Back to list of Stocks    See Also: Seasonal Analysis of FRXGenetic Algorithms Stock Portfolio Generator, and Fourier Calculator

# Fourier Analysis of FRX (Forest Laboratories, Inc. Class)

FRX (Forest Laboratories, Inc. Class) appears to have interesting cyclic behaviour every 176 weeks (3.129*sine), 164 weeks (2.831*cosine), and 135 weeks (2.1684*cosine).

FRX (Forest Laboratories, Inc. Class) has an average price of 14.86 (topmost row, frequency = 0).

Click on the checkboxes shown on the right to see how the various frequencies contribute to the graph. Look for large magnitude coefficients (sine or cosine), as these are associated with frequencies which contribute most to the associated stock plot. If you find a large magnitude coefficient which dramatically changes the graph, look at the associated "Period" in weeks, as you may have found a significant recurring cycle for the stock of interest.

## Fourier Analysis

Using data from 6/1/1972 to 9/26/2016 for FRX (Forest Laboratories, Inc. Class), this program was able to calculate the following Fourier Series:
Sequence #Cosine Coefficients Sine Coefficients FrequenciesPeriod
014.85744   0
12.44126 -21.44979 (1*2π)/22942,294 weeks
2-8.63902 -3.5074 (2*2π)/22941,147 weeks
31.51774 .90347 (3*2π)/2294765 weeks
4-.16047 -6.17189 (4*2π)/2294574 weeks
5-4.85799 -1.90355 (5*2π)/2294459 weeks
6-2.4925 .02179 (6*2π)/2294382 weeks
7-2.75628 -.08484 (7*2π)/2294328 weeks
8-2.56348 1.57321 (8*2π)/2294287 weeks
9-.87976 2.0667 (9*2π)/2294255 weeks
10-.01372 1.26491 (10*2π)/2294229 weeks
11-.8905 .63518 (11*2π)/2294209 weeks
12-1.00326 2.16217 (12*2π)/2294191 weeks
13.97192 3.129 (13*2π)/2294176 weeks
142.83102 1.10578 (14*2π)/2294164 weeks
151.30521 -.65431 (15*2π)/2294153 weeks
16.89944 .56701 (16*2π)/2294143 weeks
172.16845 -.01534 (17*2π)/2294135 weeks
181.42132 -1.52603 (18*2π)/2294127 weeks
19.55756 -1.25198 (19*2π)/2294121 weeks
20.36846 -1.36825 (20*2π)/2294115 weeks
21.09428 -1.3933 (21*2π)/2294109 weeks
22-.5539 -1.54704 (22*2π)/2294104 weeks
23-1.2998 -1.05841 (23*2π)/2294100 weeks
24-1.07608 -.2708 (24*2π)/229496 weeks
25-1.01676 -.34348 (25*2π)/229492 weeks
26-1.44959 .06706 (26*2π)/229488 weeks
27-1.06415 .85048 (27*2π)/229485 weeks
28-.53967 .68165 (28*2π)/229482 weeks
29-.76534 .85313 (29*2π)/229479 weeks
30-.51877 1.47615 (30*2π)/229476 weeks
31.65848 1.8906 (31*2π)/229474 weeks
321.63263 .70053 (32*2π)/229472 weeks
33.89702 -.33279 (33*2π)/229470 weeks
34.35146 .38267 (34*2π)/229467 weeks
351.3383 .20104 (35*2π)/229466 weeks
361.05236 -.80467 (36*2π)/229464 weeks
37.37394 -.68641 (37*2π)/229462 weeks
38.67914 -.63136 (38*2π)/229460 weeks
39.22873 -1.41224 (39*2π)/229459 weeks
40-.68181 -.904 (40*2π)/229457 weeks
41-.37932 -.39519 (41*2π)/229456 weeks
42-.27123 -.75603 (42*2π)/229455 weeks
43-1.12165 -.779 (43*2π)/229453 weeks
44-1.30536 .33399 (44*2π)/229452 weeks
45-.45994 .50465 (45*2π)/229451 weeks
46-.57143 .21706 (46*2π)/229450 weeks
47-.76039 .67573 (47*2π)/229449 weeks
48-.17267 1.09414 (48*2π)/229448 weeks
49.3087 .82093 (49*2π)/229447 weeks
50.39277 .57946 (50*2π)/229446 weeks
51.51918 .619 (51*2π)/229445 weeks
52.97779 .29697 (52*2π)/229444 weeks
53.7805 -.31246 (53*2π)/229443 weeks
54.36694 -.32858 (54*2π)/229442 weeks
55.49075 -.21544 (55*2π)/229442 weeks
56.44101 -.55384 (56*2π)/229441 weeks
57.1567 -.66111 (57*2π)/229440 weeks
