Back to list of Stocks    See Also: Seasonal Analysis of FSPHXGenetic Algorithms Stock Portfolio Generator, and Fourier Calculator

Fourier Analysis of FSPHX (Fidelity Select Health Care)


FSPHX (Fidelity Select Health Care) appears to have interesting cyclic behaviour every 154 weeks (5.1156*sine), 185 weeks (4.6554*sine), and 168 weeks (3.4817*sine).

FSPHX (Fidelity Select Health Care) has an average price of 46.54 (topmost row, frequency = 0).



Click on the checkboxes shown on the right to see how the various frequencies contribute to the graph. Look for large magnitude coefficients (sine or cosine), as these are associated with frequencies which contribute most to the associated stock plot. If you find a large magnitude coefficient which dramatically changes the graph, look at the associated "Period" in weeks, as you may have found a significant recurring cycle for the stock of interest.

Right click on the graph above to see the menu of operations (download, full screen, etc.)

Fourier Analysis

Using data from 7/14/1981 to 1/17/2017 for FSPHX (Fidelity Select Health Care), this program was able to calculate the following Fourier Series:
Sequence #Cosine Coefficients Sine Coefficients FrequenciesPeriod
046.53792   0 
123.73412 -39.23475 (1*2π)/18531,853 weeks
220.40013 -24.02182 (2*2π)/1853927 weeks
39.49754 -24.99367 (3*2π)/1853618 weeks
47.03376 -21.9841 (4*2π)/1853463 weeks
5-1.92296 -18.91883 (5*2π)/1853371 weeks
6-.89813 -12.73498 (6*2π)/1853309 weeks
7-.84438 -12.07205 (7*2π)/1853265 weeks
8-3.25018 -9.34492 (8*2π)/1853232 weeks
9-3.59085 -7.29874 (9*2π)/1853206 weeks
10-2.63077 -4.6554 (10*2π)/1853185 weeks
11-.35507 -3.48167 (11*2π)/1853168 weeks
12-.51024 -5.11562 (12*2π)/1853154 weeks
13-.64059 -3.83525 (13*2π)/1853143 weeks
14-.58635 -3.54656 (14*2π)/1853132 weeks
15-.0035 -2.44842 (15*2π)/1853124 weeks
16.54332 -3.61053 (16*2π)/1853116 weeks
17-.0183 -3.21643 (17*2π)/1853109 weeks
18.13079 -2.31432 (18*2π)/1853103 weeks
191.04371 -2.31615 (19*2π)/185398 weeks
201.01568 -3.35577 (20*2π)/185393 weeks
21.45735 -2.85545 (21*2π)/185388 weeks
22.68685 -3.18247 (22*2π)/185384 weeks
23.32554 -2.66384 (23*2π)/185381 weeks
241.0485 -3.10104 (24*2π)/185377 weeks
25.48648 -3.4493 (25*2π)/185374 weeks
26.06677 -3.81394 (26*2π)/185371 weeks
27-1.0876 -3.3234 (27*2π)/185369 weeks
28-.67383 -2.38658 (28*2π)/185366 weeks
29-.55084 -2.50161 (29*2π)/185364 weeks
30-.3739 -2.10524 (30*2π)/185362 weeks
31-.44848 -2.54557 (31*2π)/185360 weeks
32-.85585 -2.03501 (32*2π)/185358 weeks
33-.8324 -1.86527 (33*2π)/185356 weeks
34-.72057 -1.60696 (34*2π)/185355 weeks
35-.39877 -1.28655 (35*2π)/185353 weeks
36-.18381 -1.46398 (36*2π)/185351 weeks
37-.04498 -1.42298 (37*2π)/185350 weeks
38-.07404 -1.64615 (38*2π)/185349 weeks
39-.42315 -1.71812 (39*2π)/185348 weeks
40-.56332 -1.57809 (40*2π)/185346 weeks
