Back to list of Stocks    See Also: Seasonal Analysis of FRXGenetic Algorithms Stock Portfolio Generator, and Fourier Calculator

Fourier Analysis of FRX (Forest Laboratories, Inc. Class)


FRX (Forest Laboratories, Inc. Class) appears to have interesting cyclic behaviour every 167 weeks (3.3105*sine), 181 weeks (2.632*cosine), and 198 weeks (2.0892*cosine).

FRX (Forest Laboratories, Inc. Class) has an average price of 15.61 (topmost row, frequency = 0).



Click on the checkboxes shown on the right to see how the various frequencies contribute to the graph. Look for large magnitude coefficients (sine or cosine), as these are associated with frequencies which contribute most to the associated stock plot. If you find a large magnitude coefficient which dramatically changes the graph, look at the associated "Period" in weeks, as you may have found a significant recurring cycle for the stock of interest.

Right click on the graph above to see the menu of operations (download, full screen, etc.)

Fourier Analysis

Using data from 6/1/1972 to 6/30/2014 for FRX (Forest Laboratories, Inc. Class), this program was able to calculate the following Fourier Series:
Sequence #Cosine Coefficients Sine Coefficients FrequenciesPeriod
015.60917   0 
18.05585 -20.4832 (1*2π)/21772,177 weeks
2-5.3526 -6.84696 (2*2π)/21771,089 weeks
31.61836 1.97019 (3*2π)/2177726 weeks
45.83383 -3.54189 (4*2π)/2177544 weeks
51.22793 -4.53189 (5*2π)/2177435 weeks
61.26578 -2.21248 (6*2π)/2177363 weeks
71.89959 -2.66745 (7*2π)/2177311 weeks
8.91688 -2.93816 (8*2π)/2177272 weeks
9.26425 -1.99589 (9*2π)/2177242 weeks
10.49757 -.70573 (10*2π)/2177218 weeks
112.08922 -.71936 (11*2π)/2177198 weeks
122.63198 -2.04102 (12*2π)/2177181 weeks
131.21126 -3.31045 (13*2π)/2177167 weeks
14-.45414 -2.03844 (14*2π)/2177156 weeks
15.75757 -.59064 (15*2π)/2177145 weeks
161.66907 -1.54525 (16*2π)/2177136 weeks
17.70716 -2.19779 (17*2π)/2177128 weeks
18.40895 -1.43868 (18*2π)/2177121 weeks
19.65706 -1.39775 (19*2π)/2177115 weeks
20.8337 -1.31844 (20*2π)/2177109 weeks
21.76867 -1.62506 (21*2π)/2177104 weeks
22.31272 -1.71786 (22*2π)/217799 weeks
23.27128 -1.09745 (23*2π)/217795 weeks
24.71516 -1.11735 (24*2π)/217791 weeks
25.59305 -1.53712 (25*2π)/217787 weeks
26.16199 -1.2775 (26*2π)/217784 weeks
27.5646 -.89122 (27*2π)/217781 weeks
28.8881 -1.23013 (28*2π)/217778 weeks
29.82851 -1.86365 (29*2π)/217775 weeks
30-.16209 -2.072 (30*2π)/217773 weeks
31-.68831 -1.10921 (31*2π)/217770 weeks
32.15891 -.31812 (32*2π)/217768 weeks
33.74924 -1.16645 (33*2π)/217766 weeks
34.06341 -1.45447 (34*2π)/217764 weeks
35-.10815 -.85949 (35*2π)/217762 weeks
36.48979 -.84181 (36*2π)/217760 weeks
37.24676 -1.49139 (37*2π)/217759 weeks
38-.37033 -1.06229 (38*2π)/217757 weeks
39.02903 -.54979 (39*2π)/217756 weeks
40.57607 -.813 (40*2π)/217754 weeks
41.29482 -1.48574 (41*2π)/217753 weeks
42-.45155 -1.1837 (42*2π)/217752 weeks
43-.1115 -.55167 (43*2π)/217751 weeks
44.32494 -.79287 (44*2π)/217749 weeks
45.13848 -1.20089 (45*2π)/217748 weeks