58-.11727 -.59261 (58*2π)/229440 weeks
59-.13373 -.47719 (59*2π)/229439 weeks
60-.2416 -.59098 (60*2π)/229438 weeks
61-.67654 -.50792 (61*2π)/229438 weeks
62-.73499 -.01135 (62*2π)/229437 weeks
63-.54257 .17439 (63*2π)/229436 weeks
64-.5313 .14718 (64*2π)/229436 weeks
65-.60651 .64589 (65*2π)/229435 weeks
66.16114 .74885 (66*2π)/229435 weeks
67.1708 .13876 (67*2π)/229434 weeks
68-.2024 .4036 (68*2π)/229434 weeks
69.36038 .69082 (69*2π)/229433 weeks
70.62999 .09929 (70*2π)/229433 weeks
71.25831 -.08466 (71*2π)/229432 weeks
72.28199 .0809 (72*2π)/229432 weeks
73.38497 -.05236 (73*2π)/229431 weeks
74.36444 -.13071 (74*2π)/229431 weeks
75.43873 -.33789 (75*2π)/229431 weeks
76.12534 -.65366 (76*2π)/229430 weeks
77-.26394 -.43331 (77*2π)/229430 weeks
78-.20695 -.15508 (78*2π)/229429 weeks
79-.09475 -.24396 (79*2π)/229429 weeks
80-.31355 -.28842 (80*2π)/229429 weeks
81-.42737 -.02848 (81*2π)/229428 weeks
82-.29095 .12363 (82*2π)/229428 weeks
83-.15065 .09869 (83*2π)/229428 weeks
84-.31451 .0551 (84*2π)/229427 weeks
85-.27463 .3862 (85*2π)/229427 weeks
86.08393 .4049 (86*2π)/229427 weeks
87.18297 .13184 (87*2π)/229426 weeks
88-.03522 .09493 (88*2π)/229426 weeks
89.04631 .28346 (89*2π)/229426 weeks
90.22609 .26273 (90*2π)/229425 weeks
91.35873 .14007 (91*2π)/229425 weeks
92.41398 -.09499 (92*2π)/229425 weeks
93.16524 -.25242 (93*2π)/229425 weeks
94.11935 -.10534 (94*2π)/229424 weeks
95.17435 -.19286 (95*2π)/229424 weeks
96.06548 -.2779 (96*2π)/229424 weeks
97-.01931 -.22375 (97*2π)/229424 weeks
98-.00917 -.27994 (98*2π)/229423 weeks
99-.23252 -.27307 (99*2π)/229423 weeks
100-.26031 -.12917 (100*2π)/229423 weeks
101-.26686 -.02878 (101*2π)/229423 weeks
102-.24737 .03163 (102*2π)/229422 weeks
103-.20355 .12006 (103*2π)/229422 weeks
104-.16224 .09993 (104*2π)/229422 weeks
105-.20956 .15336 (105*2π)/229422 weeks
106-.18594 .33227 (106*2π)/229422 weeks
107.12233 .43519 (107*2π)/229421 weeks
108.29836 .1855 (108*2π)/229421 weeks
109.18322 .01147 (109*2π)/229421 weeks
110.15179 .05313 (110*2π)/229421 weeks
111.15464 .01848 (111*2π)/229421 weeks
112.17128 .04468 (112*2π)/229420 weeks
113.28941 -.04556 (113*2π)/229420 weeks
114.21232 -.26469 (114*2π)/229420 weeks
115.01634 -.25954 (115*2π)/229420 weeks
116-.07488 -.14037 (116*2π)/229420 weeks
117.0202 -.10613 (117*2π)/229420 weeks
118.03818 -.18372 (118*2π)/229419 weeks
119-.13622 -.30472 (119*2π)/229419 weeks
120-.29541 -.08937 (120*2π)/229419 weeks
121-.19885 -.00901 (121*2π)/229419 weeks
122-.20722 .04955 (122*2π)/229419 weeks
123-.19479 .10868 (123*2π)/229419 weeks
124-.10512 .16071 (124*2π)/229419 weeks
125-.05874 .17923 (125*2π)/229418 weeks
126-.00364 .10654 (126*2π)/229418 weeks
127-.06154 .20348 (127*2π)/229418 weeks
128.10563 .20191 (128*2π)/229418 weeks
129.11839 .14092 (129*2π)/229418 weeks
130.1628 .12282 (130*2π)/229418 weeks
131.21804 .07909 (131*2π)/229418 weeks
132.2827 -.01823 (132*2π)/229417 weeks
133.19432 -.19263 (133*2π)/229417 weeks
134.05639 -.09736 (134*2π)/229417 weeks
135.2137 -.10329 (135*2π)/229417 weeks
136.14379 -.37803 (136*2π)/229417 weeks
137-.21878 -.31993 (137*2π)/229417 weeks
138-.15278 -.06061 (138*2π)/229417 weeks
139-.10709 -.14642 (139*2π)/229417 weeks
140-.2259 -.09093 (140*2π)/229416 weeks
141-.18452 .03073 (141*2π)/229416 weeks
142-.15262 .02314 (142*2π)/229416 weeks
143-.1562 .04288 (143*2π)/229416 weeks
144-.21046 .07694 (144*2π)/229416 weeks