41-.4113 -.93546 (41*2π)/185345 weeks
42.01517 -1.35481 (42*2π)/185344 weeks
43-.2826 -1.42414 (43*2π)/185343 weeks
44-.23576 -1.32529 (44*2π)/185342 weeks
45-.33284 -1.02772 (45*2π)/185341 weeks
46-.12048 -1.2879 (46*2π)/185340 weeks
47-.16493 -1.16279 (47*2π)/185339 weeks
48-.23974 -1.30268 (48*2π)/185339 weeks
49-.34071 -.92687 (49*2π)/185338 weeks
50-.0503 -1.18049 (50*2π)/185337 weeks
51-.18832 -1.32949 (51*2π)/185336 weeks
52-.48404 -1.11053 (52*2π)/185336 weeks
53-.5232 -1.02147 (53*2π)/185335 weeks
54-.55686 -.59669 (54*2π)/185334 weeks
55-.04636 -.58451 (55*2π)/185334 weeks
56-.2815 -.68797 (56*2π)/185333 weeks
57.05927 -.40024 (57*2π)/185333 weeks
58.3679 -.7332 (58*2π)/185332 weeks
59.17753 -1.01158 (59*2π)/185331 weeks
60-.11185 -.97825 (60*2π)/185331 weeks
61-.18275 -.65146 (61*2π)/185330 weeks
62.25869 -.70564 (62*2π)/185330 weeks
63.1967 -1.02315 (63*2π)/185329 weeks
64-.05755 -.99037 (64*2π)/185329 weeks
65-.04793 -.80717 (65*2π)/185329 weeks
66-.05759 -.80149 (66*2π)/185328 weeks
67-.01706 -.77835 (67*2π)/185328 weeks
68.03882 -.82708 (68*2π)/185327 weeks
69-.0404 -.78183 (69*2π)/185327 weeks
70.06481 -.65431 (70*2π)/185326 weeks
71.25682 -.81521 (71*2π)/185326 weeks
72.05608 -.82742 (72*2π)/185326 weeks
73.18569 -.98817 (73*2π)/185325 weeks
74-.04433 -.97722 (74*2π)/185325 weeks
75.09533 -.98499 (75*2π)/185325 weeks
76-.20369 -1.03322 (76*2π)/185324 weeks
77-.17347 -.94032 (77*2π)/185324 weeks
78-.38048 -.87594 (78*2π)/185324 weeks
79-.34951 -.58625 (79*2π)/185323 weeks
80-.17563 -.69685 (80*2π)/185323 weeks
81-.13871 -.46631 (81*2π)/185323 weeks
82-.10641 -.61774 (82*2π)/185323 weeks
83-.15218 -.48583 (83*2π)/185322 weeks
84.1049 -.54696 (84*2π)/185322 weeks
85-.05128 -.638 (85*2π)/185322 weeks
86-.06385 -.66653 (86*2π)/185322 weeks
87-.07512 -.54014 (87*2π)/185321 weeks
88.07816 -.4485 (88*2π)/185321 weeks
89.09249 -.63924 (89*2π)/185321 weeks
90-.05371 -.67383 (90*2π)/185321 weeks
91-.08907 -.50782 (91*2π)/185320 weeks
92.07969 -.39732 (92*2π)/185320 weeks
93.15728 -.508 (93*2π)/185320 weeks
94.21954 -.55036 (94*2π)/185320 weeks
95.14129 -.60109 (95*2π)/185320 weeks
96.35461 -.64927 (96*2π)/185319 weeks
97.17832 -.78328 (97*2π)/185319 weeks
98.25461 -.8817 (98*2π)/185319 weeks
99.05876 -.90227 (99*2π)/185319 weeks
100.01259 -.88951 (100*2π)/185319 weeks
101-.03754 -.81808 (101*2π)/185318 weeks
102-.04803 -1.01263 (102*2π)/185318 weeks
103-.23883 -.842 (103*2π)/185318 weeks
104-.38743 -.85399 (104*2π)/185318 weeks
105-.26299 -.5052 (105*2π)/185318 weeks
106-.15072 -.63349 (106*2π)/185317 weeks
107-.16189 -.69607 (107*2π)/185317 weeks
108-.35658 -.58187 (108*2π)/185317 weeks
109-.10003 -.43509 (109*2π)/185317 weeks
110-.14052 -.60478 (110*2π)/185317 weeks
111-.16275 -.59822 (111*2π)/185317 weeks
112-.27415 -.57967 (112*2π)/185317 weeks
113-.23554 -.3929 (113*2π)/185316 weeks
114-.05372 -.4363 (114*2π)/185316 weeks