46-.23186 -1.04925 (46*2π)/217747 weeks
47-.19266 -.79705 (47*2π)/217746 weeks
48.00827 -.78128 (48*2π)/217745 weeks
49-.08442 -1.04966 (49*2π)/217744 weeks
50-.4377 -.84777 (50*2π)/217744 weeks
51-.32102 -.47327 (51*2π)/217743 weeks
52.04885 -.51981 (52*2π)/217742 weeks
53-.03725 -.74557 (53*2π)/217741 weeks
54-.13488 -.69283 (54*2π)/217740 weeks
55-.17816 -.59157 (55*2π)/217740 weeks
56-.00751 -.52153 (56*2π)/217739 weeks
57.09251 -.69812 (57*2π)/217738 weeks
58-.14622 -.87332 (58*2π)/217738 weeks
59-.29516 -.63743 (59*2π)/217737 weeks
60-.18439 -.50467 (60*2π)/217736 weeks
61-.00775 -.68891 (61*2π)/217736 weeks
62-.46544 -.80364 (62*2π)/217735 weeks
63-.50094 -.19129 (63*2π)/217735 weeks
64.10308 -.17296 (64*2π)/217734 weeks
65.07658 -.72684 (65*2π)/217733 weeks
66-.42968 -.61843 (66*2π)/217733 weeks
67-.31809 -.18523 (67*2π)/217732 weeks
68.00993 -.24939 (68*2π)/217732 weeks
69-.00892 -.40865 (69*2π)/217732 weeks
70-.00334 -.40289 (70*2π)/217731 weeks
71.01507 -.55795 (71*2π)/217731 weeks
72-.25676 -.62611 (72*2π)/217730 weeks
73-.36636 -.32422 (73*2π)/217730 weeks
74-.15327 -.14897 (74*2π)/217729 weeks
75.03941 -.29468 (75*2π)/217729 weeks
76-.06934 -.44659 (76*2π)/217729 weeks
77-.20175 -.34727 (77*2π)/217728 weeks
78-.14741 -.2312 (78*2π)/217728 weeks
79.02322 -.18425 (79*2π)/217728 weeks
80.05951 -.43377 (80*2π)/217727 weeks
81-.19676 -.43815 (81*2π)/217727 weeks
82-.24024 -.19718 (82*2π)/217727 weeks
83-.01356 -.05628 (83*2π)/217726 weeks
84.15312 -.25464 (84*2π)/217726 weeks
85.07301 -.3724 (85*2π)/217726 weeks
86-.00026 -.40759 (86*2π)/217725 weeks
87-.09989 -.4201 (87*2π)/217725 weeks
88-.20568 -.24995 (88*2π)/217725 weeks
89-.00663 -.14954 (89*2π)/217724 weeks
90.04165 -.2768 (90*2π)/217724 weeks
91-.02037 -.29954 (91*2π)/217724 weeks
92-.00519 -.23678 (92*2π)/217724 weeks
93.08121 -.31264 (93*2π)/217723 weeks
94-.05879 -.36045 (94*2π)/217723 weeks
95-.04967 -.28913 (95*2π)/217723 weeks
96-.04566 -.25989 (96*2π)/217723 weeks
97-.02185 -.26289 (97*2π)/217722 weeks
98-.02273 -.21974 (98*2π)/217722 weeks
99.06675 -.23785 (99*2π)/217722 weeks
100.09466 -.33992 (100*2π)/217722 weeks
101-.024 -.46881 (101*2π)/217722 weeks
102-.21605 -.33781 (102*2π)/217721 weeks
103-.16986 -.14614 (103*2π)/217721 weeks
104-.00796 -.14306 (104*2π)/217721 weeks
105.00689 -.17728 (105*2π)/217721 weeks
106.06992 -.18573 (106*2π)/217721 weeks
107.08811 -.30581 (107*2π)/217720 weeks
108-.05095 -.35666 (108*2π)/217720 weeks
109-.10886 -.22949 (109*2π)/217720 weeks
110-.0677 -.1207 (110*2π)/217720 weeks
111.08106 -.13424 (111*2π)/217720 weeks
112.14766 -.21419 (112*2π)/217719 weeks
113.07359 -.38243 (113*2π)/217719 weeks
114-.08313 -.28534 (114*2π)/217719 weeks
115.00066 -.22533 (115*2π)/217719 weeks
116-.00268 -.2302 (116*2π)/217719 weeks
117-.01779 -.24756 (117*2π)/217719 weeks
118-.00298 -.20285 (118*2π)/217718 weeks
119-.01596 -.18599 (119*2π)/217718 weeks
120.1085 -.16304 (120*2π)/217718 weeks
121.05813 -.29165 (121*2π)/217718 weeks
122.02616 -.22434 (122*2π)/217718 weeks
