907 -17.63949 (271*2π)/3111 weeks
27230.67938 -10.67362 (272*2π)/3111 weeks
2738.95501 -12.28065 (273*2π)/3111 weeks
2742.84031 -42.27632 (274*2π)/3111 weeks
27513.55304 -44.57498 (275*2π)/3111 weeks
27621.63449 -38.05447 (276*2π)/3111 weeks
2774.46793 -31.57771 (277*2π)/3111 weeks
278-15.29463 -48.49738 (278*2π)/3111 weeks
279-3.96165 -83.54505 (279*2π)/3111 weeks
28029.66096 -88.28812 (280*2π)/3111 weeks
28145.10101 -56.8069 (281*2π)/3111 weeks
28215.42134 -48.92049 (282*2π)/3111 weeks
28315.35625 -75.19234 (283*2π)/3111 weeks
28434.5876 -79.36357 (284*2π)/3111 weeks
28548.0429 -70.20201 (285*2π)/3111 weeks
28661.64588 -45.14983 (286*2π)/3111 weeks
28731.59819 -22.08483 (287*2π)/3111 weeks
2887.73814 -20.68992 (288*2π)/3111 weeks
289-16.84446 -35.50269 (289*2π)/3111 weeks
290-34.17208 -55.41905 (290*2π)/3111 weeks
291-42.40743 -84.51308 (291*2π)/3111 weeks
292-37.08956 -114.5075 (292*2π)/3111 weeks
293-12.26493 -145.0146 (293*2π)/3111 weeks
29411.30057 -140.7927 (294*2π)/3111 weeks
29534.55142 -142.002 (295*2π)/3111 weeks
29634.85109 -105.2069 (296*2π)/3111 weeks
297-1.53467 -106.9407 (297*2π)/3111 weeks
298-19.78438 -159.4081 (298*2π)/3111 weeks
29923.82994 -174.6698 (299*2π)/3111 weeks
30027.13251 -143.213 (300*2π)/3111 weeks
301-19.57305 -153.7361 (301*2π)/3111 weeks
302-56.84303 -176.6148 (302*2π)/3111 weeks
303-123.9065 -279.113 (303*2π)/3111 weeks
304-89.44255 -448.6929 (304*2π)/3111 weeks
30587.92723 -574.9446 (305*2π)/3111 weeks
306264.1158 -508.4131 (306*2π)/3111 weeks
307260.9768 -424.8007 (307*2π)/3111 weeks
308201.8515 -618.7913 (308*2π)/3111 weeks
309516.0034 -836.5909 (309*2π)/3111 weeks

Problems, Comments, Suggestions? Click here to contact Greg Thatcher

Please read my Disclaimer





Copyright (c) 2013 Thatcher Development Software, LLC. All rights reserved. No claim to original U.S. Gov't works.