115-.07777 -.52397 (115*2π)/185316 weeks
116-.21713 -.59008 (116*2π)/185316 weeks
117-.30124 -.33903 (117*2π)/185316 weeks
118-.0575 -.37981 (118*2π)/185316 weeks
119-.10921 -.3522 (119*2π)/185316 weeks
120-.00304 -.33057 (120*2π)/185315 weeks
121.0446 -.44447 (121*2π)/185315 weeks
122.07804 -.43601 (122*2π)/185315 weeks
123.05842 -.51271 (123*2π)/185315 weeks
124.00796 -.63099 (124*2π)/185315 weeks
125-.05764 -.61326 (125*2π)/185315 weeks
126-.15289 -.59963 (126*2π)/185315 weeks
127-.164 -.54154 (127*2π)/185315 weeks
128-.20984 -.4555 (128*2π)/185314 weeks
129-.16172 -.37853 (129*2π)/185314 weeks
130-.11844 -.35467 (130*2π)/185314 weeks
131-.01833 -.38756 (131*2π)/185314 weeks
132-.04005 -.42354 (132*2π)/185314 weeks
133-.0136 -.34021 (133*2π)/185314 weeks
134.09121 -.45001 (134*2π)/185314 weeks
135.04316 -.54689 (135*2π)/185314 weeks
136.00044 -.64715 (136*2π)/185314 weeks
137-.22059 -.61125 (137*2π)/185314 weeks
138-.13666 -.50125 (138*2π)/185313 weeks
139-.23468 -.44791 (139*2π)/185313 weeks
140-.10702 -.36589 (140*2π)/185313 weeks
141-.07066 -.48561 (141*2π)/185313 weeks
142-.17638 -.45419 (142*2π)/185313 weeks
143-.13855 -.4614 (143*2π)/185313 weeks
144-.21371 -.39798 (144*2π)/185313 weeks
145-.15977 -.30534 (145*2π)/185313 weeks
146-.08721 -.30764 (146*2π)/185313 weeks
147-.01895 -.3407 (147*2π)/185313 weeks
148-.03638 -.39904 (148*2π)/185313 weeks
149-.01255 -.39851 (149*2π)/185312 weeks
150-.04064 -.5004 (150*2π)/185312 weeks
151-.1576 -.42442 (151*2π)/185312 weeks
152-.07452 -.40738 (152*2π)/185312 weeks
153-.11005 -.4519 (153*2π)/185312 weeks
154-.18439 -.37772 (154*2π)/185312 weeks
155-.06449 -.36225 (155*2π)/185312 weeks
156-.10784 -.37876 (156*2π)/185312 weeks
157-.07977 -.43288 (157*2π)/185312 weeks
158-.22753 -.37991 (158*2π)/185312 weeks
159-.10399 -.27203 (159*2π)/185312 weeks
160-.03148 -.2675 (160*2π)/185312 weeks
161.00502 -.36596 (161*2π)/185312 weeks
162-.05791 -.40693 (162*2π)/185311 weeks
163.00632 -.37631 (163*2π)/185311 weeks
164-.08471 -.44847 (164*2π)/185311 weeks
165-.06215 -.46262 (165*2π)/185311 weeks
166-.16763 -.44238 (166*2π)/185311 weeks
167-.07523 -.35038 (167*2π)/185311 weeks
168-.17214 -.48365 (168*2π)/185311 weeks
169-.1781 -.29462 (169*2π)/185311 weeks
170-.11022 -.39203 (170*2π)/185311 weeks
171-.18577 -.27696 (171*2π)/185311 weeks
172-.01631 -.322 (172*2π)/185311 weeks
173-.09721 -.42365 (173*2π)/185311 weeks
174-.11238 -.35454 (174*2π)/185311 weeks
175-.14098 -.41813 (175*2π)/185311 weeks
176-.18499 -.36336 (176*2π)/185311 weeks
177-.19392 -.28618 (177*2π)/185310 weeks
178-.09586 -.27208 (178*2π)/185310 weeks
179-.11039 -.32668 (179*2π)/185310 weeks
180-.08322 -.32635 (180*2π)/185310 weeks
181-.1412 -.32125 (181*2π)/185310 weeks
182-.07508 -.35879 (182*2π)/185310 weeks
183-.20914 -.33038 (183*2π)/185310 weeks
184-.15143 -.30921 (184*2π)/185310 weeks