145-.18004 .26913 (145*2π)/229416 weeks
146.02425 .27764 (146*2π)/229416 weeks
147.05497 .2007 (147*2π)/229416 weeks
148.13288 .24624 (148*2π)/229416 weeks
149.26337 .13936 (149*2π)/229415 weeks
150.23341 .00071 (150*2π)/229415 weeks
151.20191 -.0011 (151*2π)/229415 weeks
152.26784 -.10277 (152*2π)/229415 weeks
153.12881 -.2122 (153*2π)/229415 weeks
154.09052 -.1175 (154*2π)/229415 weeks
155.16217 -.26009 (155*2π)/229415 weeks
156-.08154 -.35611 (156*2π)/229415 weeks
157-.16232 -.16218 (157*2π)/229415 weeks
158-.15324 -.18745 (158*2π)/229415 weeks
159-.27142 -.13174 (159*2π)/229414 weeks
160-.2705 .01837 (160*2π)/229414 weeks
161-.24603 .09747 (161*2π)/229414 weeks
162-.14467 .1805 (162*2π)/229414 weeks
163-.08291 .12061 (163*2π)/229414 weeks
164-.14678 .14835 (164*2π)/229414 weeks
165-.0552 .31981 (165*2π)/229414 weeks
166.12754 .25083 (166*2π)/229414 weeks
167.16463 .17897 (167*2π)/229414 weeks
168.2455 .11367 (168*2π)/229414 weeks
169.25265 -.01976 (169*2π)/229414 weeks
170.13497 -.08549 (170*2π)/229413 weeks
171.16029 -.02497 (171*2π)/229413 weeks
172.19378 -.1344 (172*2π)/229413 weeks
173.10838 -.21399 (173*2π)/229413 weeks
174.0098 -.2078 (174*2π)/229413 weeks
175-.01124 -.18368 (175*2π)/229413 weeks
176-.05318 -.21971 (176*2π)/229413 weeks
177-.16573 -.2192 (177*2π)/229413 weeks
178-.26765 -.08178 (178*2π)/229413 weeks
179-.18944 -.02802 (179*2π)/229413 weeks
180-.29224 -.00253 (180*2π)/229413 weeks
181-.26803 .23516 (181*2π)/229413 weeks
182-.02922 .26046 (182*2π)/229413 weeks
183-.00722 .12468 (183*2π)/229413 weeks
184-.09463 .20127 (184*2π)/229412 weeks
185.11409 .3419 (185*2π)/229412 weeks
186.29494 .10615 (186*2π)/229412 weeks
187.13561 -.01517 (187*2π)/229412 weeks
188.14521 .08147 (188*2π)/229412 weeks
189.27026 -.02074 (189*2π)/229412 weeks
190.17895 -.1746 (190*2π)/229412 weeks
191.08545 -.17154 (191*2π)/229412 weeks
192.03485 -.1744 (192*2π)/229412 weeks
193-.02457 -.16284 (193*2π)/229412 weeks
194-.0192 -.11281 (194*2π)/229412 weeks
195-.02673 -.1976 (195*2π)/229412 weeks
196-.20401 -.17803 (196*2π)/229412 weeks
197-.21587 -.00809 (197*2π)/229412 weeks
198-.14477 .02158 (198*2π)/229412 weeks
199-.16484 .0397 (199*2π)/229412 weeks
200-.15794 .12139 (200*2π)/229411 weeks
201-.07808 .16969 (201*2π)/229411 weeks
202.00873 .15609 (202*2π)/229411 weeks
203-.00773 .08823 (203*2π)/229411 weeks
204-.01541 .21715 (204*2π)/229411 weeks
205.20046 .18384 (205*2π)/229411 weeks
206.19053 -.02296 (206*2π)/229411 weeks
207.06191 .02867 (207*2π)/229411 weeks
208.22276 .03388 (208*2π)/229411 weeks
209.15722 -.16313 (209*2π)/229411 weeks
210.03026 -.10386 (210*2π)/229411 weeks
211.11633 -.08962 (211*2π)/229411 weeks
212.03487 -.25721 (212*2π)/229411 weeks
213-.15421 -.13974 (213*2π)/229411 weeks
214-.05888 -.03417 (214*2π)/229411 weeks
215-.06057 -.13312 (215*2π)/229411 weeks
216-.21513 -.06964 (216*2π)/229411 weeks
217-.13555 .09334 (217*2π)/229411 weeks
218-.05508 .03876 (218*2π)/229411 weeks
219-.10531 .03195 (219*2π)/229410 weeks
220-.0982 .12471 (220*2π)/229410 weeks
221-.01218 .1247 (221*2π)/229410 weeks
222.00454 .11774 (222*2π)/229410 weeks
223.07135 .1247 (223*2π)/229410 weeks
224.09047 .05102 (224*2π)/229410 weeks
225.07941 .03975 (225*2π)/229410 weeks
226.08506 .02474 (226*2π)/229410 weeks
227.10747 .02866 (227*2π)/229410 weeks
228.16546 -.05904 (228*2π)/229410 weeks
229.05273 -.16162