123.06188 -.23779 (123*2π)/217718 weeks
124.06933 -.26409 (124*2π)/217718 weeks
125.05597 -.30873 (125*2π)/217717 weeks
126-.05003 -.30176 (126*2π)/217717 weeks
127-.00745 -.14049 (127*2π)/217717 weeks
128.17651 -.23088 (128*2π)/217717 weeks
129.0849 -.44496 (129*2π)/217717 weeks
130-.17304 -.34822 (130*2π)/217717 weeks
131-.05152 -.12664 (131*2π)/217717 weeks
132.06397 -.23073 (132*2π)/217716 weeks
133-.01139 -.26986 (133*2π)/217716 weeks
134-.00964 -.18923 (134*2π)/217716 weeks
135.05125 -.19963 (135*2π)/217716 weeks
136.09457 -.21496 (136*2π)/217716 weeks
137.1317 -.31845 (137*2π)/217716 weeks
138-.00443 -.36702 (138*2π)/217716 weeks
139-.0265 -.26442 (139*2π)/217716 weeks
140.048 -.29191 (140*2π)/217716 weeks
141-.02197 -.34083 (141*2π)/217715 weeks
142-.0712 -.27013 (142*2π)/217715 weeks
143-.00101 -.22539 (143*2π)/217715 weeks
144.01249 -.3116 (144*2π)/217715 weeks
145-.07961 -.26425 (145*2π)/217715 weeks
146.02184 -.1771 (146*2π)/217715 weeks
147.08724 -.3404 (147*2π)/217715 weeks
148-.09088 -.37604 (148*2π)/217715 weeks
149-.07698 -.20983 (149*2π)/217715 weeks
150.00185 -.27839 (150*2π)/217715 weeks
151-.06212 -.31871 (151*2π)/217714 weeks
152-.08298 -.25743 (152*2π)/217714 weeks
153-.09237 -.25493 (153*2π)/217714 weeks
154-.08456 -.17819 (154*2π)/217714 weeks
155.02398 -.18535 (155*2π)/217714 weeks
156.04689 -.3146 (156*2π)/217714 weeks
157-.10011 -.32543 (157*2π)/217714 weeks
158-.09392 -.24621 (158*2π)/217714 weeks
159-.08365 -.26519 (159*2π)/217714 weeks
160-.12275 -.23157 (160*2π)/217714 weeks
161-.11079 -.1457 (161*2π)/217714 weeks
162.01663 -.16818 (162*2π)/217713 weeks
163-.01458 -.261 (163*2π)/217713 weeks
164-.0655 -.24952 (164*2π)/217713 weeks
165-.07173 -.20782 (165*2π)/217713 weeks
166-.02028 -.20458 (166*2π)/217713 weeks
167-.0089 -.25917 (167*2π)/217713 weeks
168-.05515 -.29781 (168*2π)/217713 weeks
169-.12897 -.23831 (169*2π)/217713 weeks
170-.02718 -.21824 (170*2π)/217713 weeks
171-.07704 -.33465 (171*2π)/217713 weeks
172-.2222 -.25258 (172*2π)/217713 weeks
173-.14376 -.10141 (173*2π)/217713 weeks
174.00368 -.15658 (174*2π)/217713 weeks
175-.04765 -.32904 (175*2π)/217712 weeks
176-.24656 -.25129 (176*2π)/217712 weeks
177-.16058 -.05749 (177*2π)/217712 weeks
178-.0051 -.13479 (178*2π)/217712 weeks
179-.07154 -.25528 (179*2π)/217712 weeks
180-.16847 -.18757 (180*2π)/217712 weeks
181-.11894 -.12384 (181*2π)/217712 weeks
182-.09312 -.12881 (182*2π)/217712 weeks
183-.08303 -.12282 (183*2π)/217712 weeks
184-.02052 -.11773 (184*2π)/217712 weeks
185-.01539 -.22539 (185*2π)/217712 weeks
186-.14345 -.2274 (186*2π)/217712 weeks
187-.1369 -.11631 (187*2π)/217712 weeks
188-.05945 -.12076 (188*2π)/217712 weeks
189-.06738 -.16513 (189*2π)/217712 weeks
190-.10634 -.15818 (190*2π)/217711 weeks
191-.10487 -.12432 (191*2π)/217711 weeks
192-.0635 -.0837 (192*2π)/217711 weeks
193.01886 -.16501 (193*2π)/217711 weeks
194-.1186 -.24745 (194*2π)/217711 weeks
195-.18458 -.10213 (195*2π)/217711 weeks
196-.03193 -.03472 (196*2π)/217711 weeks