185-.20723 -.25258 (185*2π)/185310 weeks
186-.0866 -.24809 (186*2π)/185310 weeks
187-.11784 -.30658 (187*2π)/185310 weeks
188-.19665 -.29832 (188*2π)/185310 weeks
189-.18292 -.16572 (189*2π)/185310 weeks
190-.08235 -.17133 (190*2π)/185310 weeks
191-.0562 -.14294 (191*2π)/185310 weeks
192.02643 -.24941 (192*2π)/185310 weeks
193-.03205 -.29296 (193*2π)/185310 weeks
194-.00247 -.25985 (194*2π)/185310 weeks
195-.05305 -.32618 (195*2π)/185310 weeks
196-.04849 -.28929 (196*2π)/18539 weeks
197-.04472 -.31964 (197*2π)/18539 weeks
198-.08426 -.31132 (198*2π)/18539 weeks
199-.11321 -.32473 (199*2π)/18539 weeks
200-.05721 -.31639 (200*2π)/18539 weeks
201-.18413 -.32742 (201*2π)/18539 weeks
202-.13933 -.17937 (202*2π)/18539 weeks
203-.06846 -.22012 (203*2π)/18539 weeks
204-.04397 -.22056 (204*2π)/18539 weeks
205-.06375 -.26881 (205*2π)/18539 weeks
206-.07784 -.22801 (206*2π)/18539 weeks
207-.03818 -.26247 (207*2π)/18539 weeks
208-.09504 -.17876 (208*2π)/18539 weeks
209.0438 -.1981 (209*2π)/18539 weeks
210.04313 -.25945 (210*2π)/18539 weeks
211.05595 -.30416 (211*2π)/18539 weeks
212.02777 -.35954 (212*2π)/18539 weeks
213-.01071 -.40013 (213*2π)/18539 weeks
214-.06932 -.36737 (214*2π)/18539 weeks
215-.10909 -.43176 (215*2π)/18539 weeks
216-.19806 -.29502 (216*2π)/18539 weeks
217-.1106 -.29775 (217*2π)/18539 weeks
218-.17459 -.19549 (218*2π)/18539 weeks
219-.06879 -.29664 (219*2π)/18538 weeks
220-.15496 -.15593 (220*2π)/18538 weeks
221-.00423 -.21123 (221*2π)/18538 weeks
222-.04096 -.18959 (222*2π)/18538 weeks
223.08976 -.25577 (223*2π)/18538 weeks
224-.03086 -.34016 (224*2π)/18538 weeks
225.01412 -.32252 (225*2π)/18538 weeks
226-.10352 -.38608 (226*2π)/18538 weeks
227-.13593 -.28921 (227*2π)/18538 weeks
228-.14143 -.26115 (228*2π)/18538 weeks
229-.08055 -.18921 (229*2π)/18538 weeks
230-.01696 -.2024 (230*2π)/18538 weeks
231.02768 -.21232 (231*2π)/18538 weeks
232.06948 -.32027 (232*2π)/18538 weeks
233-.01672 -.35751 (233*2π)/18538 weeks
234-.01165 -.3626 (234*2π)/18538 weeks
235-.06802 -.34665 (235*2π)/18538 weeks
236-.03348 -.35263 (236*2π)/18538 weeks
237-.075 -.35999 (237*2π)/18538 weeks
238-.04541 -.36734 (238*2π)/18538 weeks
239-.11941 -.41381 (239*2π)/18538 weeks
240-.19558 -.33858 (240*2π)/18538 weeks
241-.08587 -.2644 (241*2π)/18538 weeks
242-.09473 -.35428 (242*2π)/18538 weeks
243-.11493 -.33217 (243*2π)/18538 weeks
244-.14307 -.3821 (244*2π)/18538 weeks
245-.15019 -.32862 (245*2π)/18538 weeks
246-.14609 -.34618 (246*2π)/18538 weeks
247-.19304 -.3679 (247*2π)/18538 weeks
248-.24898 -.34365 (248*2π)/18537 weeks
249-.2517 -.24247 (249*2π)/18537 weeks
250-.18891 -.22113 (250*2π)/18537 weeks
251-.19101 -.29528 (251*2π)/18537 weeks
252-.25344 -.23305 (252*2π)/18537 weeks
253-.2212 -.16144 (253*2π)/18537 weeks
254-.2435 -.15423 (254*2π)/18537 weeks
255-.13757 -.08485 (255*2π)/18537 weeks
256-.07845 -.14782 (256*2π)/18537 weeks
257-.0813 -.17226 (257*2π)/18537 weeks
258-.04221 -.20098 (258*2π)/18537 weeks
259-.07947 -.25163 (259*2π)/18537 weeks
260-.172 -.23073 (260*2π)/18537 weeks
261-.1213 -.16816 (261*2π)/18537 weeks
262-.09697 -.14632 (262*2π)/18537 weeks
263.01578 -.19422 (263*2π)/18537 weeks
264-.05302 -.32416 (264*2π)/18537 weeks
265-.12507 -.27824 (265*2π)/18537 weeks
266-.19666 -.24414 (266*2π)/18537 weeks
267-.12073 -.15407 (267*2π)/18537 weeks
268-.07596 -.23799 (268*2π)/18537 weeks
269-.12136 -.20273 (269*2π)/18537 weeks
270-.11301 -.22501 (270*2π)/18537 weeks
271-.09403 -.17767 (271*2π)/18537 weeks
272-.07624 -.24248 (272*2π)/18537 weeks
273-.1149 -.23615 (273*2π)/18537 weeks
274-.12891 -.21897 (274*2π)/18537 weeks
275-.12166 -.17098 (275*2π)/18537 weeks
276-.0562 -.20251 (276*2π)/18537 weeks
277-.08813 -.23303 (277*2π)/18537 weeks
278-.10374 -.22728 (278*2π)/18537 weeks
279-.11188 -.20331 (279*2π)/18537 weeks
280-.07824 -.21553 (280*2π)/18537 weeks
281-.0575 -.19889 (281*2π)/18537 weeks
282-.08312 -.26207 (282*2π)/18537 weeks
283-.05599 -.24745 (283*2π)/18537 weeks
284-.09564 -.30431 (284*2π)/18537 weeks
285-.11714 -.28102 (285*2π)/18537 weeks
286-.15418 -.31461 (286*2π)/18536 weeks
287-.20794 -.25562 (287*2π)/18536 weeks
288-.20532 -.21145 (288*2π)/18536 weeks
289-.16406 -.14967 (289*2π)/18536 weeks
290-.09525 -.22306 (290*2π)/18536 weeks
291-.15721 -.23852 (291*2π)/18536 weeks
292-.16613 -.228 (292*2π)/18536 weeks
293-.15133 -.16102 (293*2π)/18536 weeks
294-.10035 -.23131 (294*2π)/18536 weeks
295-.17955 -.26161 (295*2π)/18536 weeks
296-.21873 -.22554 (296*2π)/18536 weeks
297-.2089 -.1345 (297*2π)/18536 weeks
298-.11995 -.19106 (298*2π)/18536 weeks
299-.21112 -.17819 (299*2π)/18536 weeks
300-.16715 -.14522 (300*2π)/18536 weeks
301-.21387 -.15366 (301*2π)/18536 weeks
302-.11158 -.07844 (302*2π)/18536 weeks
303-.14255 -.19231 (303*2π)/18536 weeks
304-.15083 -.11437 (304*2π)/18536 weeks
305-.17164 -.14854 (305*2π)/18536 weeks
306-.12132 -.07399 (306*2π)/18536 weeks
307-.1254 -.14655 (307*2π)/18536 weeks
308-.10992 -.10826 (308*2π)/18536 weeks
309-.13339 -.14846 (309*2π)/18536 weeks
310-.1459 -.08133 (310*2π)/18536 weeks
311-.06903 -.07964 (311*2π)/18536 weeks
312-.09235 -.12576 (312*2π)/18536 weeks
313-.07914 -.08878 (313*2π)/18536 weeks
314-.0448 -.12287 (314*2π)/18536 weeks
315-.06097 -.10108 (315*2π)/18536 weeks
316-.01516 -.13033 (316*2π)/18536 weeks
317-.02803 -.16301 (317*2π)/18536 weeks
318-.0167 -.18086 (318*2π)/18536 weeks
319-.06387 -.23499 (319*2π)/18536 weeks
320-.07822 -.19079 (320*2π)/18536 weeks
321-.111 -.19712 (321*2π)/18536 weeks
322-.09903 -.15357 (322*2π)/18536 weeks
323-.08556 -.17365 (323*2π)/18536 weeks
324-.09025 -.17121 (324*2π)/18536 weeks
325-.0986 -.17089 (325*2π)/18536 weeks
326-.07778 -.1448 (326*2π)/18536 weeks
327-.07595 -.17383 (327*2π)/18536 weeks
328-.06112 -.16074 (328*2π)/18536 weeks