197-.01081 -.20703 (197*2π)/217711 weeks
198-.1642 -.15515 (198*2π)/217711 weeks
199-.07925 -.04537 (199*2π)/217711 weeks
200.00464 -.14496 (200*2π)/217711 weeks
201-.13145 -.20977 (201*2π)/217711 weeks
202-.16233 -.04074 (202*2π)/217711 weeks
203-.0056 -.03827 (203*2π)/217711 weeks
204-.0149 -.17004 (204*2π)/217711 weeks
205-.14631 -.14401 (205*2π)/217711 weeks
206-.089 -.01672 (206*2π)/217711 weeks
207.00464 -.07115 (207*2π)/217711 weeks
208-.02221 -.14013 (208*2π)/217710 weeks
209-.08329 -.11398 (209*2π)/217710 weeks
210-.04822 -.08712 (210*2π)/217710 weeks
211-.052 -.11154 (211*2π)/217710 weeks
212-.06967 -.07089 (212*2π)/217710 weeks
213-.02184 -.071 (213*2π)/217710 weeks
214-.01599 -.09114 (214*2π)/217710 weeks
215-.00546 -.11339 (215*2π)/217710 weeks
216-.05593 -.15467 (216*2π)/217710 weeks
217-.11641 -.07193 (217*2π)/217710 weeks
218-.02121 .01213 (218*2π)/217710 weeks
219.06688 -.07484 (219*2π)/217710 weeks
220.01775 -.15063 (220*2π)/217710 weeks
221-.04419 -.11987 (221*2π)/217710 weeks
222-.00554 -.08611 (222*2π)/217710 weeks
223.00797 -.1104 (223*2π)/217710 weeks
224.00697 -.15435 (224*2π)/217710 weeks
225-.08946 -.13807 (225*2π)/217710 weeks
226-.02528 -.03843 (226*2π)/217710 weeks
227.04448 -.10946 (227*2π)/217710 weeks
228-.02576 -.17646 (228*2π)/217710 weeks
229-.09058 -.09706 (229*2π)/217710 weeks
230-.03035 -.03335 (230*2π)/21779 weeks
231.04344 -.05226 (231*2π)/21779 weeks
232.0706 -.12478 (232*2π)/21779 weeks
233.02439 -.17582 (233*2π)/21779 weeks
234-.06332 -.1786 (234*2π)/21779 weeks
235-.06968 -.06005 (235*2π)/21779 weeks
236.06095 -.04981 (236*2π)/21779 weeks
237.05503 -.20636 (237*2π)/21779 weeks
238-.09984 -.16079 (238*2π)/21779 weeks
239-.02618 -.03307 (239*2π)/21779 weeks
240.06589 -.11714 (240*2π)/21779 weeks
241.00308 -.17739 (241*2π)/21779 weeks
242-.041 -.14139 (242*2π)/21779 weeks
243-.04149 -.12223 (243*2π)/21779 weeks
244-.0376 -.07821 (244*2π)/21779 weeks
245.0307 -.07526 (245*2π)/21779 weeks
246.0333 -.14411 (246*2π)/21779 weeks
247-.0053 -.11931 (247*2π)/21779 weeks
248.03672 -.12602 (248*2π)/21779 weeks
249.02379 -.18268 (249*2π)/21779 weeks
250-.05731 -.1752 (250*2π)/21779 weeks
251-.04408 -.09314 (251*2π)/21779 weeks
252.01902 -.09157 (252*2π)/21779 weeks
253.03795 -.13861 (253*2π)/21779 weeks
254.02051 -.16739 (254*2π)/21779 weeks
255-.02366 -.186 (255*2π)/21779 weeks
256-.0366 -.13301 (256*2π)/21779 weeks
257-.02157 -.12086 (257*2π)/21778 weeks
258.02921 -.11723 (258*2π)/21778 weeks
259.02541 -.18771 (259*2π)/21778 weeks
260-.03557 -.17766 (260*2π)/21778 weeks
261-.02221 -.13182 (261*2π)/21778 weeks
262.02211 -.16456 (262*2π)/21778 weeks
263-.02688 -.20794 (263*2π)/21778 weeks
264-.05555 -.14438 (264*2π)/21778 weeks
265.01174 -.16244 (265*2π)/21778 weeks
266-.04456 -.23042 (266*2π)/21778 weeks
267-.12237 -.14903 (267*2π)/21778 weeks
268-.01433 -.08297 (268*2π)/21778 weeks
269.0127 -.19368 (269*2π)/21778 weeks
270-.07438 -.19729 (270*2π)/21778 weeks
271-.05635 -.15122 (271*2π)/21778 weeks
272-.06353 -.16686