329-.07966 -.19061 (329*2π)/18536 weeks
330-.09639 -.1654 (330*2π)/18536 weeks
331-.03698 -.15565 (331*2π)/18536 weeks
332-.07283 -.2399 (332*2π)/18536 weeks
333-.11831 -.1736 (333*2π)/18536 weeks
334-.07281 -.18389 (334*2π)/18536 weeks
335-.0908 -.18926 (335*2π)/18536 weeks
336-.06054 -.18914 (336*2π)/18536 weeks
337-.06981 -.23525 (337*2π)/18535 weeks
338-.1337 -.21822 (338*2π)/18535 weeks
339-.10854 -.21563 (339*2π)/18535 weeks
340-.15216 -.21349 (340*2π)/18535 weeks
341-.12678 -.19266 (341*2π)/18535 weeks
342-.14962 -.22313 (342*2π)/18535 weeks
343-.19008 -.15465 (343*2π)/18535 weeks
344-.14194 -.14417 (344*2π)/18535 weeks
345-.1666 -.12458 (345*2π)/18535 weeks
346-.07827 -.1315 (346*2π)/18535 weeks
347-.14861 -.2035 (347*2π)/18535 weeks
348-.13948 -.09618 (348*2π)/18535 weeks
349-.07869 -.17905 (349*2π)/18535 weeks
350-.13546 -.15963 (350*2π)/18535 weeks
351-.1415 -.18197 (351*2π)/18535 weeks
352-.19053 -.12839 (352*2π)/18535 weeks
353-.10163 -.10881 (353*2π)/18535 weeks
354-.13732 -.17399 (354*2π)/18535 weeks
355-.19339 -.11279 (355*2π)/18535 weeks
356-.15474 -.08049 (356*2π)/18535 weeks
357-.12629 -.02264 (357*2π)/18535 weeks
358-.0637 -.08971 (358*2π)/18535 weeks
359-.10162 -.08002 (359*2π)/18535 weeks
360-.03555 -.04457 (360*2π)/18535 weeks
361-.01906 -.11409 (361*2π)/18535 weeks
362-.00763 -.14042 (362*2π)/18535 weeks
363-.04934 -.1721 (363*2π)/18535 weeks
364-.06262 -.1494 (364*2π)/18535 weeks
365-.04342 -.16312 (365*2π)/18535 weeks
366-.01455 -.19276 (366*2π)/18535 weeks
367-.09121 -.24411 (367*2π)/18535 weeks
368-.13355 -.21331 (368*2π)/18535 weeks
369-.13454 -.19345 (369*2π)/18535 weeks
370-.13445 -.17085 (370*2π)/18535 weeks
371-.16548 -.18252 (371*2π)/18535 weeks
372-.16007 -.15276 (372*2π)/18535 weeks
373-.17743 -.10031 (373*2π)/18535 weeks
374-.13891 -.09204 (374*2π)/18535 weeks
375-.11919 -.08934 (375*2π)/18535 weeks
376-.11316 -.11522 (376*2π)/18535 weeks
377-.1339 -.05011 (377*2π)/18535 weeks
378-.06293 -.08334 (378*2π)/18535 weeks
379-.08346 -.05921 (379*2π)/18535 weeks
380.00289 -.12444 (380*2π)/18535 weeks
381-.09175 -.13961 (381*2π)/18535 weeks
382-.05471 -.09628 (382*2π)/18535 weeks
383-.0198 -.12376 (383*2π)/18535 weeks
384-.04885 -.18332 (384*2π)/18535 weeks
385-.06639 -.153 (385*2π)/18535 weeks
386-.08927 -.18866 (386*2π)/18535 weeks
387-.07598 -.13207 (387*2π)/18535 weeks
388-.08985 -.18942 (388*2π)/18535 weeks
389-.1031 -.12667 (389*2π)/18535 weeks
390-.10872 -.17655 (390*2π)/18535 weeks
391-.12086 -.08875 (391*2π)/18535 weeks
392-.07885 -.11303 (392*2π)/18535 weeks
393-.04057 -.10244 (393*2π)/18535 weeks
394-.05459 -.17246 (394*2π)/18535 weeks
395-.05441 -.11162 (395*2π)/18535 weeks
396-.03853 -.17304 (396*2π)/18535 weeks
397-.04285 -.17249 (397*2π)/18535 weeks
398-.0693 -.19269 (398*2π)/18535 weeks
399-.05525 -.16735 (399*2π)/18535 weeks
400-.0561 -.21464